
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Power and Control

Final Year Project Report Presented in Partial Fulfilment of
the Requirements for the Degree of

MASTER

In Electronics

Options:Computer Engineering

Title:

Building a Self driving Car using ROS

Presented by:

- AOUGACI ali

- KHACHOUCHE lokmane

Supervisors:

Dr, H. BELAIDI

Registration Number:…..…../2019

i

 ACKNOWLEDGEMENT

The completion of this project could not have been possible

without the participation and assistance of so many people whose
names may not all be enumerated. Their contributions are

sincerely appreciated and gratefully acknowledged.

We would like to thank our supervisor, Dr. BELAIDI Hadjira, for
her priceless guidance, encouragement and advice she provided

throughout this tough final semester. She gave us all her time and
support that have been extremely helpful.

ii

 Dedication

Every challenging work needs self-efforts as well

as guidance of Elders those who were very close to

our heart.

My humble effort I dedicate to my loving

parents and my family members, Whose

affection, love, encouragement and prays of day

and night make me able to get such success and

honor.

Along with all my friends, hardworking and
respected Teachers.

iii

 Abstract

 This project consists of designing and building

an autonomous mobile vehicle platform able to drive itself without human

intervention. The appropriate hardware equipments and sensors suitable for

the desired tasks and for the vehicle navigation are selected. Moreover, the

car architecture is designed. Then, the Robot Operating System (ROS) is

used for the software implementation, for sensors and actuators interfaces

and for the approach execution. The robot Platform is a microprocessor

and microcontroller based system.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... i

DEDICATION ... ii

ABSTRACT .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES .. vii

ABBREVIATIONS ... viii

GENERAL INTRODUCTION ... 1

CHAPTER 01: STATE OF THE ART .. 3

1.1. Motivation .. 3

1.2. Goal of the Project .. 3

1.3. Autonomous cars History and present .. 4

1.3.1. History of autonomous cars .. 4

1.3.2. Autonomous cars today .. 4

1.3.3. The idea of self driving car .. 5

1.3.4. Vehicle autonomy levels ... 5

1.3.5. Sensors of self-driving vehicles .. 6

a-Perception Sensors .. 6

b-requirement Sensors .. 7

1.4. SW block diagram of self-driving vehicles..10

1.5. Robot Operating System ...11

1.5.1. ROS Overview ..12

1.5.2. ROS nodes ..14

1.5.3. ROS messages...14

1.5.4. ROS topics ..14

1.5.5. ROS services ...15

1.6. Conclusion ...15

CHAPTER 02:HARDWARE SYSTEM DESGIN ...18

2.1. System Requirements ...16

2.2. System Hardware ...16

 2.2.1 Raspberry Pi 3 Model B ...16

 2.2.2 Arduino Uno ..17

 2.2.3 RC Car chassis ...18

v

 2.2.4 Micro servos ..19

 2.2.5 ESC..19

 2.2.6 Batteries and other required equipment’s ..20

 2.2.7 Camera ...21

 2.2.8 Uultrasound sensors ...21

 2.2.9 IMU Integration ...22

 2.2.10 Servo Controller ...24

2.4. Overall System Design ...25

2.5. Conclusion ..27

CHAPTER 03: SOFTWARE SYSTEM DESGIN ..28

3.1. The system Network ..28

3.2. ROS Tools ..29

 3.2.1. Gazebo... 29

 3.2.1. RVIZ..30

3.3. ROS Implementation ..30

3.3.1. Manual control.......................................31

3.3.2. Obstacle detection..32

3.3.3. Obstacle avoidance algorithm...34

3.3.4. Braking algorithm..35

3.4. Interfacing Pi camera with ROS ...37

3.5. Interfacing IMU with ROS ...38

3.6. ROS Architecture for the whole system ..40

3.7. Route planning... 40

3.8. Conclusion... 41

CHAPTER 04: SIMULATION, RESULTS AND DISCUSSION ..42

4.1. Simulation ..42

4.1.1. Simulating a laser scanner ...42

4.1.2. Simulating camera in Gazebo ..43

4.1.3. Simulating GPS in Gazebo ..44

4.1.4. Simulating IMU on Gazebo. ...45

4.2. Discussion of the SW, HW implementation and ROS platform.. 46

 4.2.1. ROS platform analysis ..46

 4.2.2. Benefits of using ROS.. 46

 4.2.3. Challenges... 47

 4.2.4. Results... 47

 4.3. Conclusion49

vi

GENERAL CONCLUSION ..50

REFERENCES...51

I. APPENDIX A ..52

Manual control ...52

Obstacle detection ..52

Ubuntu install of ROS Kinetic ..52

II. APPENDIX B ..55

Installing and Setting Up Arduino with ROS Kinetic (Raspberry Pi 355

vii

LIST OF FIGURES

CHAPTER 01: STATE OF THE ART .. 3

1. Figure 1.1. Self-driving car sensors. ... 7

2. Figure 1.2. General form of GPS .. 8

3. Figure 1.3. SainSmart Wide Angle Fish-Eye Camera Lenses .. 8

4. Figure 1.4. HC-SR04 Ultrasonic sensor ... 9

5. Figure 1.5. Wheel odometry encoder ... 9

6. Figure 1.6. Inertial measurement unit (IMU) .. 10

7. Figure 1.7. SW block diagram of a self-driving car ... 10

8. Figure 1.8. Illustration of ROS nodes and messages .. 13

9. Figure 1.9. Visualisation of ROS concepts ... 13

CHAPTER 02:HARDWARE SYSTEM DESGIN ...16

1. Figure 2.1. Raspberry Pi 3 Model B .. 17

2. Figure 2.2. Arduino Uno board ... 18

3. Figure 2.3. Simple RC Car chassis .. 18

4. Figure 2.4. Servo Motor connection .. 19

5. Figure 2.5. Circuit diagram of ESC .. 19

6. Figure 2.6. 2600mAh Power Bank and 700mAh Battery .. 20

7. Figure 2.7. Voltage divider connection .. 20

8. Figure 2.8. Raspberry Pi 3 Model B Camera .. 21

9. Figure 2.9.RC Car’s ultrasound sensor placement ... 21

10. Figure 2.10.Ultrasound sensors connection with Raspberry Pi .. 22

11. Figure 2.11. How the ultrasound sensors works ... 22

12. Figure 2.12: Inertial measurement unit (IMU) .. 23

13. Figure 2.13: Interfacing IMU with Arduino Uno using fritzing ... 24

14. Figure 2.14: Adafruit PCA9685 16 Channel 12 Bit PWM Servo Driver .. 24

15. Figure 2.15: Interfacing adafruit servo driver with ESC, servo motor and raspberry pi 3 25

16. Figure 2.16: Electronic schema of interfacing adafruit servo driver with raspberry pi 3.................... 25

17. Figure 2.17: Circuit diagram of the whole RC car ... 26

18. Figure 2.18. Final look of our RC Car with marked HW ... 26

vii

CHAPTER 03: SOFTWARE SYSTEM DESGIN ..28

1. Figure 3.1. Network setup for development and control of the RC Car. ... 28

2. Figure 3.2. Gazebo simulator .. 29

3. Figure 3.3. Model of our RC car simulation using gazebo .. 30

4. Figure 3.4ROS architecture for manual control ... 31

5. Figure 3.5. Teleop Twist Keyboard node running in the terminal ... 32

6. Figure 3.6. ROS architecture for Obstacle detection .. 33

7. Figure 3.7. Sensor Interface node prints to the console when an obstcale is near the ultrasonic sensor34

8. Figure 3.8.Calculation of the steering angle .. 35

9. Figure 3.9.Example of how the car detect obstacle and turn .. 35

10. Figure 3.10.The braking Algorithm .. 36

11. Figure 3.11. ROS architecture for Obstacle avoidance and braking .. 37

12. Figure 3.12. Screenshot from the video obtained by the ROS node camera_talker ……………….38

13. Figure 3.13. ROS architecture for Pi camera.. 38

14. Figure 3.14. ROS architecture for IMU .. 39

15. Figure 3.15.tinyIMU topic prints the IMU data.. 40

16. Figure 3.16. ROS Architecture for the whole system .. 41

CHAPTER 04: SIMULATION, RESULTS AND DISCUSSION ..42

1. Figure 4.1. Visualization of laser scanner data in Rviz ... 43

2. Figure 4.2. Image from simulated camera………………………………………………………………...44

3. Figure 4.3. Image from simulated stereo camera…………………………………………………………44

4. Figure 4.4. Visualization of gps data in RviZ……………………………………………………………..45

5. Figure 4.5. Visualization of the /imu in the simulation mode …………………………………………...45

6. Figure 4.6. Our RC Car in Action…………………………………………………………………………46

7. Figure 4.7. Teleop Twist Keyboard node………………………………………………………………….47

8. Figure 4.8. Sensor Interface node………………………………………………………………………….48

9. Figure 4.9.tinyIMU topic received IMU data……………………………………………………………..48

Appendix B.1.Content of Arduino libraries after the commands..56

Appendix B.2.ros_lib in Example in Arduino IDE..56

Appendix B.3. connecting serial port..57

Appendix B.4.Serial port after connecting Arduino with Raspberry Pi..58

vii

Abbreviations

ROS Robot Operating System

SW Software

HW Hardware

IMU Inertial Measurement Unit

ECS Electronic Speed Control

RC Remote Controlled

SLAM Simultaneous Localisation and Mapping

SSH Secure Shell

URDF Universal Robotic Description Format

IPC inter-process communication

IP based communication

AV Autonomous vehicle

GPS Global Positioning System

LiDAR Light Detection and Ranging

PWM Pulse Width Modulatio

RAM Random Access Memory

ROM Read Only Memory

USB Universal Serial Bus

vii

Chapter 1: State-of-the-art

3 | P a g e

One such technique that can be used to create autonomous vehicles is the Robot Operating

System (ROS). ROS is an operating method that includes a number of tools and libraries aimed at

increasing the comprehensiveness of robotics programming. Furthermore, to that end, we can

consider the autonomous cars as robots because they actually are: robots with sensors (GPS,

odometers, ultrasound detectors etc.) and driven systems (tires, servos, engines...). ROS implements a

range of robotic programming conferences.

However, despite advances, it is still very hard to program the robots. One reason is that robots

can operate on a variety of software systems (SW) in distinct hardware (HW) settings. Reusability of

code is a great problem because SW often is very interconnected and designed for a certain HW.

Even if a piece of code is identified from another's job, a specific code reused

The initiative in particular is appealing as there is a rapid increase of common interest in self-

driving cars. The autonomous driving community could be very helpful with the solutions,

particularly those using open-source SW such as ROS.

I.1. Motivation

All these years passed studying electronics made us able to gain more knowledge about this

field. Developing a self driving car with various sensors and capabilities is a challenge thatwe wanted

to accomplish, it also leads to being able to mount additional sensors for whatever might be needed in

future applications.

I.2. Goal of the Project

The ultimate objective of thisproject will be to construct an autonomous RC automotive

prototype with ROS, which can operate on a plain ground. The car's primary entry is a camera

shot,which is installed at the top, in real time. The system should then issue appropriate steering

controls and regulate the vehicle. The aim of this project is to educate the vehicle how to navigate

because the camera and ultrasonic sensor will be the only input for the engine. Its behaviour to avoid

obstacles! Rent issue that can be solved, too,but it is beyond the reach of this project that we combine

it with steering, producing a single control to deal with both situations. However, ultrasound devices

will be used to identify barriers on the highway and prevent the vehicle deviation from the straight

line. This works as a distinct module not interfering with the driving mechanism that is controlled by

on-board computer.

Chapter 1: State-of-the-art

4 | P a g e

Also to develop a list of requirements for the system and to design the structure of the

system’s components. After that to use the system to perform its features according to the

developed system structure. The components arechosen in the secondchapter, by analysing their

performances and capabilities according to the requirements.

An on-board computer will control the car. The vehicle will then befully independent of other

machines.Another goal is to analyse how ROS can be used in the development of self-driving

vehicles and to identify its potential benefits and challenges.

I.3. Background and Related Work

I.3.1.History of autonomous cars

The first self-driving car was produced by Norman Bel Geddesin General-Motors (GM’s) 1939

exhibit.The car was an electric vehicle guided by radio-controlled electromagnetic fields generated

with magnetized metal spikes embedded in the roadway. This car remained just as a concept until

1958 where it became a reality by General Motors. The car’s front end was embedded with sensors

called pick-up coils that could detect the current flowing through a wire embedded in the road. The

current could be manipulated to tell the vehicle to move the steering wheel left or right [1].

In 1977, the Japanese improved upon this idea, using a camera system that relayed data to a

computer to process images of the road. However, this vehicle could only travel at speeds below 20

mph. Improvement came from the Germans a decade later in the form of the VaMoRs, a vehicle

outfitted with cameras that could drive itself safely at 56 mph. As technology improved, so did self-

driving vehicles’ ability to detect and react to their environment [1].

I.3.2.Autonomous cars today

Self-driving autonomous vehicles have arrived. Utilizing technologies such as radar, GPS, 360-

degree camera systems and powerful onboard processing computers, driverless vehicles will

eventually be rolled out to many industries including fleet, long-haul trucking, livery, Uber and on-

demand car services. The driverless social paradigm shift is fast approaching.

At present, many vehicles on the road are considered to be semi-autonomous due to safety

features like assisted parking and braking systems, and a few have the capability to drive, steer,

brake, and park themselves. Autonomous vehicle technology relies on GPS capabilities as well as

Chapter 1: State-of-the-art

5 | P a g e

advanced sensing systems that can detect lane boundaries, signs and signals, and unexpected

obstacles.

Autonomous vehicles are expected to bring with them a few different benefits, but the most

important one is likely to be improved safety on the roads. The number of accidents caused by

impaired driving is likely to drop significantly, as cars can’t get drunk or high like human drivers can

[2].

I.3.3.The idea of self-driving car

A vehicle that can operate autonomously should be prepared to ride without human feedback.

In order to accomplish this, the independent vehicle must feel, navigate and respond without

communication with human beings. The vehicles themselves can view their environment using a

broad variety of devices including LIDar, RADAR, GPS, wheel odometry devices and cameras. In

fact, the autonomous car needs a monitoring scheme capable of understanding sensor information

and of making a distinction between road signs, barriers, peat busses and other anticipated and

unexpected road events.

It needs to meet at least three significant functions in order to be known as a robot: sensing,

planning, and acting. To call a vehicle self-employed, the same conditions should be satisfied[3].Self

driving vehicles are mainly robot vehicles, which can decide on how to get from A to B. The driver

must only indicate the location and it should be safe for the independent vehicle to bring him or her

there. To turn a normal vehicle into a self-service vehicle, sensors and a built-in laptop are needed.

A car must work closely together to autonomously run a number of real-time systems. Include

environment mapping and comprehension, location, trajectory scheduling and motion control as

recognized by [4]. In order to have a platform to function on these real-time systems, the automatic

driving car requires to be fitted with the suitable sensors, computer Hardware (HW), networking and

Software (SW) facilities.

I.3.4.Vehicle autonomy levels

The Society of Automotive Engineers (SAE) defines 6 levels of driving automation ranging

from 0 (fully manual) to 5 (fully autonomous). These levels have been adopted by the U.S.

Department of Transportation [5]. These 6 levels are explained in Table 1.

Chapter 1: State-of-the-art

6 | P a g e

Table 1: Autonomous Driving - Levels of Automation

I.3.5. Sensors of self-driving vehicles

a) Perception Sensors

One of the most important tasks of autonomous systems is to acquire knowledge about its

environment. This is done by taking measurements using various sensors and then developing

inferences from those measurements.

An autonomous vehicle may experience unforeseen events on the road which it needs to register

and act accordingly. Discant et al[6] present a brief study about the available sensors for obstacle

detection. According to them perception sensors are classified into two types: active and passive

sensors.

Level Automation System

Level

Zero

No
Automation

The rider does all the main duties such as driving, braking,

speeding or slowing, etc.

Level One
Driver

Assistance

The car can support secondary and tertiary functions, but the

driver still carries out all the major duties and tracking the

environment.

Level

Two

Partial

Automation

The car can support driving or accelerating functions and can

disengage the driver from certain duties. The driver must always

be prepared to manage the car and remain accountable for the

most critical safety tasks and environmental tracking.

Level

Three

Conditional

Automation

The car itself is responsible for all environmental monitoring

(using sensors such as LIDAR). At this level the driver's

attention continues to be critical but can decrease "safety-

critical" functions like braking and leave the driver behind in the

safe conditions

Level

Four

High

Automation

The car can steer, brake, speed, monitor the car and the road as

well as react to incidents, determine when routes are changed,

turned and signals are used

Level

Five

Complete

Automation

This amount of autonomous driving does not require any human

attention. No pedals, brakes or wheels are required as the

autonomous car model monitors all critical duties, environmental

monitoring and identifies distinctive riding circumstances, such

as traffic jams.

Chapter 1: State-of-the-art

7 | P a g e

Active sensors emit their own energy into the environment, then measure the environmental

reaction. For object detection, few different types of active sensors can be used: Radar, LIDAR,

SONAR, Time-of-flight (TOF) camera [6].

Passive sensors measure ambient environmental energy entering the sensor. Examples of

passive sensors include temperature probes, microphones, visible spectrum cameras and infrared

cameras. Visible spectrum cameras can be further subdivided into monocular camera and stereo

camera [6].

b) RequirementSensors

According to [7], the following sensors, shown in figure 1.1, should be present in all self-

driving cars:

 Global positioning system (GPS):Global positioning system is used to determine the

position of a self-driving car by triangulating signals received from GPS satellites [7]. It is

often used in combination with data gathered from an IMU and wheel odometry encoder for

more accurate vehicle positioning and state using sensor fusion algorithms. The general

form of GPS is shown in figure 1.2.

Figure 1.1.Self-driving car sensors.

 Light detection and ranging (LIDAR):A core sensor of a self-driving car, this measures the

distance to an object by sending a laser signal and receiving its reflection. It can provide

accurate 3D data of the environment, computed from each received laser signal. Self-

driving vehicles use LIDAR to map the environment and detect and avoid obstacles.

Chapter 1: State-of-the-art

8 | P a g e

Figure 1.2. General form of GPS

 Camera:Camera on board of a self-driving car is used to detect traffic signs, traffic lights,

pedestrians, etc... by using image processing algorithms (see figure 1.3).

Figure 1.3. SainSmart Wide Angle Fish-Eye Camera Lenses

 RADAR:RADAR is used for the same purposes as LIDAR. The advantages of RADAR

over LIDAR are that it is lighter and has the capability to operate in different conditions.

While it has longer range, all RADAR categories have a limited field of vision.

 Ultrasound sensors:Ultrasound sensors play an important role in the parking of selfdriving

vehicles and avoiding and detecting obstacles in blind spots, as their range is usually up to

10 metres (see figure 1.4).

Chapter 1: State-of-the-art

9 | P a g e

Figure 1.4. HC-SR04 Ultrasonic sensor

 Wheel odometry encoder:Wheel encoders provide data about the rotation of car’s wheels

per second. Odometry makes use of this data, calculates the speed, and estimates the car’s

position and velocity based on it (shown in figure 1.5).Odometry is often used with other

sensor’s data to determine a car’s position more accurately.

Figure 1.5. Wheel odometry encoder

 Inertial measurement unit (IMU):An IMU, illustrated in figure 1.6, consists of gyroscopes

and accelerometers, with one pair oriented towards each of the axes. These sensors provide

data on the rotational and linear motion of the car, which is then used to calculate the

motion and position of the vehicle regardless of speed or any type of signal obstruction.

Chapter 1: State-of-the-art

10 | P a g e

Figure 1.6. Inertial measurement unit (IMU)

 On-board computer:This is the core part of any self-driving car. As any computer, it can

be of varying power, depending on how much sensor data it has to process and how

efficient it needs to be. All sensors are connected to this computer, which has to make

use of sensor’s data by understanding it, planning the route and controlling the car’s

actuators. The control is performed by sending the control commands such as steering

angle, throttle and braking to the wheels, motors and servo of the autonomous car.

I.4. SW block diagram of self-driving vehicles

Figure 1.7 illustrates the SW block diagram of the standard self-driving car, as presented by[8].

Figure 1.7. SW block diagram of a self-driving car.

Each block can interact with others using the inter-process communication (IPC) or shared

memory. In this scenario, ROS message middleware is a perfect fit. They introduced a system of

publishing and subscribing to do these tasks in the DARPA Challenge. Lightweight Communications

and Marshalling were one of the MIT library growth challenges for 2006 in DARPA.

Chapter 1: State-of-the-art

11 | P a g e

 Sensor interface modules: As the module name suggests, this block contains all the

communication between the sensors and the car. The block allows us to supply all other

blocks with different sensor data. LIDAR, camera, radar, GPS, IMU and wheel encoders

are the most common devices.

 Perception modules: These modules process sensor information such as LIDAR, camera,

radar, and section information to detect moving and stationary items. They also assist to

identify the auto drive compared to the environmental digital map.

 Navigation modules: The behaviour of the automobile is determined by this module. It has

movement planners for multiple conduct in the robot and the finite state machines.

 Vehicle interface: The control instructions such as steering, throttle and brake control are

sent to the car via a Drive-by-Wire (DBW) interface after the route scheduling. DBW

operates essentially via the CAN bus. The DBW interface is only supported by certain cars.

Examples include the Lincoln MKZ, VW Wagon Passat and a few Nissan designs.

 User interface: we can display a map and specify the target on a touch screen. An

emergency stop key is also available for the customer.

 Global services: This module helps to record the information and has time and message

pass-over help for the reliability of the software.

I.5. Robot Operating System

ROS is not an actual operating system, but rather a meta-operating system. Simply put, ROS

works on top of other operating system and allows different processes to communicate with each

other during runtime. As a meta-operating system, ROS offers a communications layer, in a

structured manner, running on top of the operating systems of host computers[9]. Usage of ROS is

not limited to robotics only, as majority of ROS tools are compatible with peripheral hardware and

can be used for various purposes. ROS core consists of more than two thousand packages, where

each package has its specific functionality.

Hence, ROS is a set of tools that provides the functionality and services of an operating system

on a single, or over multiple computers. These services include abstraction of the hardware, exchange

of messages between processes, management of packages, etc.... Ademovic [10]argues that ROS’s

greatest strength is the number of available ROS tools.

Chapter 1: State-of-the-art

12 | P a g e

One very important characteristic of ROS is that it is completely open source. ROS was

designed with the goal of robotic SW reusability in mind. It is stated by Quigley[9] that writing SW

for robots is difficult, particularly as the scale and scope of robotics grows. Different types of robots

can have widely varying HW, making code reuse extremely challenging. Further, robot SW is tightly

coupled, and the extraction of reusable code can be very difficult and ROS is built to overcome these

problems [9].

To explain ROS quigley summarised the philosophical goals of ROS using the following five

statements:

ROS is peer-to-peer:ROS nodes are units of execution that communicate with each other directly or

via publish/subscribe mechanisms.

ROS is tools-based: It uses a microkernel design and several small tools and modules.

ROS is multilingual:It has support for C++, Python, Octave and LISP.

ROS is ‘thin’: It uses a catkin build system to provide code segmentation in terms of packages and

libraries.

ROS is free and open source: ROS is publicly available under a BSD license.

I.5.1.ROS Overview

ROS uses internet protocol (IP)-based communication to transfer data between ROS nodes.

This way, ROS splits the robotic SW into ROS nodes that can be executed on one machine or on the

distributed computer cluster. ROS nodes use publish/subscribe channels to exchange information

amongst themselves, but they can also provide callable services to other nodes. A running ROS

system has one master node (roscore) that acts as a name server and allows other nodes to find each

other to form direct connections [11].This architecture results in very low coupling between nodes

and promotes their reuse. For example, the same ROS nodes can be used without modification in

both the actual robot and in the simulator.

The fundamental concepts of ROS implementation are nodes, messages, topics and services.

Figure 1.8 illustrates the role of the ROS master node: roscore, which is the essential part of each

ROS-based program. Simply put, roscore is a set of core ROS nodes that are essential for ROS-based

application to be able to run [11]. The roscore master node must be running for ROS nodes to

Chapter 1: State-of-the-art

13 | P a g e

communicate[11]. When roscore is active, nodes can exchange messages by publishing and

subscribing to certain topics or by directly invoking the services and actions of the other nodes.

Figure 1.8. Illustration of ROS nodes and messages [11]

Figure 1.9 illustrates the ROS concepts (nodes, messages and topics) and how they correlate.

Services, a way of communicating between nodes, do not use publish/subscribe mechanism, but

rather directly invoke the services of the other node.

Figure 1.9. Visualisation of ROS concepts [11]

As identified in the article written by Tellez[12],ROS has two major drawbacks:

Roscore is a single point of failure:As roscore must be constantly running for ROS program to run,

roscore poses a security threat for all ROS-based programs. The rest of the system might be running

smoothly and written perfectly, but if roscore terminates, the whole ROS-based program shuts down

too.

Security issue:The access to ROS network is not secured, which is a big security threat for

autonomous car’s which are using ROS. The communication among ROS nodes is not secured, thus

Chapter 1: State-of-the-art

14 | P a g e

the whole system is vulnerable. Someone who gains the access to car’s ROS network can access and

alter the car’s behaviour.

Tellez [12] also stated, however, that both drawbacks are being addressed in the newest version

of ROS—ROS version 2. Even with the present negatives, it can be argued that ROS is a good

solution for developing autonomous driving.

The ROS core concepts—nodes, topics, messages and services—are explained in detail in the

subsections below.

I.5.2. ROS nodes

A node is a process that performs computation and it can be seen as a single unit of execution

in the ROS ecosystem. Nodes can communicate with each other using client server–like architecture,

where each node is assigned a specific task and can serve both as a client and a server at the same

time and [11]. Nodes should perform their own tasks and communicate their results with the other

nodes. The significant advantage offered by this architecture is fault tolerance (as each node is an

isolated part of the system).

I.5.3. ROS messages

ROS provides over 200 predefined messages and the ability toROS creates custom ones.

Messages are exchanged between ROS nodes using publish/subscribe mechanism. One ROS node

would publish the ROS message to certain ROS topic, while the other ROS node would subscribe to

that ROS topic and obtain the sent ROS message. ROS Messages are typically described in text files

inside msgs folder under ROS folder structure. These text files are following certain standards for

description of ROS messages. The description format of ROS messages is fairly simple. Each ROS

message is a data structure which contains primitive types (integers, floats or booleans) or an array of

primitive types. Additionally, ROS message can contain the other ROS message or an array of ROS

messages as a data type. ROS messages can be also exchanged in direct communication between

nodes, called ROS Services and in this case, the messages should be inside of the srv folder [11].

I.5.4. ROS topics

ROS nodes communicate with each other over topics

● If we want to send messages, wepublish to a topic

Chapter 1: State-of-the-art

15 | P a g e

● If we want to receive messages, wesubscribe to a topic

ROS topics are used when ROS nodes are communicating using publish/subscribe mechanism.

Each ROS topic has a unique name, so that ROS nodes can publish or subscribe to it.

I.5.5. ROS services

When nodes need to communicate directly with each other, they use ROS services. In such

case, publish/subscribe mechanism is evaded and nodes can communicate to each other directly using

the defined request and reply messages. Even that, ROS services are increasing the system

performance as they are form of direct communication.

I.6. Conclusion

This chapter was a deep discussion of Robot Operating System (ROS) and self-driving cars and their

implementation. The chapter started by discussing the basics of self-driving car technology and its

history. Afterward, we discussed the core blocks of a typical self-driving car. We also discussed the

concept of autonomy levels in self-driving cars. Then, we took a look at different sensors and

components commonly used in a self-driving car. After that, we introduced Robot Operating System

(ROS) and we take a general look about its basics (nodes, messages, topics, services).

Chapter 2: Hardware System Design

16 | P a g e

After chapter 1, where a deep discussion about ROS and self driving theory were given, in this

chapter the necessary hardware requirements will be discussed. The steps followed to build our RC

Car from empty chassis to a ready self driving car will be detailed within this chapter. Our RC car

will be implemented in such a way that it can be controlled by agent via keyboard and driven by itself

avoiding obstacles.Each component will be described alone then how it is connected to the whole

circuit. At the end of this chapter, the complete circuit diagram and the final look of the car will be

represented.

II.1.System Requirements

The system needs the following characteristics to guarantee effective implementation:

 The device requires to be able to obtain and perform commands from the on board computer

that runs the engine in the event of manual drives and is linked to a servo and regulates its

steering direction with the help of libraries. And also by using

servo and a servo control system to do this.

 The car must have a camera mounted in front which will be connected to the onboard

computer.

 It needs to capture images from the camera and send them in real time to the onboard

computer.

 It needs to read data from the sensors (ultrasonic, IMU …) and send it to in real time to the

onboard computer.

II.2. System Hardware

The elements that crossed the hardware and software of the car are the most significant parts of

the self-driving RC Car: The Raspberry Pi 3 board and Arduino Uno board. Raspberry Pi 3 is an on-

board microprocessor, while Arduino is an on-board microcontroller.

II.2.1.Raspberry Pi 3 Model B

As computation and processing unit, a robot can have either a computer or a microcontroller. In

case the robot has cameras, laser-scans and LIDARs;so, powerful computers are needed and used to

handle information.

Chapter 2: Hardware System Design

17 | P a g e

 A microprocessors' panel is the Raspberry Pi 3, shown in figure 2.1. It is an integrated panel

and a single panel computer that can be used as a normal PC to load and operate a working scheme.It

has a chip scheme comprising ARM, RAM, GPU and all conventional software ports as parts. For

our RC car,it operates ROS on Ubuntu 16.04. Its characteristics are summarized in table 2.1.

Figure 2.1. Raspberry Pi 3 Model B.

TABLE 2: Characteristics of Raspberry Pi 3 Model B

II.2.2.Arduino Uno

Arduino Uno is an ATmega328P-based microcontroller panel. It contains 14 input / output

ports (6 of which can be used as PWM exports), 6 inputs for analog purposes (including 16 MHz

crystal) and 16 MHz quartz crystal. It includes everything necessary for the microcontroller to be

connected to or powered by an AC-to-DC adapter or battery onto the laptop with the USB cable.

Chapter 2: Hardware System Design

18 | P a g e

Figure 2.2. Arduino Uno board

An Arduino Uno panel is one of the most common integrated controller panels which are

suitable for self-driving vehicles and used most frequently in robotics. To collect car position and

location information, RC Car simulator was installed on the top of the RC Car's Raspberry Pi 3 with

the help of an Adafruit 16-channel Modulation Pulsing Width (PWM) / Servo HAT module for

Raspberry Pi 3.

II.2.3. RC Car chassis

This RC car was constructed from scratch because we installed all mechanical and electronic

parts, components and sensors on the frame. Its size is suitable to carry all components.

Figure 2.3. Simple RC Car chassis.

Chapter 2: Hardware System Design

19 | P a g e

II.2.4. Micro servos

In RC car, the servo motor is used to regulate the vehicle wheels because it generates the torque

needed to travel.To prevent snapping or collapsing, steering is vital to change the turning angle and

orientation of the car. Servomotor is used for controlling the steering angle and ESC is used for

controlling the velocity of the tires. A servomotor is shown in figure 2.4.

Figure 2.4. Servo Motor connection.

II.2.5. ESC (Electronic Speed Control)

We use an electrical speed controller ECS to control the speed of the dc motor using NPN

transistor TIP29C, Which can switch up to 100V.

When PWMing a transistor, it is similar to pulsing an LED. The higher the PWM value, the

faster the motor will spin. The lower the value, the slower it will spin. The ESC circuit is shown in

figure 2.5.

Figure 2.5.Circuit diagram of ESC.

Chapter 2: Hardware System Design

20 | P a g e

II.2.6. Batteries and other required equipments

The ESC is powered from the 700mAh RC car’s battery. All other components, mainly the Pi,

need to be connected to an external source of power. A 2600mAh Power Bank is used to supply

power to all our hardware and that should be enough for testing the car. The size and capacity of the

battery depends on the size of the car and how long does the user want to drive it. Together with the

two Batteries, a set of jumper wires is needed to connect the PCA9685 to the Raspberry Pi and to

connect Arduino with IMU also to connect ultrasonic sensor to Raspberry Pi.

Figure 2.6. 2600mAh Power Bank and 700mAh Battery

A breadboard is also needed so that a voltage divider can be built which is needed because the

echo in ultrasonic sensors will return 5v and that can damage GPIO on Raspberry Pi. The voltage

divider connection is shown in figure 2.7.

Figure 2.7. Voltage divider connection.

Chapter 2: Hardware System Design

21 | P a g e

II.2.7. Camera

The needed information from the real environment to the autonomous car is delivered by an

HD camera together with an ultrasonic sensor. This vehicle can securely and intelligently reach the

target, thus avoiding the danger of human mistakes andobstacles. It also enables color identification

in order to implement traffic light (not implemented in our project).

The 5MP camera module is ideal for tiny, space-saving Raspberry Pi initiatives.

Figure 2.8. Raspberry Pi 3 Model B Camera

II.2.8.Ultrasound sensors

Three ultrasound range detectors HC-SR04s were used for our self-driving RC Car. As shown

in figure 2.9, these ultrasound detectors were positioned to obtain the highest coverage of obstruction.

Since the vehicle could progress with a maximum steering angle of 45 degrees, experimental tests

demontrate that when three ultrasound devices were in use the optimum positions were displayed.

Figure 2.9. RC Car’s ultrasound sensor placement.

Chapter 2: Hardware System Design

22 | P a g e

The ultrasound sensors are connected with Raspberry Pi as shown in figure 2.10; each sensor

has four pins Echo and Trig also GND and VCC. With, the Echo pin is the input and Trig is the

output.

Figure 2.10. Ultrasound sensors connection with Raspberry Pi.

The Ultrasonic Sensor delivers out a high-frequency sound pulse and then calculates the time

spendby the echo of the sound to reflect back. Then, the distance between the car and the obstacle is

calculated with the next formula after the reverse signal the echo tag starts and the time ends(as

illustrated in figure 2.11).

DISTANCE= TIME * (SPEED OF SOUND / 2)

Figure 2.11. ultrasound sensors functioning.

II.2.9. IMU Integration

InertialMeasurement units (IMUs) are as essential for autonomous car as cameras and radars.

An IMU is a tool that measures straight three linear speed elements and three rotational speed

elements of the vehicle. An IMU is distinctive among the detectors discovered typically in

Chapter 2: Hardware System Design

23 | P a g e

anautonomous vehicle, because an IMU does not require an internal link and understanding the

external world[11].

The IMU helps provide “localization” data. Software implements driving functions then

combines this information with map and “perception stack” data that tell the car about objects and

features around it.

Figure 2.12: Inertial measurement unit (IMU).

The IMU is connected to the Arduino as shown in the diagram given in figure 2.13. If the MPU

6050 module has a 5V pin, then we can connect it to our Arduino's 5V pin. If not, we have to connect

it to the 3.3V pin. The GND of the Arduino is connected to the GND of the MPU 6050 and the SCL

to A5, SDA to A4 and INT to Pin 2.

Through I2C, the MPU 6050 communicates with the Arduino. And it is connected to the

Arduino as shown in figure 2.13, we can connect the 5V pin toour Arduino. The arduino GND is then

connected with MPU 6050 GND and A5 with SDA, A4 and Pin 2 with INT.

Chapter 2: Hardware System Design

24 | P a g e

Figure 2.13: Interfacing IMU with Arduino Uno using fritzing.

II.2.10. Servo Controller

We need particular PWM signals to regulate the DC motor and servos. We chose to use the

Adafruit PCA968516 Channel 12 Bit PWM Servo Driver (SD) as unique add-on board for the Pi.

The Adafruit PCA9685 has been encouraged and can regulate up to 4 servo devices with complete

PWM speed control. It is quite small and relatively simple to set up and comes with a computer

library which is openly accessible.

Figure 2.14: Adafruit PCA9685 16 Channel 12 Bit PWM Servo Driver.

Four GPIO pins from RPi need to be connected to the servo driver side pins (check figure

Figure 2.15). The I2C protocol can be used to control this specific SD. The pin links are listed below.

Chapter 2: Hardware System Design

25 | P a g e

Figure 2.15: Interfacing adafruit servo driver with ESC, servo motor and raspberry pi 3.

We allow unconnected V+ and OE pins on the SD. For powering the load, V+ lock is used. We

do not have to use this tool, because we have already attached the three-pin adapter of ESC with V+.

Then attach the RPi to our USB power supply (see Figure 2.16).

Figure 2.16: Electronic schema of interfacing adafruit servo driver with raspberry

pi 3

II.3. Overall System Design

After we have collected all components and assembled each element in the pin and in the

vehicle, we attach everything according to figures 2.17 and 2.18 bellows, which demonstrate our RC

car's circuit diagram and final look. The general scheme shows how all components are connected.

Chapter 2: Hardware System Design

26 | P a g e

Figure 2.17: Circuit diagram of the whole RC car.

Figure 2.18illustrates the final look of our RC Car, with its main HW components

marked.Here, the position and placement of the main HW components are visible.

Figure 2.18. Final look of our RC Car with marked HW.

Chapter 2: Hardware System Design

27 | P a g e

II.4. Conclusion

In this section, each portion of our self-sufficient vehicle is implemented in detail step by step. The

scheme has been provided and explains all needed settings and layout.

 The hardware system development is carried out at this stage. The remaining thing is the

development of the software system described in the next chapter.

Chapter 3: Software System Design

28 | P a g e

After the implementation of the HW in chapter 2 now we move to the SW

implementation. First we will represent the operating system that we worked with; then, we will

discuss the whole ROS architecture for our RC Car after that we go through details step by

step.We will also establish serial connection between arduino and Raspberry pi using Rosserial.

III.1. The system Network

The Ubiquity Robotics Raspberry Pi image which is based on Ubuntu 16.04 operating System

was installed and used in Raspberry Pi. It is pre-installed with ROS, and perfect for building

Raspberry Pi robots; based on the wonderful work of Ubuntu Pi Flavor Markers. When the

Raspberry Pi boots for the first time, it creates a Wifi access point which will be connected to

our PC.

Figure 3.1 shows the network that we create and connect the PC and Raspberry pi to it to

be able to establishSSH connection to control the RC Car.

Figure 3.1. Network setup for development and control of the RC Car.

Secure Shell (SSH)is a cryptographic network protocol for operating network services

securely over an unsecured network. Typical applications include remote command-

line login and remote command execution, but any network service can be secured with SSH

[13].

Chapter 3: Software System Design

29 | P a g e

III.2.ROS Tools

ROS has a variety of GUI (Graphical User Interface) and command-line tools to inspect

and debug messagesso we are going to use the following tools :

III.2.1. Gazebo

Gazebo is a dynamic robotic simulator with a wide variety of robot models and extensive

sensor support. The functionalities of Gazebo can be added via plugins. The sensor values can

be accessed to ROS through topics, parameters and services. Gazebo can be used when our

simulation needs full compatibility with ROS. Most of the robotics simulators are proprietary

and expensive; if they canot be afforded, Gazebo can be directly used without any doubt [14].

Robot simulation is an essential tool in every roboticist's toolbox. A well-designed simulator

makes it possible to rapidly test algorithms, design robots, perform regression testing, and train

AI system using realistic scenarios. Gazebo offers the ability to accurately and efficiently

simulate populations of robots in complex indoor and outdoor environments. At our fingertips

is a robust physics engine, high-quality graphics, and convenient programmatic and graphical

interfaces. Best of all, Gazebo is free with a vibrant community [14]. Figure 3.2 gives an

illustration of Gazebo simulator.

Figure 3.2. Gazebo simulator.

Chapter 3: Software System Design

30 | P a g e

In ROS development process we use both HW implementation and simulation because

some of the sensors was not acquired, and for that gazebo simulator was used as shown in

figure 3..

Figure 3.3. Model of our RC car simulation using gazebo.

III.2.2.Rviz

Rviz is one of the 3D visualizers available in ROS to visualize 2D and 3D values from ROS

topics and parameters. Rviz helps visualizing data such as robot models, robot 3D transform

data (TF), point cloud, laser and image data, and a variety of different sensor data[14]. This

visualization will be used later for 3D model simulation of our RC Car.

III.3. ROS Implementation

In this section we will develop the ROS architecture for all self driving actuators and sensors,

starting with the motor and servo than the ultrasonic sensors, camera, IMU and develop some

autonomous car algorithms.

Chapter 3: Software System Design

31 | P a g e

III.3.1. Manual control

In this section we will develop manual control system to control the RC car steering and speed

of the motor using PWM, the command is coming from PC keyboard. The manual ROS

architecture is shown in figure 3.4.

Figure 3.4. ROS architecture for manual control.

In our project, a powerful package Teleop Twist Keyboard is used which comes

preinstalled with ROS kinetic. To run this node we just execute the following command:

rosrunteleop_twist_keyboard teleop_twist_keyboard.py

The movement node will be responsible to convert keyboard command that subscribe

from cmd/vel topic and publish it to servo_absolute topic as low level.

I2cpwm_board will generate PWM signals to control the servo and dc motor this node

will subscribe from servo_absolute topic and gives movement command to the RC Car.

Chapter 3: Software System Design

32 | P a g e

Create launch file

We will create launch file that containsMovement node and i2cpwm_board node so we

can launch the two node in one terminal using the command:

roslaunchmovment.launch

The launch file is created using XML and it is given in Appenddix A.

Figure 3.5shows the ROS node teleop_twist_keyboard running in the terminal where the

user has the ability to move the car around and increase and decrease the speed of the car.

Figure 3.5. Teleop Twist Keyboard node running in the terminal.

III.3.2.Obstacle detection

In this section we will interface the three ultrasonic sensors with ROS and implement the

obstacle avoidance algorithm. Figure 3.6 shows the ROS architecturefor obstacle detection.

The Sonar scan node will scan the three ultrasonic sensors and publish it into three

topics for each sensor Right, center and left. The sensor interface node will subscribe to those

three topics.

Chapter 3: Software System Design

33 | P a g e

Figure 3.6. ROS architecture for Obstacle detection.

Create launch file

We will create launch file that contains Sensor scan node and sensor interface node so we can

launch the two nodes in one terminal using the command:

roslaunchsensor_Interface.launch

The launch file is created using XML and it is given in Appenddix A.

Figure 3.7 shows how the sensor_interface_node prints to the console when an obstacle is

near to the ultrasonic sensors.

Chapter 3: Software System Design

34 | P a g e

Figure 3.7. Sensor Interface node prints to the console when an obstacle is near the

ultrasonic sensor.

III.3.3.Obstacle avoidance algorithm

The algorithm of obstacle avoiding were designed by calculating the steering angle to turn

the wheels left or right when an obstacle is detected. The RC Car has 3 ultrasonic sensors, the

center one is the main one and the side one is used to decide where to steer to. Proportional to

how the car is close to the object with the parameter k_steer the steer angle is calculated using

the formula eq.3.1 (as illustrated in figure 3.8):

Steer_angle = k_steer(1 – d_center/d_angage) (3.1)

Where: Steer_angle: is the steer angle;

 K_steer: is the parameter indicating how the car is close to the object.

 d_center: it is the distance captured by the centre ultrasound sensor.

d_angage: it is a constant equal to 1.2m.

Chapter 3: Software System Design

35 | P a g e

Figure 3.8.Calculation of the steering angle.

The direction is decided by the side ultrasonic sensors; if left obstacle is detected the car

turn right like shown in figure 3.9.

Figure 3.9.Example of how the car detect obstacle and turn.

III.3.4.Braking algorithm

The center ultrasonic sensor is used to control the brakes. This action will be proportional

to the distance as shown in figure 3.10 and defined by the equation eq.3.2 below.The value of

break will be multiplied by command throttle, value of zero means stop.

Break = k_break(d_center / d_break) (3.2)

d_center: it is the distance captured by the center ultrasound sensor.

Chapter 3: Software System Design

36 | P a g e

d_break : it is a constant equal to 0.4m.

k_break : it isbraking parameter.

Figure 3.10.The braking Algorithm.

After implementing the Obstacle avoidance and braking Algorithms the ROS

architecturebecomes as shown in Figure 3.11.

Here after we implement the algorithms with sensor interface node according the values

of the three ultrasonic sensors, the sensors interface node will publish to the servos_absolute

topic the next move of the car, the i2cpwm_board node will subscribe the data from

servos_absolute topic and generate pwm to move the car.

Create launch file

 We will create launch file that contains Sensor scan node and sensor interface node and

i2cpwm_board node; so, we can launch the three nodes in one terminal using the command:

roslaunchobstacleavoidance.launch

Chapter 3: Software System Design

37 | P a g e

Figure 3.11. ROS architecture for Obstacle avoidance and braking.

III.4.InterfacingPi camera with ROS

The goal of this sectionis to interface Pi camera with ROS. The idea is that, in future work, this

function will be used to detect traffic light colours.

In Figure 3.12, the Pi camera streams a video to camera_talker node. Whereas, figure

3.12 illustrates the ROS architecture for Pi camera.

Chapter 3: Software System Design

38 | P a g e

Figure 3.12. Screenshot from the video obtained by the ROS node camera_talker.

Figure 3.13. ROS architecture for Pi camera.

III.5. Interfacing IMU with ROS

The goal of the fourth iteration is to interfaceIMUwith ROS. It will be different then the

other sensors because IMU chip is connected with Arduino and not connected directly to the

raspberry pi; so, we need to establish serialcommunication between Arduino and ROS

(Raspberry Pi) as shown in figure 3.14. For this purpose the ros package rosserial is used

which facilitates for us to send IMU data to tinyImu topic.

Chapter 3: Software System Design

39 | P a g e

The instructions given in Appendix B show the installation and setting up Arduino with

ROS kinetic (Raspberry Pi 3) using Rosserial.

Figure 3.14. ROS architecture for IMU.

The Arduino will read IMU data, after that we start the serial communication using the

command:

rosrunrosserial_python serial_node.py /dev/ttyUSB0

ttyUSB0 is the serial port for Arduino.

The IMU talker node will receive the IMU data and publish it to tinyImu topic, by using

the command rostopic echo / tinyIMU; we can see the IMU data printed in the consol which

means the interfacing is done successfully (IMU data results are shown in figure 3.15).

Chapter 3: Software System Design

40 | P a g e

Figure 3.15.tinyIMU topic prints the IMU data.

III.6.ROS Architecture for the whole system

After we done with interfacing all sensors with ROS and implementing some self driving

algorithms; now, we connect all the system together. The overall system architecture is given in

figure 3.16.We create launch file to launch all the node together in one single command and this

is the powerful of the launch file we don’t need to launch each node alone that take us time and

it is not efficient when wetest the system.We can launch all the node in one terminal using the

commands:roslaunchrccar.launch

III.7.Route planning

The Route planning is very important in the development of self driving car but we didn’t

implement it in our RC Car because the lack of LIDAR to map the environment.

Chapter 3: Software System Design

41 | P a g e

Figure 3.16.ROS Architecture for the whole system.

III.8.Conclusion

In this chapter, we have seen the ROS implementation and how our software is developed

step by step.Moreover, the ROS architecture for our RC Car was described and the way the

system works was also explained.This chapter dealt with the software implementation andserial

communication using Rosserial.

Chapter 4: Simulation, Results and Discussion

42 | P a g e

In this chapter we discuss the simulation of the self driving car scheme, the difficulties, the

outcomes and the suggestions we have created.

The simulation software does not require strict error management, because the entries are

accurately known and the workplace is error free. However, certain mistakes may happen when

applying the robot software. The sensors can't answer, the camera may not generate a file and many

mistakes can happen.

In this chapter, however, we will discuss simulation which we used in the project with Gazebo

because the Self Driving Car problem design method requires a simulator to evaluate and validate

our solution under different test situations, and to identify obstacles surrounding the car. In addition,

for some other functions like tracking, obstruction prevention, etc…, graphical display may be used.

 First, we will discuss a self-driving car's fundamental ideas. In this chapter, some of the

sensors used in vehicles are simulated. Here is the list of devices we will simulate and interface with

ROS:

1. Laser scanner

2. Camera

3. GPS

4. IMU

 We will discuss how to set up the simulation using ROS and Gazebo, the, read the sensor

values. This sensor interfacing will be useful when we build our own self-driving car simulation for

the first time.

4.1. Simulation

4.1.1. Simulating a laser scanner

This subsection deals with the simulation of a Gazebo laser scanner. It is simulated by

offering our applications with custom parameters. If we add ROS, several default Gazebo plugins

including the Gazebo laser scanner plug-in can also be installed automatically.

 This plugin is used with our customized parameters. So, in essence, we duplicate and

construct the set into the workspace using the catkin make command. The basic simulation of the

laser scanner, camera, IMU, ultrasonic sensor and GPS is provided in this set.

Chapter 4: Simulation, Results and Discussion

43 | P a g e

First we should install a package called hector-gazeboplugins using the command below. This

package contains Gazebo plugins of several sensors that can be used in self-driving car simulations.

$ sudo apt-get install ros-kinetic-hector-gazebo-plugins

We just use the following command:

$ roslaunch sensor_sim_gazebo laser.launch

The performance of the laser scanner is first examined. Then, the laser data in Rviz can be

visualized, as shown in Figure 4.1 with the command of the rosrun rviz rviz. The topic of the laser

information is /laser / scan. For viewing this information, we connect a LaserScan monitor:

Figure 4.1. Visualization of laser scanner data in Rviz.

When we launch the preceding command, we see an empty world with bmw car made by

gazebo as shown in figure 4.1.

4.1.2. Simulating camera in Gazebo

For all sorts of robots, camera is a significant detector. We are going to see how we simulate

the starter. To begin the simulations and lunch the camera node, the following command can be

used: $ rosrun rqt_image_view rqt_image_view

Then, the image can be viewed from the camera using Rviz as illustrated in figure 4.2.

Chapter 4: Simulation, Results and Discussion

44 | P a g e

Figure 4.2. Image from simulated camera.

To view images from a simulated stereo camera, the following commands are used:

 $ rosrun image_view image_view image:=/stereo/camera/right/image_raw
 $ rosrun image_view image_view image:=/stereo/camera/left/image_raw

 $ rosrun image_view image_view image:=/stereo/camera/backright/image_raw
 $ rosrun image_view image_view image:=/stereo/camera/backleft/image_raw

These commands will display four image windows from each camera of the stereo camera, which are

shown in figure 4.3.

Figure 4.3. Image from simulated stereo camera.

4.1.3. Simulating GPS in Gazebo

GPS is one of the essential sensors in a self-driving car. We can start a GPS simulation using

the following command:

Chapter 4: Simulation, Results and Discussion

45 | P a g e

$ roslaunch sensor_sim_gazebo gps.launch

 We edit rviz config documents from the system, we download and source the rviz satellite

set in order to prevent problems with the consent to rviz if we operate rviz in the shell. Therefore,

we create a map similar to the simulated world and a globe create a precise copy of it and set the

coordinates appropriately (see figure 4.4).

Figure 4.4. Visualization of gps data in Rviz

4.1.4. Simulating IMU on Gazebo

We start the IMU simulation using the following command:

$ roslaunch sensor_sim_gazebo imu.launch

We get the orientation values, linear acceleration, and angular velocity from this plugin like

we have done in chapter 3.

We have also visualized IMU data in Rviz or in the simulator mode by choosing the simulator

mode as illustrated in figure 4.5.

Figure 4.5. Visualization of the /imu in the simulation mode

Chapter 4: Simulation, Results and Discussion

46 | P a g e

4.2. Discussion of the SW, HW implementation and ROS platform

In this section we will discuss the HW and SW implementation and benefits also challenges

of using ROS to build a self driving car. Because the lack of HW, we didn’t acquired all the sensors

like LIDAR, GPS, RADAR, Wheels encoder but the work achievement was very satisfying. Figure

4.6 is a photograph of our RC car robot with all the required equipment mounted on it.

Figure 4.6. Our RC Car in Action

4.2.1. ROS platform analysis

After working with ROS in this project, we can say that it is easy to use and very simple and

helpful because it provide us all the tools we need to build robotic project for free. The most

important thing is that we do not need to write the device drivers and communications framework, it

is all provided by ROS platform.

4.2.2. Benefits of using ROS

The most important thing in ROS that, it is an open source which allow us to add thing and

see others implementation; also, it is free and provide us many tools for simulation and visualization

of our sensor data using Rviz. It is multi-language and we can create our nodes using either c++ or

python.

Chapter 4: Simulation, Results and Discussion

47 | P a g e

4.2.3. Challenges

The challenges that can face us when we work with ROS are: that we need solid programming

language skills (c++ or python) and a basic Linux knowledge because the operating system is

ubuntu. We face other problems also like installing the ROS kinetic which was very hard and with a

lot of errors so we manage this by using ubiquity robotics version that come pre installed with ROS.

4.2.4. Results

This section presents the Results of SW implementation with HW :

 As we can see in Figure 4.7, we could move the car around with decreasing and increasing

the speed. To test it in our RC Car we needed to connect to Raspberry pi via ssh and open

two terminal. In the first terminal we launched the teleop_twist_keyboard node and in the

second terminal we launched the movement.launch. After following correctly these steps,

the RC Car manual control worked perfectly.

Figure 4.7. Teleop Twist Keyboard node

 In Obstacle detection, when we close an object to the three ultrasonic sensors, each one

detects the distance to the object in meter and 0.2 m is the minimum value like it is shown in

figure 4.8, which means the object is in the danger area.

Chapter 4: Simulation, Results and Discussion

48 | P a g e

Figure 4.8. Sensor Interface node.

 After this data (Ultrasonic capture distance) is sent to Sensor interface node the obstacle

avoidance algorithm will be applied. Hence, the node calculates whether the distance is

critical; if it is the case, the car must turn left or right according to the side sensors. If the

right one detects an obstacle the car turn left otherwise right. According to the algorithm, if

d_engage (set to 1.2m) is greater than d_center which is the distance captured by the center

sensor steering angle will be calculated proportional to how the car is close to obstacle with

parameter k_steer.

 Also we use the center sensor to control the brakes. If the value of d_center is less then

d_brakes, which is equal to 0.4m, the action will be proportional to the distance and it will

be multiplied by the command throttle. The value of zero means stop.

 The camera works fine and the camera_talker node gets the video stream from camera; so,

the interfacing with ROS is done. In the future step, it is enough to create an image

processing algorithm which will be implemented to detect colour.

 The interfacing of Arduino and IMU with ROS is done and data is transferred from arduino

side to raspberry side and interfaced with ROS this data can be used to detect car position

and other tasks. Figure 4.18 shows the gyroscope data indicating the position of the car and

the accelerometer data in 3-axis (x,y,z).

Figure 4.9. tinyIMU topic received IMU data.

Chapter 4: Simulation, Results and Discussion

49 | P a g e

4.3. Conclusion

In this chapter, we did the simulation in gazebo simulator of the self driving sensors that we

implemented and we didn’t implement in HW due to problem in SW or lack of HW components in

the website “the constructsim”; where we found a lot of resources that help us to simulate our self

driving car. Also we discussed the results of our work, which was good. Unfortunately, due to the

DC Motor power and the mechanical constraints, the RC Car cannot move in the ground but when

we move up the wheels from the ground they move normally. We changed the RC Car chassis twice

but the same problem occurred. Also because of budget limitations we didn’t use LIDAR, RADAR

and GPS for more autonomous features but we give many suggestions about algorithms to be used

to add more autonomous features to the RC Car like Route planning. Nevertheless, the results we

have achieved are very satisfying because all self driving car sensors were interfaced with ROS.

Moreover, we created for each sensor a node and we connected the entire nodes together with topics

and we sent messages from one node to another.

GENERAL CONCLUSION

50| P a g e

Autonomous cars are the future of driving; as, we see a lot of company develop cars

every day that show us how important this project is in our daily life. It is just the start up

and more of feature will come to this project in the future.

ROS development for our RC Car is done step by step as we interfaced all the sensor

of self driving car with ROS. Unfortunately, due to lack in HW and time limitation and

budget we didn't afford the other sensor like LIDAR, RADAR, GPS, Wheels encoder but

the result was good as we achieved a lot of things.

The most important thing in ROS is the tools that are provided such us gazebo to

stimulate our robot or to visualize our sensor data using Rviz and all for free; also, it is

easy to use it requires just some programming skills and basic Linux knowledge.

By working in this project we represented the ROS platform and the powerful tools

like gazebo and Rviz. Moreover, we worked with all ros packages almost from nodes,

topics and rosserial to establish serial communication between microcontroller and

microprocessor so we can split the tasks between the microprocessor for computation and

the microcontroller to gather data from sensors.

The benefits of building a self driving car using ROS was way more than the

challenges that show us the power of ROS in robotic applications.

As future work we propose the following points:

1. Include LIDAR, RADAR, Wheels encoders and GPS sensors to perform more

autonomous car feature like path planning and mapping the environment.

2. Add traffic light colours detection.

3. Deal with crowded and dynamic environment.

4. Using ROS v2 for more security purpose and tools.

References

51 | P a g e

References

[1] Bonnie Gringer, History of autonomous car, Jan 12, 2018, titlemax.

[2] Anderson, James M., et al. Autonomous Vehicle Technology: A Guide for Policymakers. RAND
Corporation, 2014. JSTOR.

[3] Levinson, Askeland, Becker, Dolson, Held, Kammel, S Thrun. (2011). Towards fully
autonomous driving: Systems and algorithms. 2011 IEEE Intelligent Vehicles Symposium (IV),
Baden-Baden, Germany, 163-168. June 5-9, 2011.

[4] J. Levinson, J. Askeland, J. Dolson, and S. Thrun, Traffic Light Localization and State Detection,
in International Conference on Robotics and Automation, 2011.

[5] Hope Reese, Updated: Autonomous driving levels 0 to 5: Understanding the differences, January
20, 2016, TechRepublic.

[6] Discant, Rogozan, Rusu, Bensrhair. (2007). Sensors for Obstacle Detection - A Survey.
Electronics Technology, 30th International Spring Seminar on, 100-105.

[7] Rajeev Thakur, Infrared Sensors for Autonomous Vehicles, Recent Development in
Optoelectronic Devices, Ruby Srivastava, IntechOpen, December 20th 2017.

[8] Joseph, L. (2017). ROS Robotics Projects. Birmingham: Packt Publishing Ltd.

[9] Quigley, et al., ROS: an open-source Robot Operating System, ICRA workshop on open source

software, vol. 3, no. 3.2, 5, 2009.

[10] Ademovic A., An introduction to robot operating system: the ultimate robot application

framework, May 10, 2018, Toptal.

[11] Aleksandar Zivkovic, Development of Autonomous Driving using Robot Operating System,

Master thesis, Madrid, May 2018.

[12] Tellez R., How to start with self-driving cars using ROS, May 10, 2018, The Construct.

[13] Network Working Group of the IETF, The Secure Shell (SSH) Protocol Architecture, January

2006, RFC 4251.

[14] Gazebosim : http://gazebosim.org/tutorials

[15] Rosserial :https://www.intorobotics.com/installing-and-setting-up-arduino-with-ros-kinetic-

raspberry-pi-3/

References

52 | P a g e

References

51 | P a g e

References

[1] Bonnie Gringer, History of autonomous car, Jan 12, 2018, titlemax.

[2] Anderson, James M., et al. Autonomous Vehicle Technology: A Guide for Policymakers. RAND
Corporation, 2014. JSTOR.

[3] Levinson, Askeland, Becker, Dolson, Held, Kammel, S Thrun. (2011). Towards fully
autonomous driving: Systems and algorithms. 2011 IEEE Intelligent Vehicles Symposium (IV),
Baden-Baden, Germany, 163-168. June 5-9, 2011.

[4] J. Levinson, J. Askeland, J. Dolson, and S. Thrun, Traffic Light Localization and State Detection,
in International Conference on Robotics and Automation, 2011.

[5] Hope Reese, Updated: Autonomous driving levels 0 to 5: Understanding the differences, January
20, 2016, TechRepublic.

[6] Discant, Rogozan, Rusu, Bensrhair. (2007). Sensors for Obstacle Detection - A Survey.
Electronics Technology, 30th International Spring Seminar on, 100-105.

[7] Rajeev Thakur, Infrared Sensors for Autonomous Vehicles, Recent Development in
Optoelectronic Devices, Ruby Srivastava, IntechOpen, December 20th 2017.

[8] Joseph, L. (2017). ROS Robotics Projects. Birmingham: Packt Publishing Ltd.

[9] Quigley, et al., ROS: an open-source Robot Operating System, ICRA workshop on open source

software, vol. 3, no. 3.2, 5, 2009.

[10] Ademovic A., An introduction to robot operating system: the ultimate robot application

framework, May 10, 2018, Toptal.

[11] Aleksandar Zivkovic, Development of Autonomous Driving using Robot Operating System,

Master thesis, Madrid, May 2018.

[12] Tellez R., How to start with self-driving cars using ROS, May 10, 2018, The Construct.

[13] Network Working Group of the IETF, The Secure Shell (SSH) Protocol Architecture, January

2006, RFC 4251.

[14] Gazebosim : http://gazebosim.org/tutorials

[15] Rosserial :https://www.intorobotics.com/installing-and-setting-up-arduino-with-ros-kinetic-

raspberry-pi-3/

References

52 | P a g e

52 | P a g e

APPENDIX A

1. Launch files

1.1. Manual control

<launch>

 <include file="$(find i2cpwm_board)/launch/i2cpwm_node.launch"/>

 <node pkg="interface_rccar" name="movement" type="low_level_control.py"

output="screen" >

 </node>

 </launch>

1.2. Obstacle detection

<launch>

 <node pkg=" interface_rccar " name="sonar_scan" type="sonar_array.py"

output="screen" >

 </node>

 <node pkg=" interface_rccar " name="sensor_interface" type="

sensor_interface.py" output="screen" >

 </node>

 </launch>

2. Ubuntu install of ROS Kinetic

ROS Kinetic ONLY supports Wily (Ubuntu 15.10), Xenial (Ubuntu 16.04) and Jessie

(Debian 8) for debian packages

1. Configure our Ubuntu repositories

Configure our Ubuntu repositories to allow "restricted," "universe," and "multiverse".

2. Setup our sources.list

Setup our computer to accept software from packages.ros.org.

53 | P a g e

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

3. Set up your keys

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

4. Installation

First, make sure that our Debian package index is up-to-date:

sudo apt-get update

There are many different libraries and tools in ROS. We provided four default

configurations to get us started. We can also install ROS packages individually.

Desktop-Full Install: (Recommended) : ROS, rqt, rviz, robot-generic libraries, 2D/3D

simulators, navigation and 2D/3D perception

sudo apt-get install ros-kinetic-desktop-full

5. Initialize rosdep

Before we can use ROS, we will need to initialize rosdep. rosdep enables us to easily

install system dependencies for source we want to compile and is required to run some core

components in ROS.

sudo rosdep init

rosdep update

6. Environment setup

It's convenient if the ROS environment variables are automatically added to our bash

session every time a new shell is launched:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

 If we have more than one ROS distribution installed, ~/.bashrc must only source the

setup.bash for the version we are currently using.

54 | P a g e

If we just want to change the environment of our current shell, instead of the above we can

type:

source /opt/ros/kinetic/setup.bash

If we use zsh instead of bash we need to run the following commands to set up our shell:

echo "source /opt/ros/kinetic/setup.zsh" >> ~/.zshrc

source ~/.zshrc

7. Dependencies for building packages

Up to now we have installed what we need to run the core ROS packages. To create and

manage our own ROS workspaces, there are various tools and requirements that are

distributed separately. For example, rosinstall is a frequently used command-line tool that

enables us to easily download many source trees for ROS packages with one command.

To install this tool and other dependencies for building ROS packages, run:

sudo apt install python-rosinstall python-rosinstall-generator python-wstool build-essential

55 | P a g e

APPENDIX B

1. Installing and Setting Up Arduino with ROS Kinetic (Raspberry Pi 3)

This guide will walk us through how to install and setting up an Arduino board to work with
Raspberry Pi 3 having in common ROS Kinetic.

To walk through this guide, we must have a Raspberry Pi 3 with ROS Kinetic installed, an
Arduino UNO board connected via the USB port to Pi, and some Linux knowledge.

Arduino is an open-source development tool very easy to use both as hardware and software.
This development board simplifies the robot construction process and is therefore used together
with Raspberry Pi and ROS to control sensors, motors or any other component that can be
controlled with a microcontroller.

The Arduino microcontroller can only run one ROS node at a time.

1.1. Install the Arduino IDE

Arduino is connected to Raspberry Pi 3 through the USB port. To program Arduino, we need to
install the Arduino IDE on the Pi.

To install the Arduino IDE on the Ubuntu Mate operating system, use the following commands
in the Linux terminal.

sudo apt-get update

sudo apt-get install arduino arduino-core

1.2. Install rosserial

After installing the Arduino IDE, the next step is installing the package that allows
communication between ROS and the serial port of the Arduino board. The package is called
rosserial_arduino and allows the node that will run on the Arduino to publish or subscribe to the
nodes running on Raspberry Pi 3. The rosserial package contains three other packages:
rosserial_msgs, rosserial_client, and rosserial_python.

sudo apt-get install ros-kinetic-rosserial-arduino

sudo apt-get install ros-kinetic-rosserial

After installing the Arduino IDE and the rosserial package, we will first check the IDE, but not
before giving Administrator privileges to the current user for the Arduino Permission Checker.

The command is:

56 | P a g e

sudo usermod -a -G dialout your_user_here

To open the Arduino IDE, write the following command in the Ubuntu terminal:

arduino
Once we have checked the installation of the IDE, the next step is to close it and continue the
setup operations. To close, use the Ctrl + C keys.

If we give the command ls in the Ubuntu terminal, we will find a new sketchbook directory. If
we do not want to change us location or name, all Arduino sketches will be saved in this
directory.

To write Arduino sketches for ROS, we need the ros_lib library.

1.3. Install the ros_lib library

The link between ROS and Arduino is through the ros_lib library. This library will be used as
any other Arduino library.

To install the ros_lib library, type the following commands in the Ubuntu terminal:

cd sketchbook/libraries

rosrun rosserial_arduino make_library.py .

 Appendix B.1. Content of Arduino libraries after the commands.

make_library.py

If we browse the sketchbook/libraries/make_library.py/ros_lib/examples folder, we will find
a list of examples that can be used in ROS projects. One of these examples is Ultrasound. In
another tutorial, I will use this example to control one or more HC-SR04 ultrasonic sensors with

ROS and Arduino.

 Appendix B.2.ros_lib in Example in Arduino IDE

57 | P a g e

The ros_lib examples

Appendix B.3. connecting serial port.

Before checking the latest IDE settings, we must rename the ‘make_library.py’ folder. The
Arduino IDE does not allow the use of points in the name of the libraries. So the name of the
bookstore will become ‘make_library’.

1.4. Check the Arduino IDE settings

To check the settings made, we will open the Arduino IDE again. To launch the application, we
will use the command:

arduino
After opening the IDE, check if we have access to the ros_lib examples: File -> Examples ->
make_library -> ros_lib

ros_lib

58 | P a g e

Check the serial port:
Tools-> Serial Ports

 Appendix B.4. Serial port after connecting Arduino with Raspberry Pi

Arduino’s serial port

Thus, the steps to install and setup the Arduino IDE on Raspberry Pi 3 with ROS Kinetic are
detailed in [15].

