
Registration Number:…..…../2019

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Electronics

Option: Computer Engineering

Title:

Presented By:

- BAATCHIA Riyadh

- ATALLAH Mohamed Nadhir

Supervisor:

 Dr NAMANE R.

Design and Implementation of a Web-based

Management System. Case of The

Scientific Council of the “IGEE”.

Design and Implementation of Web-based

Management System. Case of The

Scientific Council of The Institute

I

Abstract

This project proposes a technical solution to improve the management for a small

institution. The aim of this project is to create an interactive web application

(application that can run from a web browser) dedicated to the management of the

Scientific Council of the institute (SCI). This web application makes it possible to

facilitate the work of the members of the SCI by automating the management of the

submissions, meetings, Final decisions, statistics and the members’ roles. The

application we will develop should be easy to set up and maintain by users with little

or no technical expertise.

To improve the management process, this project goal is to analyze the current

management processes of a hypothetical scientific council and determine the possible

areas of improvement. This work has been carried out using the development process

and the modelling language, Unified Modelling Language (UML), for designing the

application. As for the implementation, we have chosen to program the application

with NodeJS and MongoDB as the Database Management System (DBMS).

 Keywords: Web application, NodeJS, Mongo DBMS, and UML.

II

Dedication

I dedicate this modest work to my dear parents

, my brothers, and to all my family and friends.

Nadhir

I dedicate this modest work to my dear parents

, my brothers, and to all my family and friends.

Riyadh

III

Acknowledgements

We would firstly like to thank our project supervisor, Dr. Namane for his assistance,

and valuable feedback in the realization of this senior design project; also, he was our

teacher for two years. Secondly, we would like to thank Dr. Zitouni for his valuable

course in basics of Object Oriented programing. Dr. Khalifa for his valuable course

about databases

Finally, we would like to thank our families and friends for their presence, support, and

help.

IV

Table of contents
Abstract .. I

Dedication ... II

Acknowledgement ... III

Table of contents ... IV

List of tables ... VII

List of Figures .. VIII

List of abbreviations: .. IX

General Introduction: .. 1

CHAPTER ONE : An overview of project objectives and web applications 3

1.1 Introduction: .. 3

1.2 Subject presentation: ... 3

1.2.1 problem statement: ... 3

1.2.2 Objectives: .. 3

1.3 Web application: ... 4

1.3.1 Definition: .. 4

1.3.2 Single-Page Application: .. 4

1.3.3 Multi-Page Application: ... 4

1.3.4 Web client and Web server: ... 5

1.3.5 HTML and HTTP: .. 5

1.3.6 Understanding URL: .. 8

1.3.7 The Communication Procedure: ... 8

1.4 Conclusion: ... 10

CHAPTER TWO : Overview of the Scientific Council ... 11

2.1 Introduction: .. 11

2.2 Scientific Council presentation: .. 11

2.3 Staff role identification: .. 12

2.3.1 SCI President: ... 12

2.3.2 SCI Member: .. 13

2.3.3 Faculty Member / PhD Student: ... 13

V

2.4 Conclusion: ... 13

CHAPTER THREE : Tools and technologies... 14

3.1 Introduction: .. 14

3.2 Development tools: ... 14

3.2.1 EDraw Max: ... 14

3.2.2 Visual Studio Code: .. 14

3.2.3 NodeJS: ... 14

3.2.4 ExpressJS: ... 15

3.2.5 ReactJS: .. 15

3.2.6 GraphQL: .. 15

3.2.7 Apollo GraphQL: .. 17

3.2.4 MongoDB: .. 17

3.2.8 Web Browser: ... 17

3.3 Programming languages: ... 18

3.3.1 HTML: .. 18

3.3.2 CSS: .. 18

3.3.3 JavaScript: .. 18

3.4 Conclusion: ... 18

CHAPTER FOUR : Design ... 20

4.1 Introduction: .. 20

4.2 Design Requirements: ... 20

4.2.1 Modelling language: ... 20

4.2.2 Unified Modelling Language (UML): .. 20

Behavioral UML diagrams: ... 20

4.3 Modelling .. 21

4.3.1 System Actors: .. 21

4.3.2 Use Cases: .. 21

4.3.3 Relationships between documents: ... 32

VI

4.3.8 Sequence Diagrams: ... 35

4.4 Introduction to Database: .. 41

4.4.1 Definition: ... 41

4.4.2 Relational Model: ... 41

4.4.3 Non-Relational Model: ... 41

4.4.4 What is MySQL? .. 42

4.4.5 What is MongoDB? .. 42

4.4.6 Benefits of using documents in database: .. 42

4.4.7 Description of our system’s database: .. 43

4.5 Conclusion: ... 47

CHAPTER FIVE : Implementation ... 48

5.1 Introduction: .. 48

5.2 Interfacing with the application: ... 48

5.2.1 Authentication interface: .. 48

5.2.2 Homepage interfaces for each user: ... 49

5.2.3 Open submissions interface: ... 50

5.2.4 Submit an application interface: ... 51

5.2.5 Set meeting agenda interface: ... 51

5.2.6 Review applications interface: ... 52

5.2.7 My applications interface: .. 55

5.2.8 Statistics interface: .. 56

5.3 Conclusion: ... 57

General Conclusion .. 58

Future Works .. 58

Webography .. 59

Bibliography ... 60

VII

List of tables

Table 4. 1 use cases of each actor according to their roles .. 22

Table 4. 2 Summary of the used arrows. .. 24

Table 4. 3 Textual description for use case "Authentication" 29

Table 4. 4 Textual description for use case " Open submissions " 29

Table 4. 5 Textual description for use case " Set meeting agenda " 30

Table 4. 6 Textual description for use case " Review applications " 30

Table 4. 7 Textual description for use case " Final decision " 31

Table 4. 8 Textual description for use case " Submissions" 31

Table 4. 9 Textual description for use case " Statistics " ... 32

Table 4. 10 used arrows ... 33

Table 4. 11 Basic symbols used in sequence diagram ... 35

Table 4. 12 Message symbols used in sequence diagram .. 36

VIII

List of Figures

Figure 1. 1 HTTP Request Message .. 6

Figure 1. 2 HTTP Response message .. 7

Figure 1. 3 A static client/server communication sequence ... 8

Figure 1. 4 A dynamic client/server communication sequence 9

Figure 4. 1 PhD Student use case diagram……….………………………………….25

Figure 4. 2 Faculty Member use case diagram .. 26

Figure 4. 3 embedded data relationship ... 32

Figure 4. 4 references relationship ... 33

Figure 4. 5 relationships between documents. ... 34

Figure 4. 6 Sequence diagram “Authentication”.. 36

Figure 4. 7 Sequence diagram “Open submissions” .. 37

Figure 4. 8 Sequence diagram “Submit application” ... 38

Figure 4. 9 Sequence diagram “Set meeting agenda” .. 39

Figure 4. 10 Sequence diagram “Review application” .. 40

Figure 4. 11 database interface... 43

Figure 4. 12 Announcement collection .. 43

Figure 4. 13 applications collection ... 44

Figure 4. 14 Users collection ... 45

Figure 4. 15 yearly reports collection .. 47

Figure 5. 1 Authentication interface………………………………………………...48

Figure 5. 2 Homepage interface when submissions are closed 49

Figure 5. 3 Homepage interface when submissions are open 50

Figure 5. 4 Open submissions interface ... 50

Figure 5. 5 Submit an application interface ... 51

Figure 5. 6 Set meeting agenda interface ... 51

Figure 5. 7 Review applications interface .. 52

Figure 5. 8 the applicant information Interface .. 52

Figure 5. 9 internship application Interface ... 53

Figure 5. 10 the review status Interface for SC member user 53

Figure 5. 11 application assessment Interface.. 53

Figure 5. 12 the review status Interface for SC President user 54

Figure 5. 13 the final decision Interface... 55

Figure 5. 14 My applications interface .. 55

file:///D:/memoire_V2.docx%23_Toc12873414
file:///D:/memoire_V2.docx%23_Toc12873415

IX

Figure 5. 15 Statistics interface .. 56

Figure 5. 16 pie chart for an application interface ... 56

List of abbreviations:

• DBMS: Database Management System.

 • UML: Unified Modelling Language.

• HTTP: Hypertext Transfer Protocol.

• HTML: Hypertext Mark-up Language.

• URL: Universal Resource Locator.

• MySQL: My Structured Query Language.

• SQL: Structured Query Language

• API: Application Program Interface

• JSON: JavaScript Object Notation

• AJAX: Asynchronous Javascript And XML

1

General Introduction:

 The Internet has taken the world of computers and communications to an

extraordinary stage. The invention of phones, radios, and computers opened the way

for this special integration of capabilities.

 Until now the computers remain the safest way to process and backup

information. This feature has made it possible to computerize the data management

system of companies, which is an essential part of their development today.

 A web application is an application that is accessed by users over a network.

Users can easily access the application from any computer connected to the Internet

using a standard browser. In another term it is a software system that provides a user

interface through a web browser. A web application plays a very important role in

every field such as in the field of education, health, and libraries. It can give ease in

every field because a web application also saves the time of the clients. Over all, a

web application is very useful and convenient for clients when internet is in

everyone's reach.

 Each university has its scientific council, one of the institutions that computers

can help a lot these days. Our project aims to design and implement an interactive,

reliable, user-friendly web application to facilitate the work of the scientific council

staff.

 This report explains the process in which a web application can help to simplify

the work of the scientific council members, as well as the management of the

meetings and the decisions making, which leads to a very professional job. In

addition, our web application helps in the ease of using and maintaining all the

information related to the council because it is saved in a database.

2

Our report is organized in five main chapters:

 The First chapter introduces web applications, after defining the objectives of

this project. The second chapter gives a general overview of a hypothetical

scientific council; in particular it defines the scientific council of an institute, talks

about the management of scientific council tasks, and summarizes its members

role’s. The third chapter introduces the tools and technologies used in the project.

The forth chapter concerns the design. It brings together all the stages of our

process of development using UML modeling language. The fifth chapter is

devoted to the implementation of the project where we present some interfaces

available to the application users. Our report ends with a general conclusion.

CHAPTER ONE

An overview of project objectives

and web applications

Chapter one: An overview of project objectives and web applications

3

1.1 Introduction:

 In this chapter, we identify the problems that may be faced by the Scientific

Council members, then, we discuss our objectives in obtaining a better management

of this later. Finally, we provide an introduction to web apps and some generalities

related to running the web.

1.2 Subject presentation:

 Our objective is to design and implement a web application to manage the

scientific council of our institute. this theme is proposed and chosen to solve the

problems that face the council members.

1.2.1 Problem statement:

 In order to implement our project, we have discussed a lot with a scientific

council member and we came up with some of the problems that the members are

facing:

• The meetings take time and effort.

• Dealing with a lot of documents and files.

• Documents are stored on shelves, which is an unsecured place; therefore the risk of

losing or damaging part or all the documents is very high.

1.2.2 Objectives:

 Our objective is to design and implement a web application to solve the

problems mentioned above by:

• Automate the process of the scientific council tasks in our web application.

• Review, vote, comment the submitted files and documents from home.

• Registrations and submissions of files for an application will be online.

• Save all documents in a database, which secures and makes an ease access to that

documents.

• Finally, a physical meeting will be held to confirm a final decision.

Chapter one: An overview of project objectives and web applications

4

1.3 Web application:

1.3.1 Definition:

 A web application or "web app" is any software program that runs on a web

server. Unlike the traditional desktop applications, which are lunched by the

operating system, web apps must be accessed through a web browser.

 Web apps have several advantages over desktop applications. Since web apps run

inside a web browser, no complex installation is needed. Web apps also solve some

of the "compatibility issues", (Windows, Mac, Linux); all that is needed is a browser.

Developers do not need to distribute software updates to users when the web app is

updated. By updating the application on the server, all users have access to the

updated version. [1]

1.3.2 Single-Page Application:

 A single-page application is an app that works inside a browser and does not

require page reloading during use. SPAs are all about serving an outstanding

UX(user experience) by trying to imitate a “natural” environment in the browser —

no page reloads, no extra wait time. It is just one web page that you visit which then

loads all other content using JavaScript — which they heavily depend on. SPA

requests the markup and data independently and renders pages straight in the

browser.

Single-page sites help keep the user in one, comfortable web space where content is

presented to the user in a simple, easy and workable fashion. [2]

1.3.3 Multi-Page Application:

 Multiple-page applications work in a “traditional” way. Every change, for

example, displays the data or submit data back to server requests rendering a new

page from the server in the browser. These applications are large, bigger than SPAs

because they have to be. Due to the amount of content, these applications have many

levels of UI (user interface). Luckily, it’s not a problem anymore. Thanks to AJAX,

we don’t have to worry that big and complex applications have to transfer a lot of

data between the server and the browser. That solution allows to refresh only

particular parts of the application. On the other hand, it adds more complexity and it

is more difficult to develop than a single-page application. [2]

Chapter one: An overview of project objectives and web applications

5

1.3.4 Web client and Web server:

Web client: it is an application that communicates with a web server. Some of the

widely used Web clients are web browsers such as Google chrome, Firefox… etc.

When a user requests something from a server (through a URL) the web client takes

care of creating a request and sending it to the server and then it parses the server

response and presents it to the user.

Web server: it is a computer program that accept a request from the client and

attempt to reply to it in a meaningful way. The machine the program runs on is

usually also called a server. When a Web client sends a request into the internet

asking to view the web page found at that address. The web server is the program or

machine that responds to that request and delivers the content of the page back to the

user.

A web server can usually handle multiple simultaneous connections and when it is

not communicating with a client it spends its time listening for an incoming

connection. When one arrives, the server sends back a response to confirm its

receipt.

1.3.5 HTML and HTTP:

Web Servers and Web Clients are two separate software, so they should have:

- A common language for communication: HTML (Hypertext Mark-up Language) is

the common language between a server and a client.

-A common communication protocol: HTTP is the communication protocol between

a server and a client.

HTTP is a communication standard governing the requests and responses that take

place between the browser running on the end user’s computer and the web

server.The server’s job is to accept a request from the client and attempts to reply to

it in a meaningful way, usually by serving up a requested web page—that’s why the

term server is used. The natural counterpart to a server is a client, so that term is

applied both to the web browser and the computer on which it’s running. [26]

Chapter one: An overview of project objectives and web applications

6

Some of the important parts of HTTP are:

1.3.5.1 HTTP Request Message:

The format of an HTTP request message is as follow:

• Request Line: has the following parameters:

▪ request-method-name: GET, POST, PUT, and OPTIONS.

▪ request-URI: specifies the resource requested.

▪ HTTP-version: Either HTTP/1.0 and HTTP/1.1.

• Request Headers:

The request header contains the type, version and capabilities of the browser that

is making the request so that server returns compatible data.

• Request message body:

Some requests send data to the sever in order to update it, it is often the case

with POST requests (containing HTML form data). [3]

Figure 1.1 HTTP Request Message

 Figure 1. 1 HTTP Request Message

https://www.webopedia.com/TERM/H/header.html

Chapter one: An overview of project objectives and web applications

7

1.3.5.2 HTTP Response Message:

The format of the HTTP response message is as follows:

• Status Line: has the following parameters:

▪ HTTP-version: Either HTTP/1.0 and HTTP/1.1.

▪ status-code: a 3-digit number generated by the server to reflect the outcome

of the request.

▪ reason-phrase: gives a short explanation to the status code.

Examples of status line are:

 HTTP/1.1 200 OK

 HTTP/1.0 404 Not Found

 HTTP/1.1 403 Forbidden

• Response Headers:

 contains the date, size and type of file that the server is sending back to the

client and also data about the server itself. The header is attached to the files

being sent back to the client.

• Response message body:

Contains the resource data that was requested by the client. [3]

 Figure 1. 2 HTTP Response message

Chapter one: An overview of project objectives and web applications

8

1.3.6 Understanding URL’s:

 A Uniform resource locator (URL) is the address of a resource on the Internet.

A URL indicates the location of a resource as well as the protocol used to access it.

Also known as a Universal Resource Locator (URL) or Web address.

 A URL is a type of uniform resource identifier (URI). In common practice, the

term URI isn't used, or is used synonymously with URL, even though this is

technically incorrect. Every resource has its own unique address. [4]

1.3.7 The Communication Procedure:

 At its most basic level, the communication process consists of a web browser

asking the web server to send it a web page and the server sending back the page.

The browser then takes care of displaying the page.

1.3.7.1 Static web pages processing:

 A static website consists of a set of HTML pages and files that are hosted on a

computer that is running a Web server. The page request is generated when it clicks a

page in a Web, a bookmark in a browser, or enters the URL in a URL text box for a

browser. The final content of a static web page can be determined by the page

designer and does not change when the page is requested.

Figure 1. 3 A static client/server communication sequence

Chapter one: An overview of project objectives and web applications

9

Each step in the request and response sequence is as follows:

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request for the home page at server.com.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, looks for the web page on its disk.

6. The web page is retrieved by the server and returned to the browser.

7. Your browser displays the web page.

In step 2, notice that the browser looked up the IP address of server.com. Every

machine attached to the Internet has an IP address—your computer included. But

generally, we access web servers by name, such as google.com. As you probably

know, the browser consults an additional Internet service called the Domain Name

Service (DNS) to find its associated IP address and then uses it to communicate with

the computer.

1.3.7.2 Dynamic web page processing:

 when the web server receives a request for a dynamic web page, the procedure

is a little more involved, because it may bring both a server-side scripting language

and a database into the mix. Here is a representation of the process:

Figure 1. 4 A dynamic client/server communication sequence

Chapter one: An overview of project objectives and web applications

10

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request to that address for the web server’s home page.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, fetches the home page from its hard

disk.

6. With the home page now in memory, the web server notices that it is a file

incorporating server-side scripting language and passes the page to an interpreter.

7. The interpreter executes the scripting code.

8. Some of the scripting code contains a database statements, which the interpreter

now passes to the database engine.

9. The database returns the results of the statements to the interpreter.

10. The interpreter returns the results of the executed scripting code, along with the

results from the database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

1.4 Conclusion:

 Through this chapter, we specified the problems that the council’s members

may face and we proposed to help solving them using a web application. In the

second part of the chapter we gave a background summary of a web application and

some generalities related to running the web.

CHAPTER TWO

Overview of the Scientific

Council

Chapter 2: Overview of the scientific council

11

2.1 Introduction:

 This chapter details a general overview about the scientific council, it provides

definition about the scientific council of the Institute, talks about its mission and it

also introduces the members of its staff and their respective roles.

2.2 Scientific Council presentation: [5]

 The Scientific Council of the Institute (SCI) is an advisory body of the Institute

that issues advice and recommendations on all aspects related to scientific research

and graduate and post-graduate teaching.

 The Scientific Council of the Institute includes the following members (Article 67):

 • The Chairman of the SCI;

 • The Director of the Institute;

• Deputy Directors;

• Heads of Departments;

• Laboratory Director(s);

• The head of the Institute's library;

• Two representatives of the Institute faculty members;

• Two representatives per department for higher-ranking teaching staff (professors or

lecturers).

 The Chairman of the SCI is elected among the teachers' representatives with the

highest ranks for a three-year term renewable once. The list of the members of the

scientific council members is laid down by Order of the Minister in charge of higher

education. The Scientific Council of the Institute is responsible for issuing advice

and recommendations on (Article 68):

• Organization of curricula content;

• Organization of research work;

• Providing proposals for research programs;

• Providing proposals for the creation or removal of departments and/or branches as

well as research units and laboratories;

• Providing proposals for the opening, renewal and/or closing of post-graduation

programs and the number of vacancies to be filled;

• Monitoring teacher profiles and needs.

Chapter 2: Overview of the scientific council

12

It is also in charge of:

 • Approving the research themes proposed by post-graduation students and suggest

relevant defense juries;

• Proposing university habilitation juries,

• Examining the reports of the Institute pedagogic and scientific activities that, along

with the advice and recommendations, are transmitted from the council to the

attention of the rector;

 • It may be called upon to consider any other educational or scientific question

submitted to it by the Director.

 The Scientific Council meets in ordinary session once every three (3) months when

convened by its Chairman. It may meet in extraordinary session upon the request of

its chairman, two-thirds of its members or the director of the Institute (Article 69).

In our work we deal with the following points:

• Approving the research themes proposed by post-graduation students and suggest

relevant defense juries

• proposing university habilitation juries,

• Organization of research work;

• Providing proposals for research programs;

• Monitoring teacher profiles and needs.

2.3 Staff role identification:

 In our work we deal only with the members’ roles directly related to the above

description of the SCI.

2.3.1 SCI President:

 According to the above description of the SCI, the president’s roles can be identified

as follows:

• Open submissions: the president is the one who set a date for the start and end of

the submissions, also he should fix a date for the council meeting.

• Set meeting agenda: the president has to set a schedule for the meeting.

• Review applications: all SCI members including the president should review every

submitted application and provide a decision on it.

Chapter 2: Overview of the scientific council

13

• Final decision: Based on the decisions of all SCI members and after discussion,

the president should give the final decision about every submitted application

(accepted or rejected)

2.3.2 SCI Member:

• Review applications: all SCI members including the president should review every

submitted application and provide a decision on it.

2.3.3 Faculty Member / PhD Student:

All teachers and PhD students are able to submit an application of different types

(defense, research, conference…) to be reviewed by the SCI members.

2.4 Conclusion:

In this chapter, we have given an overview of the scientific council of the institute.

We started by a small presentation of the council, and we finished by identifying the

roles of each member of the staff.

CHAPTER THREE

Tools and technologies

Chapter Three: Tools and Technologies

14

3.1 Introduction:

 With the introduction of many popular tools and technologies, a modern web

application has really come a long way over the years leading to develop a fully

responsive and dynamic web app. In this chapter we define tools and technologies

that we are going to use in our project.

3.2 Development tools:

3.2.1 EDraw Max:

 EDraw Max is a comprehensive software program that includes a number of

ready-made graphics that facilitate the creation of maps and organizational charts,

network charts, business presentations, and even fashion designs and drawings, as

well as structures Software, and used by professionals in web design.

3.2.2 Visual Studio Code:

 Visual Studio Code is a source editor developed by Microsoft for Windows,

Linux and MacOS. Visual Studio Code has out-of-the-box support for almost every

major programming language. Several are included by default, for example,

JavaScript, TypeScript, CSS, and HTML but other language extensions can be found

and downloaded for free from the VS Code Marketplace.

3.2.3 NodeJS:

 NodeJS is an open source development platform used for developing a server-

based application. The traditional JavaScript environment has always been a client-

side in a user's browser or in an application that is talking to a server. JavaScript has

not been considered when it comes to the server responding to client requests, but

that is exactly what node.js provides.

 Node.js is not written in JavaScript. It is written in C++ but it uses the

JavaScript language as an interpretive language for server-side request/response

processing. NodeJS can work with both relational (such as Oracle and MYSQL

Server) and non-relational databases (such as MongoDB). [6]

https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Microsoft

Chapter Three: Tools and Technologies

15

3.2.4 ExpressJS:

 Express.js is a NodeJS web application server framework, which is specifically

designed for building single-page, multi-page, and hybrid web applications. It has

become the standard server framework for NodeJS. [7]

 The Express.js framework makes it very easy to develop an application which

can be used to handle multiple types of requests like the GET, PUT, POST and

DELETE requests. And it has the ability to work with databases which are

commonly required by most modern-day web applications.

3.2.5 ReactJS:

 ReactJS basically is an open-source JavaScript library which is used for

building user interfaces specifically for single page applications. It’s used for

handling view layer for web and mobile apps. React also allows us to create reusable

UI components.

React allows developers to create large web applications which can change data,

without reloading the page. The main purpose of React is to be fast, scalable, and

simple. [8]

3.2.6 GraphQL:

 GraphQL is a query language for API, and a server-side runtime for executing

queries by using a type system you define for your data. GraphQL isn't tied to any

specific database or storage engine and is instead backed by your existing code and

data. A GraphQL service is created by defining types and fields on those types, then

providing functions for each field on each type. It is a syntax that describes how to

ask for data and is generally used to load data from a server to a client.

 GraphQL has three main characteristics:

▪ It lets the client specify exactly what data it needs.

▪ It makes it easier to aggregate data from multiple sources.

▪ It uses a type system to describe data. [9]

 3.2.6.1 GraphQL schema:

 A GraphQL schema is at the center of any GraphQL server implementation and

describes the functionality available to the clients which connect to it.

The core building block within a schema is the "type". Types provide a wide-range

of functionality within a schema, including the ability to:

Chapter Three: Tools and Technologies

16

• Create relationships between types.

• Define which data-fetching (querying) and data-manipulation (mutating)

operations can be executed by the client.

• If desired, self-explain what capabilities are available to a client via introspection

[10].

3.2.6.2 Schema Definition Language:

 To make it easy to understand the capabilities of a server, GraphQL implements

a human-readable schema syntax known as its Schema Definition Language, or

"SDL". The SDL is used to express the types available within a schema and how

those types relate to each other.

In a simple example involving books and authors, the SDL might declare:

It's important to note that these declarations express the relationships and

the shape of the data to return, not where the data comes from or how it might be

stored - which will be covered outside the SDL. [10]

3.2.6.3 The Query types:

 A GraphQL query is for fetching data and compares to the GET verb in REST-

based APIs. In order to define what queries are possible on a server, the Query type

is used within the SDL. The Query type is one of many root-level types which

defines functionality (it doesn't actually trigger a query) for clients and acts as an

entry-point to other more specific types within the schema. [10]

3.2.6.4 The Mutation types:

 Mutations are operations sent to the server to create, update or delete data. These

are comparable to the PUT, POST and DELETE verbs on REST-based APIs.

Much like how the Query type defines the entry-points for data-fetching operations

on a GraphQL server, the root-level Mutation type specifies the entry points for data-

manipulation operations. [10]

Chapter Three: Tools and Technologies

17

3.2.6.5 Resolvers:

 In order to respond to queries or mutations, a schema needs to have a resolve

functions for all fields. This collection of functions is called the "resolver map". This

map relates the schema fields and types to a function.

Resolvers provide the instructions for turning a GraphQL operation into data [11]

3.2.7 Apollo GraphQL:

• Apollo Server

 The fastest way to get started with GraphQL is by creating a new server. Apollo

Server will set an Express server up for you as long as you provide it with typeDefs,

which is a string representing your GraphQL schema, and resolvers, which is a map

of functions that implement your schema. [12]

• Apollo Client

 A sophisticated GraphQL client that manages data and state in an application.

Among other benefits, it enables a declarative programming style that lets developers

define queries as part of UI components; the client manages all the hairy details of

binding query results to the UI, managing consistency, caching, and so on. Apollo

Client also supports an exceptionally elegant approach to state management by

extending the GraphQL schema inside the client with additional structure. [13]

3.2.4 MongoDB:

 MongoDB is a powerful, flexible, and scalable general-purpose database

management system (DBMS) that uses a document-oriented database model which

supports various forms of data. A database is a collection of information that is

organized so that it can be easily accessed, managed and updated. Instead of

using tables and rows as in relational databases, the MongoDB architecture is made

up of collections and documents. [14]

3.2.8 Web Browser:

 A web browser, or simply "browser," is an application used to access and

view websites. Common web browsers include Internet Google Chrome, Mozilla

Firefox, and Apple Safari. The primary function of a web browser is to

render HTML, the code used to design or "markup" webpages. Each time a browser

loads a web page, it processes the HTML, which may include text, links, and

references to images and other items, such as cascading style sheets and

JavaScript functions. The browser processes these items, then renders them in the

browser window. [15]

https://searchsqlserver.techtarget.com/definition/information
https://whatis.techtarget.com/definition/table
https://searchoracle.techtarget.com/definition/row
https://searchdatamanagement.techtarget.com/definition/relational-database
https://techterms.com/definition/application
https://techterms.com/definition/website
https://techterms.com/definition/html
https://techterms.com/definition/webpage
https://techterms.com/definition/link
https://techterms.com/definition/css
https://techterms.com/definition/css
https://techterms.com/definition/javascript

Chapter Three: Tools and Technologies

18

3.3 Programming languages:

3.3.1 HTML:

 Stands for “Hypertext markup” language, it is the major markup language used

to display Web pages on the Internet. In other words, Web pages are composed of

HTML, which is used to display text, images or other resources through a Web

browser.

 HyperText refers to the hyperlinks that html page may contain, and “markup

language” refers to the way tags are used to define the page layout and elements

within the page. [16]

3.3.2 CSS:

 Stands for Cascading Style Sheets, it is a standard (or language) that describes

the formatting of markup language pages. CSS enables developers to separate

content and visual elements for greater page control and flexibility. A CSS file is

normally attached to an HTML file by means of a link in the HTML file. [17]

3.3.3 JavaScript:

 JavaScript (JS) is a scripting language, primarily used on the Web. It is used to

enhance HTML pages and is commonly found embedded in HTML code. JavaScript

is an interpreted language. Thus, it doesn't need to be compiled.

 JavaScript renders web pages in an interactive and dynamic fashion. This

allowing the pages to react to events, exhibit special effects, accept variable text,

validate data, create cookies, detect a user’s browser, etc. [18]

3.4 Conclusion:

 Through this chapter, we gave a simple definition about the tools and the

technologies that we used in order to implement our interactive, dynamic and

responsive web application.

CHAPTER FOUR

Design

Chapter Four: Design

20

4.1 Introduction:

 Web design usually refers to the user experience aspects of web app

development rather than software development. A web designer works on the

appearance, layout, and, in some cases, content of a web app. We are going to define

the roles of each actor that interacts with the system. In addition, we will use UML

for modeling and in particular we choose the use case diagram to model these roles.

We end the chapter by introducing the database and some of its models.

4.2 Design Requirements:

4.2.1 Modelling language:

 A modelling language is mainly used in the field of computer science and

engineering for designing models of new software, systems, devices and equipment.

Unified modelling language (UML) is a popular modelling language that is used to

build system and object models graphically. [19]

4.2.2 Unified Modelling Language (UML):

 The Unified Modelling Language (UML) is a graphical language for

visualizing, specifying, constructing, and documenting the artefacts of a software-

intensive system. It offers a standard way to write a system’s blueprints, including

conceptual things such as business processes and system functions as well as

concrete things such as programming language statements, database schemas, and

reusable software components. [28]

The current UML standards call for different types of diagrams. These diagrams are

organized into two distinct groups: structural diagrams and behavioral or interaction

diagrams, which are as follows:

Structural UML diagrams: A type of diagram that depicts the elements of

a specification that are irrespective of time. This includes class, composite structure,

component, deployment, object, and package diagrams. [20]

Behavioral UML diagrams: A type of diagram that depicts behavioral features of a

system or business process. This includes activity, Sequence, Use case, State,

Communication, Interaction, and Timing diagrams. [20]

Chapter Four: Design

21

4.3 Modelling

4.3.1 System Actors:

 An actor is a person, organization, or an external system that plays a role in one

or more interactions with our system (actors are typically drawn as stick figures on

UML Use Case diagrams). [20]

We have Two types of actors:

4.3.1.1 Admin:

The only one who have the right to access to the database to manage users (add,

update and remove users).

4.3.1.2 User:

A user is the one who will interact with our system. Users can differ from each other

according to one of the roles that the admin defines for each one of them. we have

four types of roles: SC_President role, SC_Member role, Faculty_Member role and

PhD_Student role.

According to these roles we can have four types of users:

• SC President user:

This user can have three types of roles: the SC_President, Faculty_Member and

the SC_Member roles.

• SC Member user:

This user also can have two types of roles: the SC_Member role and the

Faculty_Member role.

• Faculty Member user:

This user has only one role which is Faculty_Member role.

• PhD Student user:

This user has only one role which is PhD_Student role.

4.3.2 Use Cases:

A use case is a list of actions or event steps typically defining the interactions

between an actor and a system to achieve a goal.

https://en.wikipedia.org/wiki/Actor_(UML)

Chapter Four: Design

22

4.3.2.1 Actors Use Cases Description

In our application, we define the use cases for the actors as shown in Table 4.1.

 Table 4.2 use cases of each actor according to their roles

Actors Role Use cases

Admin Manage users: adds, edits and removes users

SC President

SC Member

Faculty member

PhD Student

1.Authentication: accessing the application using

a valid email and password

SC President

SC_President

1.Open submissions: set a duration for the

submissions and a date for the meeting.

2.Set meeting agenda: set a program or a

schedule for the meeting.

3.Review application: see all members reviews,

comments and decisions about an application.

4.final decision: give a final decision according to

the members votes (accepted or rejected).

5.statistics: the user can see the status of all

submitted applications (accepted, rejected,

department…)

5. Add Announcement: the user can announce

some statements to all users.

SC_Member
Review application: check the application,

comments and votes on it

Faculty_Member
Submissions: submit an application

SC Member

SC_Member
Review application: check the application,

comments and votes on it

Faculty_Member Submissions: submit an application

Faculty member Faculty_Member Submissions: submit an application

PhD Student PhD_Student Submissions: submit an application

Chapter Four: Design

23

4.3.2.2 Use Cases Identification:

a. Authentication: Login before accessing the application. Moreover, authentication

insures the identity of the user.

b. Open submissions: setting a start date and an ending date for the submissions is

the job of the president Moreover he also should fix a date for the council meeting.

c. Set meeting agenda: the president has to set a schedule for the meeting.

d. Review applications: all members including the president should review the

application and votes on it and they can also give some comments if they want.

e. Final decision: the president should give the final decision about an application

(accepted or rejected) according to the members votes, but if there is an equality on

the votes the president will decide.

f. Submissions: every user have the right to submit an application (internship,

conference, research ….).

g. Statistics: allow user to see the total number and the number of accepted and

refused for each type of submitted applications per year.

4.3.2.3 Use Case Diagram:

Use case diagrams are usually referred to as behavior diagrams used to describe a

set of actions (use cases) that some system or systems (subject) should or can

perform in collaboration with one or more external users of the system (actors). Each

use case should provide some observable and valuable result to the actors or other

stakeholders of the system. [21]

Functional requirements: represented as use cases; a verb describing an action, a

use case is shown as an ellipse in a use case diagram

Actors: they interact with the system; an actor can be a human being, an organization

or a system

Relationships between actors and use cases, represented using straight arrows derive

classes and relate them to actions of the use case activities. Therefore, when we

create a sequence diagram it highlights certain aspect of the whole system.

Chapter Four: Design

24

The following table 4.2 summarizes the used arrows:

 Table 4.3 Summary of the used arrows.

Symbols Description

 Association

Association: Use cases are associated with the actors that

perform them. A line is used to link actors to use cases.

 Include

 >

Include: an include relationship shows dependency between a

base use case and an included use case

Every time the base use case is executed the included use case is

executed as well, another way to think of it is that the base use

case requires an included use case in order to be complete.

When we have an included use case we draw a dashed line with

an arrow that points towards the included use case.

 Extend

<

Extend: it has also a base use case and an extend use case when

the base use case is executed the extend use case will happen

sometimes but not every time, the extended use case will only

happen if certain criteria are met, another way to think of it is

that you have the option to extend the behavior of the base use

case, when we have an extended use case we draw a dashed line

with an arrow that points towards the base use case.

Generalization

Generalization relationship is also a parent-child relationship

between use cases. The child use case has the underlying

business process meaning but is an enhancement of the parent

use case. The child use case is connected at the base of the

arrow. The tip of the arrow is connected to the parent use case.

Chapter Four: Design

25

• The PhD Student Use Case Diagram:

The PhD Student user has one role which is the PhD_Student.

Figure 4. 1 PhD Student Use Case Diagram

Chapter Four: Design

26

• The faculty Member Use Case Diagram:

the faculty member user has one role which is Faculty_Member.

Figure 4. 2 Faculty Member Use Case Diagram

Chapter Four: Design

27

• The SC Member Use case diagram:

Since the SC Member has the role of Faculty_Member which makes him in a

generalization relationship with the Faculty member user. Moreover, he has the role

of SC_Member.

Figure 4. 3 SC Member Use Case Diagram

Chapter Four: Design

28

• The SC President Use case diagram:

Since the president has the role of Faculty_Member and SC_Member he has a

generalization relationship with the Faculty Member and the SC_Member users.

Moreover, the president has the role of the SC_President which adds more use cases

to him.

Figure 4. 4 SC President Use Case Diagram

Chapter Four: Design

29

4.3.2.4 Textual description of use cases:

 Use case 01: Authentication

Table 4. 4 Textual description for use case "Authentication"

Use case 02: Open submissions

Table 4.5 Textual description for use case " Open submissions "

Use case name Authentication

Actor Faculty Member, SC President, SC Member, PhD Student

Objective Authenticate to have access to the application

Precondition Browser and access to internet

Scenario

1. The user lunches the application via a browser.

2. The system asks for username and password.

3. The user enters his name and password.

4. The system checks the conformity of the information

entered by sending an authentication query to the server.

5. The server verifies the query and send favorable answer.

6. The user accesses the application

Alternative
If the username or password is wrong or missed the system

displays an error message or incomplete field (return to 2)

Use case name Open submissions

Actor SC President

Objective Set submission duration and meeting date

Precondition Authentication

Scenario

1. The user accesses to Open submissions interface.

2. The user enters the starting date and the ending date for

the submissions and a meeting date in the date bar and saves.

3. The system sends a query to the server for processing.

4. The system announces these dates to all users.

Alternative

Submission start date must not be a past date;

Submission start date must be two months after start date;

Meeting date must be one week after end date.

 (return to 2)

Chapter Four: Design

30

Use case 03: Set meeting agenda

 Table 4. 6 Textual description for use case " Set meeting agenda "

Use case name Set meeting agenda

Actor SC President

Objective Set a program for the council meeting

Precondition Authentication

Scenario

1. The user accesses to SC president interface.

2. The user enters a program for each day of the council

meeting in the table of days and saves.

3. The system sends a query to the server for processing.

4. The system sends this data to the SC member interface.

Alternative
The system displays an error message or missed field

(return to 2)

Use case 04: Review applications

 Table 4. 7 Textual description for use case " Review applications "

Use case name Review applications

Actor SC President / SC members

Objective Review and vote for a submitted application

Precondition Authentication

Scenario

1. The user access to Review applications interface.

2. The user checks and reads the submitted application,

votes on it, comments (optionally) and clicks save.

3. The system updates Review applications interface for

the different users.

Alternative
Connection failed or technical problem (Refresh the page /

verify internet connection)

Chapter Four: Design

31

Use case 05: Final Decision

Table 4. 8 Textual description for use case " Final decision "

Use case name Final Decision

Actor SC President

Objective A final decision for an application (accepted or rejected)

Precondition Review applications

Scenario

1. The user checks the statistic table and see all the

members reviews and their votes.

2. The user accept or reject the application according to

the members votes.

3. The user send a response to the applicant.

Alternative
Connection failed or technical problem (Refresh the page

/ verify internet connection)

 Use case 06: Submissions

Table 4. 9 Textual description for use case " Submissions"

Use case name Submissions

Actor Faculty member / PhD Student

Objective Submit an application.

Precondition Authentication

Scenario

1. The user enters the submissions interface

2. The user selects an application.

3. The user fills the requested information and saves.

4. The system sends a query to the server for

processing.

Alternative
The system displays an error message or missed field

(return to 3)

Chapter Four: Design

32

Use case 07: Statistics

Table 4. 10 Textual description for use case " Statistics "

Use case name Statistics

Actor SC President

Objective See status of submitted applications per year.

Precondition Authentication

Scenario

1. The user enters the Statistics interface

2. The user select an application

3. The system sends a query to the server for processing

4. The server send a pie chart and the system display it.

Alternative
Connection failed or technical problem (Refresh the

page / verify internet connection)

4.3.3 Relationships between documents:

Relationships in MongoDB represent how various documents are logically related to

each other. Relationships can be modeled via Embedded and Referenced approaches.

Such relationships can be either 1:1, 1: N, N:1 or N: M.

4.3.3.1 Embedded Relationships

Embedded documents capture relationships between data by storing related data in a

single document structure. MongoDB documents make it possible to embed

document structures in a field or array within a document. These allow applications

to retrieve and manipulate related data in a single database operation.

 Figure 4. 3 Embedded data relationship

Chapter Four: Design

33

4.3.3.2 Referenced Relationships

References store the relationships between data by including links or references from

one document to another. Applications can resolve these references to access the

related data.

 Figure 4. 4 References relationship

The following table (Table 4.10) summarizes the used arrows:

 Table 4. 11 used arrows

Symbol Description

 One to many: one document in a collection

can be associated with one or more

documents in another collection

One to one: one document in a collection is

associated with one and only one document

in another collection

Chapter Four: Design

34

Relationships diagram of our system is given in figure 4.5.

 Figure 4. 5 Relationships between documents.

Chapter Four: Design

35

4.3.8 Sequence Diagrams:

Sequence diagram is the most common kind of interaction diagram, which focuses

on the message interchange between a number of lifelines. Sequence diagram

describes an interaction by focusing on the sequence of messages that are exchanged,

along with their corresponding occurrence specifications on the lifelines. [22].

Sequence diagrams are made up of the following icons and elements:

Table 4. 12 Basic symbols used in sequence diagram

Symbol Name Description

Actor Symbol

Shows entities that interact with or are external

to the system.

Activation box

Represents the time needed for an object to

complete a task. The longer the task will take,

the longer the activation box becomes.

Lifeline Symbol

Represents the passage of time as it extends

downward. This dashed vertical line shows the

sequential events that occur to an object during

the charted process. Lifelines

may begin with a labelled rectangle shape or an

actor symbol.

Option loop

symbol

Defines that the calls within the fragment may

execute multiple times.

Alternative

symbol

Divides fragment into groups and defines

condition for each group, only the one whose

condition is true will execute.

 Ref symbol

Refers to an interaction defined on another

diagram. The frame is drawn to cover the

lifelines involved in the interaction.

Chapter Four: Design

36

Moreover, the following arrows and message symbols to show how information is

transmitted between objects.

Table 4. 13 Message symbols used in sequence diagram

Symbol Name Description

Synchronous message

Symbol

This symbol is used when a sender

must wait for a response to a

message before it continues.

Reply message Symbol These messages are replies to calls.

Self-message Symbol

Self-message is a call message

which is sent from a lifeline to

itself.

Sequence diagram 01: Authentication

When the user wants to access to the application, he must log-in by entering his ID

and password. The system sends a query to the server for checking. If this

information exists in the database he can access otherwise an error message and will

be displayed.

Figure 4. 6 Sequence diagram “Authentication”

Chapter Four: Design

37

Sequence diagram 02: Open submissions

After authentication, the SC President user can open the submissions, this is done by

accessing the Open submissions page, enter the starting date, the ending date and the

meeting date. The browser sends a query to the server for processing and saving.

Returning back to homepage or error message will be displayed.

Figure 4. 7 Sequence diagram “Open submissions”

Chapter Four: Design

38

Sequence diagram 03: Submit application

After authentication and opening the submissions, users can submit applications by

accessing the application form page and filling the form by entering the requested

data. The browser sends query to the server for processing and saving.

The submitted application information or error message will be displayed.

Figure 4. 8 Sequence diagram “Submit application”

Chapter Four: Design

39

Sequence diagram 04: Set meeting agenda

After closing the submission, the user can set an agenda for the meeting, this is done

by accessing the set meeting agenda page, entering an agenda. The browser sends a

query to the server for processing and saving.

Returning back to homepage or error message will be displayed.

 Figure 4. 9 Sequence diagram “Set meeting agenda”

Chapter Four: Design

40

Sequence diagram 05: review application

After closing the submission, the user can review an application, by accessing the

application list page, select an application, then select a decision. The browser sends

a query to the server for processing and saving.

An updated page (same page contains the decision of the user) will be displayed.

Figure 4. 10 Sequence diagram “Review application”

For the final decision Sequence diagram, it is the same for the Review application

sequence diagram, but instead of giving a decision, the user gives a final decision.

Chapter Four: Design

41

4.4 Introduction to Database:

4.4.1 Definition:

 Database is a collection of information that exists over a long period of time.

The term database refers to a collection of data that is managed by database

management system (DBMS). A DBMS is a collection of programs that enables

users to create and maintain a database. The DBMS is a general-purpose software

system that facilitates the processes of defining, constructing, manipulating, and

sharing databases among various users and applications. [27]

4.4.2 Relational Model:

 A relational database is a collection of data items with pre-defined relationships

between them. These items are organized as a set of tables with columns and rows.

Tables are used to hold information about the objects to be represented in the

database. Each column in a table holds a certain kind of data and a field stores the

actual value of an attribute. The rows in the table represent a collection of related

values of one object or entity. Each row in a table could be marked with a unique

identifier called a primary key, and rows among multiple tables can be made related

using foreign keys. [23]

4.4.3 Non-Relational Model:

 A non-relational database is a database that does not use the tabular schema of

rows and columns found in most traditional database systems. Instead, non-relational

databases use a ‘Document data stores’ model that is optimized for the specific

requirements of the type of data being stored.

 A document data store manages a set of named string fields and object data values

in an entity referred to as a document. These data stores typically store data in the

form of JSON documents. Each field value could be a scalar item, such as a number,

or a compound element, such as a list or a parent-child collection. The data in the

fields of a document can be encoded in a variety of ways, including XML, JSON,

BSON, or even stored as plain text.

 The fields within documents are exposed to the DBMS, enabling an application to

query and filter data by using the values in these fields. [24]

Chapter Four: Design

42

4.4.4 What is MySQL?

 It is a popular open-source relational database management system (RDBMS) that

is developed, distributed and supported by Oracle Corporation. Like other relational

systems, MySQL stores data in tables and uses structured query language (SQL) for

database access. In MySQL, you pre-define your database schema based on your

requirements and set up rules to govern the relationships between fields in your

tables. Any changes in schema necessitates a migration procedure that can take the

database offline or significantly reduce application performance. [25]

4.4.5 What is MongoDB?

 MongoDB is a non-relational database developed by MongoDB, Inc. MongoDB

stores data as documents in a binary representation called BSON (Binary JSON).

Related information is stored together for fast query access through the MongoDB

query language. Fields can vary from document to document; there is no need to

declare the structure of documents to the system – documents are self-describing. If a

new field needs to be added to a document, then the field can be created without

affecting all other documents in the collection, without updating a central system

catalog, and without taking the system offline. Optionally, schema validation can be

used to enforce data governance controls over each collection. [Erreur ! Signet non

défini.]

A NoSQL database like MongoDB is schema-less. Instead of storing rows in a table

you create “documents” that are stored in collections. Each document can be thought

of as a kind of very efficient JSON file and a collection is, well, a collection of those

documents

4.4.6 Benefits of using documents in database:

• Documents are natural. Documents represent data in the same way that

applications do. Unlike the tabular rows and columns of a relational database, data

can be structured with arrays and subdocuments – in the same way applications

represent data, as lists and members / instance variables respectively. This makes it

much simpler and faster for developers to model how data in the application will

map to data stored in the database.

• Documents are flexible. Each document can store data with different attributes

from other documents. With JSON documents, we can add new attributes when we

need to, without having to alter a centralized database schema.

Chapter Four: Design

43

• Documents make applications fast. With data for an entity stored in a single

document, rather than spread across multiple relational tables, the database only

needs to read and write to a single place. Having all the data for an object in one place

also makes it easier for developers to understand and optimize query performance.

4.4.7 Description of our system’s database:

Our database system contains four collections announcement, applications, users,

and yearly reports.

Figure 4. 11 database interface

4.4.7.1 Announcement collection:

Documents in that collection contain five attributes:

• _id: it is an identification number that the database inserts by default.

• Title: title of the Announcement.

• Content: content of the Announcement.

• createdAt: date of creation that announcement.

• updatedAt: date of update that announcement.

Figure 4. 12 Announcement collection

Chapter Four: Design

44

4.4.7.2 applications collection:

Documents in this collection have different attributes according to the type of

application, however they have some attributes in common which are:

• _id: it is an identification number that the database inserts by default.

• finalDecission: a Boolean attribute (true if the application is accepted, false if not)

• treated: a Boolean attribute (true if the application is treated, false if not)

• submittedAt: date of application’s submission.

• type: define the type of an application.

• session: an id reference to the yearlyreports collection.

• applicant: an id reference to the user who submitted the application.

• reviews: an array contains:

 •_id: it is an identification number that the database inserts by default.

 • reviewer: id reference to the user who reviewed the application.

 • decision: the decision made by that reviewer.

 • comment: the comment that added by that reviewer.

Figure 4. 13 applications collection

Chapter Four: Design

45

4.4.7.3 Users collection:

In this collection, documents have a personal information about the user (first name,

last name, gender, department, major, option, email and password).

they also have:

• _id: it is an identification number that the database inserts by default.

• roles: an array defines the roles of a user.

Figure 4. 14 Users collection

4.4.7.3 yearly reports collection:

Documents in this collection have five main attributes:

• _id: it is an identification number that the database inserts by default.

• year: decide which year we look for.

• sessions: array contains:

 • meetingAgenda: the agenda that the president set.

 • _id: it is an identification number that the database inserts by default.

 • submissionStartDate: the submission Start Date that the president fixed.

Chapter Four: Design

46

 • submissionEndDate: the submission End Date that the president fixed.

• meetingDate: the meeting Date that the president fixed.

• statistics: array contains:

 • Type of an application: it is another array contains:

 • applications: number of submitted application on this type.

 • accepted: number of application accepted in this type.

 • electronicsDepartement: number of submitted application that

 have an applicant belongs to electronics department.

 • controlMajor: number of submitted application that

 have an applicant belongs to control major.

 • electronicsMajor: number of submitted application that

 have an applicant belongs to electronic major.

 • female: number of submitted application that

 have a female applicant.

Chapter Four: Design

47

Figure 4. 15 yearly reports collection

4.5 Conclusion:

 In this chapter, we have used features of UML to model all functionaries

involved in our system through use case diagram. Moreover, we modelled our

application by providing answers to our modelling and design, based on the analysis

of needs of our application. Finally, we introduced the relational model and the non-

relational model, and we gave some benefits using non-relational model.

CHAPTER FIVE

Implementation

Chapter Five: Implementation

48

5.1 Introduction:

 After designing the application and specifying the roles of each user, this last

chapter is concerned with the implementation. We give a presentation of the

application and its functionalities accompanied with some user interfaces.

5.2 Interfacing with the application:

 After implementing the application with the tools specified in the previous

chapters, in this paragraph, we present the different interfaces, the user will be

dealing with.

Note: It is to be noted that all the filled data that are saved in the database was

generated by a faker library that give as a random string.

5.2.1 Authentication interface:

 As all secured applications, this following interface is the first one that will be

displayed when the user wants to access the application.

 Firstly, to sign up in the application you need to send an email to the admin

accompanied with the required data which is first name, last name, gender, and roles.

The admin then verifies this information before creating the requested account and

sending the email and password to the user. When the user enters email and

password, the system sends a query to the server for checking. If this information

exists in the database he can access otherwise an error message will be displayed.

Figure 5.1 shows the authentication interface.

Figure 5. 1 Authentication Interface

Chapter Five: Implementation

49

5.2.2 Homepage interfaces for each user:

All users have two parts in their homepage interface, a main area and a sidebar. The

main area is shared between all users. When submissions are open, users can see the

ending date of the submissions duration, the meeting date and agenda, otherwise a

statement of ‘Submissions closed’ is appearing instead.

Under this part users can see some announcement that have been added via the SC

President.

The sidebar differs from a user to another:

▪ For the SC president, it consists of Home page, My applications, Add

announcement, Open submissions, Set meeting agenda, Review application,

Submit an application, and Statistics.

▪ For the SC members it consists of Home page, My applications, Review

application, and Submit an application.

▪ For the Faculty member and PhD student it consists of Home page, My

applications, and Submit an application.

Figure 5. 2 Homepage interface when submissions are closed

Chapter Five: Implementation

50

Figure 5. 3 Homepage interface when submissions are open

5.2.3 Open submissions interface:

When the SC president enters the Open submissions interface, he can set the

submissions duration and the meeting date. The system announces this information

on the interfaces of all users. The starting date cannot be a past date, the ending date

should be at least two months after the starting date and the meeting date should be

one week after the ending date.

 Figure 5. 4 Open submissions interface

Chapter Five: Implementation

51

5.2.4 Submit an application interface:

After opening the submissions, users can use the submission interface to submit an

application. After choosing an application user should fill the form below and

submit. The user can edit the information of the submitted application before the

duration ends.

Figure 5. 5 Submit an application interface

5.2.5 Set meeting agenda interface:

After the submissions duration ends, the president should set an agenda for the

meeting then the system will announce it to all users. This interface is deactivated

when the submissions are open.

Figure 5. 6 Set meeting agenda interface

Chapter Five: Implementation

52

5.2.6 Review applications interface:

In this interface user can find a list of users who have submitted an application. It

contains also the number of reviewers who accept the application and the ones who

refuse it. It addition, it is mentioned if that reviewer has already reviewed the

application or not (see figure 5.7).

Figure 5. 7 Review applications interface

Once the reviewer selects one of the listed users, he can view the applicant

information as shown in figure 5.8.

Figure 5. 8 the applicant information Interface

Chapter Five: Implementation

53

The detailed information related to the submitted application can be seen too by the

reviewer (figure 5.9).

Figure 5. 9 internship application Interface

In addition, the reviewer can see the others’ reviews decisions for the current

application. It is to be noted here that for SC members (reviewers), they can only see

the number of votes, without seeing the viewers’ names as mentioned in figure 5.10.

Figure 5. 10 The review status Interface for SC member user

Finally, the reviewer can submit his comments about the submitted application

followed by his decision about it as shown in figure 5.11.

Figure 5. 11 application assessment Interface

Chapter Five: Implementation

54

As far as the SC President is concerned, his review application interface contains

more features: he can see the number of votes, the reviewers’ names, their

comments and their decisions. Furthermore, he can also check the previous submitted

applications of that applicant.

 Figure 5. 12 the review status Interface for SC President user

The SC President has to set the final decision about the submitted application. The

final decision is set once the meeting is held and the application is discussed with all

SC members based on the different submitted reviews. Therefore, this interface

won’t appear until the date of the meeting. Figure 5.13 shows the interface provided

for the SC President to set the final decision for the submitted application.

Chapter Five: Implementation

55

Figure 5. 13 the final decision Interface

5.2.7 My applications interface:

In this interface users can see and review all their submitted applications.

Figure 5. 14 My applications interface

Chapter Five: Implementation

56

5.2.8 Statistics interface:

The president has a statistics part which is a list of all submitted applications with the

number of accepted and refused ones and the total number for each type of

application per year. Figure 5.15 is an example of some statistics retrieved from our

filled database.

 Figure 5. 15 Statistics interface

In this statistics interface, when the president selects one of the listed items (types of

submission) he can view a pie chart containing some statistic information related to

this item. A classification is provided by different criteria including gender,

acceptance, department, and major. Figure 5.16 shows an example of that interface.

Figure 5. 16 pie chart for a type of application interface

Chapter Five: Implementation

57

5.3 Conclusion:

In this chapter, we have given a brief explanation about the interfaces of the different

users interacting with our system and how can they deal with them to fulfill their

desired tasks. As we have seen, the user interfaces are simple to use and provide a

rapid access to all necessary information requested in the different scenarios that my

occur.

58

General Conclusion

In this report, we have presented the different steps to design and develop a web

application intended for managing a hypothetical scientific council of the institute. In

order to realize this project, we have gathered and analyzed problems encountered by

the staff. For that purpose, several discussions have been realized with a member of

the scientific council.

The major objective of our project is to facilitate the work of the users of the

scientific council (SCI president, SCI member, Faculty member, and PhD students)

including the electronic storage of data and the rapid access to it, and to achieve a

better decision making about every submitted. In addition, data now is saved in a

secured and centralized database. We have implemented a web application, so it can

be accessed from anywhere at any time using internet.

This project, which falls in the field of the design and implementation of an

information system, was very interesting and allowed us to become familiar with

new concepts, and to improve our knowledge and skills in the field of programming.

Future Works

The first version of the SCI management system is achieved. This version may be

enhanced more by including other functionalities. Among those functionalities, is to

let the administrative staff (Director, Post-Graduate department head, and

Department heads) interact with our system to submit their pedagogical issues and

related ones. In addition, the application should allow the automatic generation of the

transcript of the meeting.

59

Webography

[1] https://techterms.com/definition/web_application. Consulted (2 May 2019)

 [2] https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-

application-2591588efe58. Consulted (2 May 2019)

[3]

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.

html. Consulted (5 May 2019)

[4] https://www.techopedia.com/definition/1352/uniform-resource-locator-url.

Consulted (5 May 2019)

[5] Executive Decree No. 03-279 of 23 August 2003 setting out the specific missions

and rules pertaining to the organization and operation of the university.

[6] https://www.techopedia.com/definition/27927/nodejs. Consulted (17 May 2019)

[7] https://www.guru99.com/node-js-express.html. Consulted (17 May 2019)

[8] https://www.c-sharpcorner.com/article/what-and-why-reactjs/. Consulted (17 May

2019)

[9] https://graphql.org/learn/. Consulted (19 May 2019)

[10] https://www.apollographql.com/docs/apollo-server/essentials/schema/. Consulted

(24 June 2019)

[11] https://www.apollographql.com/docs/apollo-server/essentials/data/. Consulted (24

June 2019)

[12] https://www.apollographql.com/docs/apollo-server/essentials/server/. Consulted

(24 June 2019)

[13] https://www.apollographql.com/docs/intro/platform/. Consulted (24 June 2019)

[14] https://searchdatamanagement.techtarget.com/definition/MongoDB. Consulted (02

June 2019)

[15] https://techterms.com/definition/web_browser. Consulted (01 June 2019)

[16] https://www.techopedia.com/definition/1892/hypertext-markup-language-html.

Consulted (15 May 2019).

[17] https://www.techopedia.com/definition/26268/cascading-style-sheet-css. Consulted

(15 May 2019).

[18] https://www.techopedia.com/definition/3929/javascript-js. Consulted (15 May

2019).

https://techterms.com/definition/web_application
https://www.techopedia.com/definition/1352/uniform-resource-locator-url
https://www.techopedia.com/definition/27927/nodejs
https://www.guru99.com/node-js-express.html
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://graphql.org/learn/
https://www.apollographql.com/docs/apollo-server/essentials/schema/
https://www.apollographql.com/docs/apollo-server/essentials/data/
https://searchdatamanagement.techtarget.com/definition/MongoDB
https://techterms.com/definition/web_browser
https://www.techopedia.com/definition/1892/hypertext-markup-language-html
https://www.techopedia.com/definition/26268/cascading-style-sheet-css
https://www.techopedia.com/definition/3929/javascript-js

60

[19] https://www.techopedia.com/definition/20810/modeling-language. Consulted (13

June 2019).

[20] http://www.agilemodeling.com/essays/umlDiagrams.htm. Consulted (13 June

2019).

[21] https://www.uml-diagrams.org/use-case-diagrams.html. Consulted (13 June 2019).

[22] https://www.uml-diagrams.org/sequence-diagrams.html. Consulted (29 June 2019)

[23] https://aws.amazon.com/relational-database/. Consulted (20 June 2019).

[24] https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-

relational-data. Consulted (20 June 2019).

[25] https://www.mongodb.com/compare/mongodb-mysql

Bibliography

[26] Robin Nixon Learning PHP, MySQL & JavaScript 4th Edition

[27] Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 6th Ed.

(2010)

[28] G. Booch, J. Rumbaugh, I. jacobson, The Unified Modelling Language Reference

Manual, 2nd ed. 2005

https://www.uml-diagrams.org/use-case-diagrams.html
https://aws.amazon.com/relational-database/
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://www.mongodb.com/compare/mongodb-mysql

