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Abstract 
 
 
 

It is well known, in the control theory, that the state feedback represents one of the 

most popular techniques in designing the dynamics of any system. In multivariable 

“MIMO” systems, the state feedback gain matrix allowing the assignment of the 

desired set of closed loop poles (eigenvalues) is not unique. 

 

The aim from this project is to investigate the effect of the controller form similarity 

transformation on the robustness of the state feedback control design applied to an 

airplane case study.  

   

In this thesis, the F-16 Fighter in the lateral model is taken as a study case. The 

simulation of a large number of possible state feedback gains is done using MATLAB 

software; and the magnitude of the gain matrices, performance and robustness measures 

are computed. 

These results are then compared to select the best feedback gain having the smallest 

magnitude and best robustness performances. 
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Introduction 
 

 
 

The aim of a control system is to force a given set of process variables to behave in 

some desired and prescribed way by either fulfilling some requirements of the time or 

frequency domain or achieving the best robustness. 

Many systems, particularly in technologically advanced areas such as Aircraft, are 

represented by models with several inputs and several outputs signals that are highly 

cross coupled which makes the use of single-input single-output systems (SISO) control 

technique inefficient. 

One of the well-known and widely used techniques in Multi-Input Multi-Outputs 

(MIMO) control design is the state feedback method, in which the state vector value is 

fed back to the input through a constant matrix K called the state feedback gain. This 

constant gain matrix permits the assignment of closed-loop poles in the desired 

locations under the assumption of complete reachability. In MIMO control systems, this 

state feedback gain is not unique, which permits to meet specifications beyond 

relocating closed-loop system eigenvalues. 

 

The aim of this present report is to use general controller canonical form and to take 

advantage of the non-unicity to choose the suitable feedback gain matrix that will meet 

specifications beyond assigning the closed loop poles, in the airplane case. 
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1-  Introduction 

Systems with more than one input and/or more than one output are known as Multi-

Input Multi-Output systems and frequently abbreviated as MIMO systems. 

Figure 1.1 illustrates the representation of a MIMO system.  

 
 

 

 

 

 

 

Figure 1.1:  MIMO system representation. 

 

2- Mathematical Models  

A linear time invariant MIMO system can be described by two different mathematical 

models:  

• The state space model. 

• The transfer function model. 

In this thesis, the system under study will be described using a state-space description. 

 

3- State-Space Description [1] 

The state space model represents the internal dynamics of a multivariable system and 

consists of a set of input, output and state variables related by first order differential 

equations or difference equations. 

A state space model is of the form: 

            �𝒙̇𝒙(𝒕𝒕) = 𝑨𝑨𝑨𝑨(𝒕𝒕) + 𝑩𝑩𝑩𝑩(𝒕𝒕)             (1.1 . a)       
𝒚𝒚(𝒕𝒕) = 𝑪𝑪𝑪𝑪(𝒕𝒕) + 𝑫𝑫𝑫𝑫(𝒕𝒕)         (1.1. b)                                                                 (1.1) 
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Where:  

 𝑨𝑨 ∈ ℝ𝐧𝐧∗𝐧𝐧  is the state matrix. 

 𝑩𝑩 ∈ ℝ𝐧𝐧∗𝐦𝐦  is the input matrix. 

 𝑪𝑪 ∈ ℝ𝐩𝐩∗𝐧𝐧   is the output matrix. 

 𝑫𝑫 ∈ ℝ𝐩𝐩∗𝐦𝐦  is the feed forward (direct) matrix. 

The control input 𝒖𝒖(𝒕𝒕)  is a vector of dimension m. 

The state variable  𝒙𝒙(𝒕𝒕) is a vector of dimension n. 

The output 𝒚𝒚(𝒕𝒕)  is a vector of dimension  p.  

 

In the above model, equation (1.1.a) is called the dynamic equation which describes the 

dynamic part of the system; and equation (1.1.b) describes how the system state 

variables 𝒙𝒙(𝑡𝑡) and system inputs 𝒖𝒖(𝑡𝑡) will instantly determine the system outputs 𝒚𝒚(𝑡𝑡). 

 

Figure 1.2 illustrates the inputs and the outputs of a MIMO system. 

 

Figure 1.2: System inputs and outputs. 

 

Remark: 

The feed forward matrix 𝑫𝑫  allows the system input to affect the system output directly. 

If 𝑫𝑫 is the null matrix, the term 𝑫𝑫𝑫𝑫(𝒕𝒕)  has no effect on the dynamics of the system. 

Any similarity transformation on the system given in (1.1) will not affect the feed 

forward matrix 𝑫𝑫. 
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4- Reachability [2] 

4.1- Definition 1.1 

 Consider the system (1.1). 

a) (𝐴𝐴, 𝐵𝐵) is reachable if for every final state xf ∈ Rn there exists a finite input 𝒖𝒖(𝒕𝒕) 

transferring the state of the system from any initial state to xf  in a finite time. 

b)  (𝐴𝐴, 𝐵𝐵) ≥ 0 is positively reachable if for every final state xf ∈ Rn+ there exists a 

finite nonnegative input transferring the state of the system from any initial state 

to xf in a finite time. 

4.2- Theorem 1.1  

The system described in (1.1) is said to be fully reachable if and only if the 

reachability matrix 𝓡𝓡(𝐴𝐴, 𝐵𝐵)  = [𝐵𝐵 𝐴𝐴 𝐵𝐵 𝐴𝐴 ² 𝐵𝐵 . . . 𝐴𝐴 n-1 𝐵𝐵]    (1.2)  has a full rank. 

 Proof: [1] 

 

Remarks: 

 The system is completely (totally, fully) reachable  i.e.  rank (𝓡𝓡(𝐴𝐴, 𝐵𝐵) ) = 𝑛𝑛,  

means that all the eigenvalues of the system  can be relocated by state feedback 

using the input. 

 If  rank (𝓡𝓡(𝐴𝐴, 𝐵𝐵) ) < 𝑛𝑛  the system is  said to be partially reachable and so only 

some eigenvalues can be relocated. 

 

Let 𝐵𝐵 = [𝑏𝑏1 𝑏𝑏2 … … 𝑏𝑏𝑚𝑚 ], where 𝑏𝑏𝑖𝑖 is a column vector of dimension 𝑛𝑛 × 1. 

Then the reachability matrix can also be written as: 

𝓡𝓡(𝐴𝐴, 𝐵𝐵) = [𝑏𝑏1 𝑏𝑏2 … 𝑏𝑏𝑚𝑚 ; 𝐴𝐴 𝑏𝑏1 𝐴𝐴 𝑏𝑏2 … 𝐴𝐴 𝑏𝑏𝑚𝑚 ; … … 𝐴𝐴P

 𝑛𝑛−1𝑏𝑏1 𝐴𝐴P

 𝑛𝑛−1𝑏𝑏2 … 𝐴𝐴P

 𝑛𝑛−1𝑏𝑏𝑚𝑚 ]                    

(1.3) 

If rank (𝐵𝐵) = m < m ,  then rank [𝓡𝓡(𝐴𝐴, 𝐵𝐵)]   = rank [𝐵𝐵 𝐴𝐴 𝐵𝐵 𝐴𝐴 ² 𝐵𝐵 . . . 𝐴𝐴 n- m 𝐵𝐵]     
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5- General Controller Canonical Form 

Consider the linear time-invariant MIMO system represented by equation (1.1). The 

system can be transformed into general controller canonical form if it is completely 

reachable .i.e. condition (1.2) is satisfied.  

In order to construct a similarity transformation (change of basis), 𝑛𝑛 linearly 

independent vectors in 𝓡𝓡(𝐴𝐴, 𝐵𝐵) should be found.  

Let 𝒦𝒦𝑖𝑖 be the number of linearly independent vectors of 𝓡𝓡(𝐴𝐴, 𝐵𝐵) associated with 𝑏𝑏𝑖𝑖 ; 𝒦𝒦𝑖𝑖 

is called a reachability index or a Kronecher index. 

To find the indices we have got to fill the young diagram which is represented by table 

1.1: 

Tables 1.1: Young diagram for reachability indices 

 

 

 

 

 

To fill the young diagram we must test the linear independence going from left to right 

and from up to down, once we find a vector linearly independent with the previous set 

of checked vectors, we cross the corresponding cell until all the vectors are checked, 

finding ∑ 𝒦𝒦i𝑚𝑚
𝑖𝑖=1 =𝑛𝑛 leads to 𝑛𝑛 linearly independent vectors from the columns of 𝓡𝓡(𝐴𝐴, 

𝐵𝐵). 

Now suppose we have determined the reachability indices 𝒦𝒦𝑖𝑖, 𝑖𝑖=1,2,…,𝑚𝑚 . We can 

then construct the reachability base matrix 𝓡𝓡B (𝐴𝐴, 𝐵𝐵). 

𝓡𝓡B (𝐴𝐴, 𝐵𝐵)=[b1, 𝐴𝐴 b1, 𝐴𝐴²b1,.. 𝐴𝐴P

𝒦𝒦1-1b1, b2, 𝐴𝐴 b2, 𝐴𝐴²b2,.. 𝐴𝐴P

𝒦𝒦2-1b2,.., bm, 𝐴𝐴 bm, 𝐴𝐴 ²bm,.. 𝐴𝐴P

𝒦𝒦m-

1bm]    

                                                                                                                                                                (1.4) 
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Using this reachability base matrix we can construct a similarity transformation 𝑇𝑇𝐶𝐶  

such that 𝑥𝑥𝐶𝐶  = 𝑇𝑇𝐶𝐶 𝑥𝑥 . 

Where:  

𝑇𝑇𝐶𝐶 = [𝑝𝑝1    𝑝𝑝1 𝐴𝐴  …  𝑝𝑝1 𝐴𝐴P

 𝒦𝒦1−1    𝑝𝑝2   𝑝𝑝2 𝐴𝐴  …  𝑝𝑝2 𝐴𝐴P

 𝒦𝒦2−1  …  𝑝𝑝𝑚𝑚    …    𝑝𝑝𝑚𝑚 𝐴𝐴P

 𝒦𝒦𝒦𝒦−1] 𝑇𝑇       

(1.5) 

and    𝑝𝑝𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑡𝑡ℎ  row of  𝓡𝓡B−𝟏𝟏 (𝐴𝐴, 𝐵𝐵),   𝑖𝑖=1,2,…,𝑚𝑚 

𝜎𝜎𝑖𝑖 = ∑ 𝒦𝒦j𝑖𝑖
𝑗𝑗=1 R                                                                                                                                       

(1.6)            

Considering again the MIMO system (1.1) and its reachability matrix 𝓡𝓡(𝐴𝐴, 𝐵𝐵)  given 

by (1.4),  we define the input selection sequence with respect to the columns of matrix  

𝐵𝐵 = [𝑏𝑏1 𝑏𝑏2 …𝑏𝑏𝑚𝑚 ], as: 

 

The general controller canonical form of the matrices A and B is as follows: 

 

                              

(1.8) 

 

 

 

𝑨𝑨𝒄𝒄  is a matrix of companion blocks each of size 𝒦𝒦𝑖𝑖 on the diagonal and non-trivial 

elements at the 𝜎𝜎𝑖𝑖𝑡𝑡ℎ rows and zeros everywhere else. 

 

 

 

𝑆𝑆 = [𝑠𝑠1𝑠𝑠2 … 𝑠𝑠𝑚𝑚]      (1.7) 
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                     (1.8)                                    (1.9)                                               
 
 

Where the 𝜎𝜎𝑖𝑖𝑡𝑡ℎ rows are non-trivial with 1’s as leading coefficients at the 𝑗𝑗 th  column 

where:  

𝑗𝑗 = {1, 2, 3………., m} . 

𝑪𝑪𝐜𝐜R has no particular form and 𝑫𝑫𝐜𝐜R = 𝑫𝑫. 

 

Remark: 

The companion form takes the following structure: 

                                           0 1 0……………… 0  

                                                 0 0 1……………… 0                                                     (1.10)   

                                                  ⋮ ⋮ ⋮                               ⋮                                                                      

                                                 0 0 0 … ………….. 1 

                                                −𝑎𝑎0 −𝑎𝑎1 −𝑎𝑎2 … −𝑎𝑎n−1 

The characteristic polynomial of this matrix is given by the coefficients of its last row: 

            Δ(𝜆𝜆) = 𝜆𝜆n + 𝑎𝑎n−1 𝜆𝜆n-1 + ⋯ + 𝑎𝑎1 𝜆𝜆 + 𝑎𝑎0                                                                (1.11) 
 

Due to the form of 𝑩𝑩𝒄𝒄, all rows of 𝑨𝑨𝒄𝒄, except the nontrivial row denoted by the element 

𝑥𝑥, are not affected by the state feedback. Hence, the elements of those rows of the 

matrix (𝑨𝑨𝒄𝒄 − 𝑩𝑩𝒄𝒄𝑲𝑲𝒄𝒄) can be arbitrarily assigned. 

 

Since the nontrivial terms of 𝑩𝑩𝒄𝒄 lead to a linear combination of 𝑘𝑘𝑖𝑖𝑖𝑖 ′𝑠𝑠 in (𝑨𝑨𝒄𝒄 − 𝑩𝑩𝒄𝒄𝑲𝑲𝒄𝒄), 

we multiply the matrix 𝑩𝑩𝒄𝒄 by an elementary matrix 𝑫𝑫𝒓𝒓𝒓𝒓, such that all the nontrivial 

terms in the {𝑘𝑘1𝑡𝑡ℎ, (𝑘𝑘1 + 𝑘𝑘2)𝑡𝑡ℎ, , (𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3)𝑡𝑡ℎ + ⋯ } rows of the matrix 𝑩𝑩𝒄𝒄 will be 

zeroed. We get the following matrix: 
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(1.12) 

We define also: 

                                                      

𝑲𝑲𝒄𝒄 = 𝑫𝑫 𝒓𝒓𝒓𝒓−𝟏𝟏 𝑲𝑲𝒄𝒄                                                                                                (1.13) 

As to have:  

                                                    𝑩𝑩𝒄𝒄𝑲𝑲𝒄𝒄 = 𝑩𝑩𝒄𝒄𝑫𝑫𝒓𝒓𝒓𝒓 𝑲𝑲𝒄𝒄 = 𝑬𝑬𝒃𝒃𝒃𝒃𝑲𝑲𝒄𝒄                                               (1.14) 

This implies: 

                                                 𝑨𝑨𝒄𝒄 − 𝑩𝑩𝒄𝒄𝑲𝑲𝒄𝒄 = 𝑨𝑨𝒄𝒄 − 𝑬𝑬𝒃𝒃𝒃𝒃𝑲𝑲𝒄𝒄                                                     (1.15) 

6- Conclusion 

The approach of using the similarity transformation 𝑇𝑇𝐶𝐶 to get the feedback control 

design is summarized in four steps:  

 Transform the given system into general controllable form.  

 Compute 𝑲𝑲𝒄𝒄   such that 𝑨𝑨𝒄𝒄 − 𝑬𝑬𝒃𝒃𝒃𝒃𝑲𝑲𝒄𝒄 has a set of desired eigenvalues.  

 Compute 𝑲𝑲𝒄𝒄 = 𝑫𝑫𝒓𝒓𝒓𝒓 𝑲𝑲𝒄𝒄 where 𝑫𝑫𝒓𝒓𝒓𝒓 is such that 𝑩𝑩𝒄𝒄 = 𝑬𝑬𝒃𝒃𝒃𝒃 𝑫𝑫 𝒓𝒓𝒓𝒓−𝟏𝟏.  

 Compute 𝑲𝑲 from 𝑲𝑲𝒄𝒄 , such that 𝑲𝑲 = 𝑲𝑲𝒄𝒄 𝑇𝑇𝐶𝐶 . 
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1- Introduction 

In order to do our design some criteria have been selected to evaluate the performance 

of the system. This chapter presents these criteria.  

2- Norms [3] 

2.1- Definition 2.1 

 The norm is a real number, denoted as ||e||, which satisfies the following properties: 

1. Non-negative : ||e|| ≥ 0. 

2. Positive : ||e|| = 0 iff e = 0. 

3. Homogenous : ||α.e||= α.||e||. 

4. Triangle inequality : ||e1+ e2|| ≤ ||e1||+ ||e2||. 

Where: e is a vector, and α is a scalar. 

 In this thesis we will consider only matrix norms. 

2.2- Definition 2.2 

 A norm ||A|| of a matrix A is a matrix norm which, in addition to the four norm 

properties given earlier in definition 2.1, satisfies the multiplicative property (also 

called the consistency condition) : ||A.B||≤ ||A||.||B||. 

2.3- Most Common Matrix Norm Types  

i. The Matrix  1-norm 

    It is the maximum absolute column sum. 
                                                                                                                  

                    ‖𝑨𝑨‖1 = max (  ∑ |aij|𝑚𝑚
𝑖𝑖=1  )                                            (2.1) 

                                                                  1≤ 𝑗𝑗 ≤n           

ii. The Matrix  ∞-norm 

   It is the maximum absolute row sum.                                                                                                 

‖                       ‖𝑨𝑨‖∞ = max ( ∑ |aij| 𝑛𝑛
𝑗𝑗=1 )                                                               

(2.2) 
                                                              1≤ i ≤ n                

iii.  The Matrix   Euclidian norm (also called the 2-norm) 
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  It is the square root of the largest eigen value of 𝑨𝑨𝑻𝑻.𝑨𝑨 or the largest singular value of A 

                         ‖𝑨𝑨‖2 = max 𝜆𝜆(𝑨𝑨𝑻𝑻.𝑨𝑨)1/2                                                                        (2.3) 

  vi. The Matrix Frobenius-norm 

             ‖𝑨𝑨‖𝐹𝐹 = ( ∑ |aij|𝑖𝑖=𝑗𝑗 P

2  )1/2 =  [Trace 𝑨𝑨T.𝑨𝑨]1/2                                                                           

(2.4) 
 

Remark:   

The concept of norm of a matrix helps in this work to determine the amount of control 

effort required when state feedback is used by measuring the norm of the state feedback 

gain matrix. 

3- Condition Number 

3.1- Definition 2.3 

    The condition number of an invertible matrix A is defined as 𝜒𝜒(𝑨𝑨) = ‖𝑨𝑨‖‖𝑨𝑨−1‖.  

This quantity enables to know how close is the matrix A to singularity. This affects the 

accuracy of computations based on the matrix A. It can also be seen as a function to a 

perturbed input argument. 

  Note that the condition number of a matrix is always greater or equal to 1. 

3.2- Condition Number and Conditioning  

• If 𝜒𝜒(𝑨𝑨) is  large , A is called ill-conditioned (with respect to inversion). 

•   If 𝜒𝜒(𝑨𝑨) is  small , A is called well-conditioned (with respect to inversion). 

 

4- Robustness & Sensitivity  

4.1- Definition 2.4 

The ability of a controller to perform in a satisfactory way under any working 

conditions and in the presence of uncertainties is called « ROBUSTNESS ». 
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The aim of a robust controller is to tackle the problems created by those uncertainties 

that may lead to performance degradation or even to the instability of the system. 

 

4.2- Types of Robustness 

I. Performance Robustness 

The performance or time behavior of any control system is determined to a large 

extent by   its eigenvalues. There are some suitable measures performance robustness. 

  I.1- Eigen Value Sensitivity  

It is used to measure how much the system’s eigenvalues are sensitive to the model 

uncertainties, it includes: 

i. Individual Eigen Value Sensitivity:  

The sensitivity of the i-th eigen value of a matrix A to perturbations in some or all of   

its elements is given by the following expression:  

                                             𝑠𝑠(𝜆𝜆𝜆𝜆 )  =‖𝐿𝐿i‖2 . ‖𝑅𝑅i‖2  / |𝐿𝐿iT 𝑅𝑅i|                                             
(2.5) 

Where 𝐿𝐿i and 𝑅𝑅i are the left and right eigenvectors corresponding to eigen value 𝜆𝜆𝜆𝜆, 

respectively. 

ii. Overall Eigen Value Sensitivity: 

The overall eigen value sensitivity of the matrix A, which is the condition number of 

the modal matrix, is defined as:   

                  S(V) = ‖R‖2.‖R-1‖2                                                                           (2.6)                            

 Where R is the right eigen vector matrix of the matrix A. 

 I.2- Relative Change: 

 It measures the relative change in eigen value 𝜆𝜆𝜆𝜆 following a perturbation of the system 

matrix A. 

                           RC =|𝜆𝜆𝜆𝜆−𝜆𝜆𝜆𝜆′|/|𝜆𝜆𝜆𝜆                                                                             (2.7) 
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 Where: 

 𝜆𝜆𝑖𝑖 is the original eigen value. 

 𝜆𝜆𝑖𝑖′ is the new eigen value following the perturbation. 

 

 

II. Stability Robustness  

Stability is the most important property in control design; the sensitivity to such a 

property is called stability robustness. Basically stability means that if every dynamic 

matrix eigen value has a negative real part; hence the sensitivity of these eigenvalues 

with respect to model uncertainties is a direct way to measure the sensitivity of the 

whole system stability. 

Some stability robustness measures have been developed in the control literature; 

among these, we have the so-called M1, M2 and M3 measures. [6] [9] [10] 

  II.1- The Robust Stability Measure M1 : 

  It is defined as:  𝑀𝑀1 = min {𝜎𝜎 (A− 𝑗𝑗𝑗𝑗𝑗𝑗)}                                                         (2.8) 

  For       0 ≤ 𝜔𝜔 ≤ ∞ 

Where:   𝜎𝜎 is the real part of the complex pair. 

M1  measures the smallest possible norm of matrix variation for the dynamic  matrix 

A to have an unstable or a pure imaginary eigen value j𝜔𝜔. 

  II.2- The Robust Stability Measure M2 :  

   It is defined as:  𝑀𝑀2 = 𝑠𝑠(V)-1|𝑅𝑅𝑅𝑅{𝜆𝜆𝜆𝜆}|  where (|𝑅𝑅𝑅𝑅{𝜆𝜆𝜆𝜆}| ≤ ⋯ ≤ |𝑅𝑅𝑅𝑅{𝜆𝜆1}|)           (2.9) 

 |𝑅𝑅𝑅𝑅{𝜆𝜆𝜆𝜆}| is the shortest distance between the unstable region and the eigenvalue  𝜆𝜆i . 

𝑀𝑀2   equals this distance divided (or weighted) by the sensitivity of all the eigenvalues 

of the matrix. As the sensitivity goes up, 𝑀𝑀2 goes down. 

  II.3- The Robust Stability Measure M3 :  

  It is defined as:  𝑀𝑀3 = min {𝑠𝑠(𝜆𝜆𝜆𝜆 )-1|𝑅𝑅𝑅𝑅(𝜆𝜆𝜆𝜆 )|}                                                         (2.10) 
                               1 ≤ 𝑖𝑖 ≤ 𝑛𝑛  
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 𝑀𝑀3 measures the likelihood margin for every eigenvalue to become unstable. It is   

equal to |𝑅𝑅𝑅𝑅(𝜆𝜆𝜆𝜆 )| divided by its corresponding sensitivity 𝑠𝑠(𝜆𝜆𝜆𝜆),i=1,..,n. 

 

 

 

5- Time Domain Criteria 

Some time domain criteria are often used to describe the performance of control 

systems. Although developed for second order systems, they can be valuable for higher 

order systems. 

5.1- Maximum Overshoot 

The maximum overshoot is related to the maximum peak value of the response with 

respect to the final value. 

                            Mp=y(Tp)- y(∞)  (2.11) 

          Percent maximum overshoot = Maximum overshoot 
y(∞)

 × 100%   (2.12) 

5.2- Peak Time TP  

It is the time needed for the response to reach the first break of overshoot (i.e.: the peak 

value). 

5.3- Settling Time Ts  

It is the time required for the response curve to reach and stay within a range about the 

final value of a size specified by an absolute percentage of the final value (usually 2% 

or 5%). 

5.4-  Rise Time Tr  

It is defined as the time required for the step response to reach-  10 to 90 percent of the 

final value. 

6- Conclusion 
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In our case, we were considered only with the norms of the feedback gain, and the 

robustness and sensitivity of the eigenvalues.  
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1-  Introduction 

Any aircraft has its own characteristics and specifications for desired vehicle 

performances, so this should be taken into account before analyzing any flight control 

problem. 

Accordingly, this chapter deals with the definition of the airplane dynamics, which is our 

study case. Following that, a brief analysis of the lateral model, which will be used 

throughout the thesis, will be presented. 

 

2- Airplane Definition 

The airplane is a powered, fixed-wing aircraft that is propelled forward by thrust from a 

jet engine or propeller.  Airplanes come in many different shapes and sizes depending 

on the mission of the aircraft.  

An airplane is constructed of many parts divided into four major sections: fuselage, 

power plant and undercarriage, wings and tail. [11] 

2.1- Fuselage:  containing two parts; the fuselage which holds the structure together 

and accommodates passengers and/or cargo, and the cockpit which holds the 

command and control section of an airplane. 

2.2- Power Plant & Undercarriage:  containing two parts; the power plant 

(engines) which generate thrust and provide hydraulic and electric power, and the 

undercarriage (landing gear) which provides a platform for the aircraft to stand as 

well as plays an important obvious role in landing and take-off. 

2.3- Wings:  containing five parts; the wing which generate lift and control the 

airflow while flying, the slats which adjust the angle of attack of the wings, 

increasing lift, the flaps which adjust the camber of the wings, increasing lift, the 

spoilers which adjust the camber of sections of the wings, decreasing lift, and the 

ailerons which increase or decrease lift asymmetrically, in order to change roll and, 

thus, move the aircraft left or right while flying. 

2.4- Tail:  containing four parts; the horizontal stabilizer which helps maintain an 

airplane's equilibrium and stability in flight, the elevator which increase or decrease 

lift on the horizontal stabilizer symmetrically in order to control the pitch motion of 

https://www.grc.nasa.gov/www/k-12/airplane/turbine.html
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an airplane, the vertical stabilizer which prevents lateral movements of the airplane, 

and the rudder which controls the yaw motion of an airplane. 

Figure 3.1 illustrates the different parts of an airplane.  

  

 

 

 

 

 

 

Figure 3.1:  The parts of an airplane 

 

3- Axes of Movement 

An airplane is capable of flying in any direction by rotating about in three dimensions 

called axes of movement which are: the normal axis, the lateral axis and the longitudinal 

axis.  

3.1- Normal Axis:  drawn from top to bottom, assigned the Z letter. The rotation 

about this axis is called “Yaw”, which is the movement of the nose of the airplane 

from side to side. 

3.2- Lateral Axis:  drawn parallel to the wings, assigned the Y letter. The rotation 

about this axis is called “Pitch”, which is the up or down movement of the nose of 

the airplane. 

3.3- Longitudinal Axis:  drawn from tail to nose, assigned the X letter. The rotation 

about this axis is called “Roll”, which is the up or down movement of the airplane 

wings. 

Each axis passes through the center of gravity of the airplane and is perpendicular to the 

other two axes. 
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Three possible moments can occur about the three axes; the rolling moment denoted by 

L, the pitching moment denoted by M and the yawing moment denoted by N. 

The figure 3.2 illustrates the axes of movement of an airplane. 

 

 

 

 

 

 

Figure 3.2: The axes of movement of an airplane 

 

4- Airplane Primary Flight Controls 

Airplane flight controls are the means by which a pilot controls the direction and 

attitude of an airplane in flight. Primary flight controls are required to safely control an 

airplane during flight and consist of ailerons, elevators and rudder. Movement of any of 

the primary flight controls causes the airplane to rotate around the axis of 

rotation associated with the control surface. The ailerons are attached to the trailing 

edge of both wings and when moved, rotate the airplane around the longitudinal axis. 

The elevator is attached to the trailing edge of the horizontal stabilizer. When it is 

moved, it alters airplane pitch, which is the attitude about the horizontal or lateral axis. 

The rudder is hinged to the trailing edge of the vertical stabilizer. When the rudder 

changes position, the airplane rotates about the vertical axis.  

Figure 3.3 shows the primary flight controls of a light airplane and the movement they 

create relative to the three axes of flight.  

 

     

https://www.skybrary.aero/index.php/Ailerons
https://www.skybrary.aero/index.php/Elevator
https://www.skybrary.aero/index.php/Rudder
https://www.skybrary.aero/index.php/Axis_of_Rotation
https://www.skybrary.aero/index.php/Axis_of_Rotation


Chapter 3                                                                  The Airplane Model  
 

 
17 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Flight control surfaces move the airplane around the three axes of flight 

 

5- Forces Acting On The Airplane 

During flight, there are four forces acting on an airplane. These forces are lift, weight, 

thrust, and drag. [12]  

5.1- Lift:  is the component of the aerodynamic force perpendicular to the relative 

wind (the flight direction). 

5.2- Drag:  is the component of the aerodynamic force parallel and opposed to the 

flight direction. 

5.3- Weight: is a force that is always directed toward the center of the earth. Its 

magnitude depends on the mass of all the airplane parts, plus the amount of fuel, 

plus any payload on board. 

5.4- Thrust:  is the force produced by the engine. It is directed forward along the 

axis of the engine. 

Figure 3.4 illustrates the different forces acting on the airplane. 
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Figure 3.4: The forces on airplane 

The motion of the airplane through the air depends on the relative strength and 

direction of the forces shown above. If the forces are balanced, the airplane cruises at 

constant velocity. If the forces are unbalanced, the airplane accelerates in the direction 

of the largest force. 

In an ideal situation, the forces acting on an airplane in flight can produce no net 

external force. In this situation the lift is equal to the weight, and the thrust is equal to 

the drag. 

Figure 3.5 illustrates the resulting motion of the airplane when the forces become 

unbalanced. 

 

 

 

 

 

Figure 3.5: The motion of the airplane for unbalanced forces. 

 

6- Stability of An Airplane [13] [14] 

Stability of an airplane is its tendency to return to its original trimmed position. 

https://www.grc.nasa.gov/www/k-12/airplane/cruise.html
https://www.grc.nasa.gov/www/k-12/airplane/smotion.html
https://www.grc.nasa.gov/www/k-12/airplane/lift1.html
https://www.grc.nasa.gov/www/k-12/airplane/weight1.html
https://www.grc.nasa.gov/www/k-12/airplane/thrust1.html
https://www.grc.nasa.gov/www/k-12/airplane/drag1.html
https://www.grc.nasa.gov/www/k-12/airplane/motion.html
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We can distinguish three types of stability in an airplane: the longitudinal, the lateral 

and the directional stability. 

 The longitudinal stability refers to the behavior of the airplane in pitch that is the 

movement of the longitudinal axis when it is rotated about the lateral axis. 

 The lateral stability refers to the behavior of the airplane in roll that is the 

movement of the lateral axis when it is rotated about the longitudinal axis. 

 The directional stability refers to the behavior of the airplane in yaw that is the 

movement of the longitudinal axis when it is rotated about the vertical axis. 

These three stabilities can be divided into two main parts:  

6.1- Static Stability: it deals with the direction and magnitude of the forces and 

moments acting on the airplane in its deflected position. It is the natural stability that 

tends to restore the original airplane position due to any change in pitch, roll or yaw. 

The airplane is statically stable if the produced moments are in such a direction 

to restore the original position. 

The airplane is statically unstable if the produced moments are in such a 

direction to increase the displacement and move the airplane further from its 

trimmed position. 

6.2-  Dynamic Stability: it deals with the behavior of the airplane over a period of 

time. 

The airplane is dynamically stable, if it has been disturbed from its equilibrium 

position, if the maximum displacement decreases with time. 

The airplane is dynamically unstable if the maximum displacement increases 

with time. 

 

7-  Motion of An Aircraft 

The form of the equations of motion of an airplane depends on the axis system chosen. 

Generally a body fixed axis system is used, where its origin is located exactly on the 

airplane’s center of gravity (CG). 

 In addition, many assumptions are made in deriving the equations of motion: 

i. The distances between any points on the airplane do not change in flight, i.e. the 

airplane is a rigid-body. 

ii. The inertial frame of reference, the earth, is fixed in space, i.e. no acceleration. 
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 The airplane, which is considered as a rigid-body in space, is a dynamic system with 

six degrees of freedom (DOF). Its motion in space is defined by six components of 

velocity along and about the airplane axis system. 

The six velocity components are the linear velocities u, v, w along the system axes and 

the angular velocities p, q, r about the system axes. 

For an aircraft it is common to assume that the longitudinal modes (DOFs 1, 3 and 5) 

are decoupled from the lateral modes (DOFs 2, 4 and 6). The key assumption is that the 

fuselage is slender; that is, the length is much larger than the width and the height of the 

aircraft. It is also assumed that the longitudinal velocity is much larger than the vertical 

and transversal velocities.  

For more details, the reader may refer to [15]. 

During this thesis, the lateral model of the F-16 Fighter will be used. 

The state vectors are:  

 

 

 

 

 

 

 

 

Where:  

 β  is the sideslip angle. 

 ϕ  is the roll angle.   

 p  is the roll rate perturbation. 

 r   is the yaw rate perturbation.  

 δA  is the aileron deflection. 

 δR   is the rudder deflectio. 
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The nonlinear lateral model of the F-16 Fighter was linearized around the equilibrium 

point: 

Speed               VT = 502 ft/s = 552 km/h 

Mach-number   M = 0.45 

 

The resulting system matrices a and b are shown below: 

 

A = [   -0.3220     0.0640    0.0364      -0.9917     0.0003     0.0008         0 

            0              0             1              -0.0037      0              0             0 

          -30.6492    0           -3.6784       0.6646    -0.7333     0.1315        0 

           8.5396      0           -0.0254      -0.4764    -0.0319    -0.0620        0   

           0               0            0                 0            -20.2          0             0  

           0               0            0                 0             0              -20.2        0  

           0               0            0                57.2958   0                0            -1  ] 

 

 

B = [  0        0  

         0        0 

         0        0 

         0        0 

        20.2    0 

        0        20.2 

        0         0   ] 
 

 

          C = [   0              0             0              57.2958    0             0       -1 

                     0              0          57.2958            0         0             0        0 

                 57.2958        0               0                 0         0             0        0   

                     0          57.2958         0                 0          0            0        0    ] 

 

 

         D = 0 
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And the actual eigen values are given by: 

lam = [ -1.0000 

            -0.4224 + 3.0633i 

            -0.4224 - 3.0633i 

            -0.0167  

            -3.6152   

            -20.2000  

            -20.2000 ] 
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1- Introduction 

In order to select the best feedback control design, different cases are simulated using the 

data of the F-16 aircraft in the lateral model presented in the precedent chapter. For each 

case a number of parameters are calculated then compared to get the best choice that meet 

the requirements. 

2- General Controller Canonical Form  

As explained earlier in chapter 1, the feedback gain matrix 𝑲𝑲 is computed using the 

controller similarity transformation 𝑇𝑇𝐶𝐶 which, in our case, comes in two different results 

due to the choice of two input sequence selection (permutation):  

 First permutation:   𝑆𝑆R1 = [ b1, b2 ]. 

 Second permutation:  𝑆𝑆R2 = [ b2 , b1 ]. 

The pair (A,B) is fully reachable since the reachability matrix 𝓡𝓡(𝐴𝐴, 𝐵𝐵)  has a full rank  

r = 7.  

The reachability (Kronecher) indices are: 

 First permutation:  𝒦𝒦1= 4 , 𝒦𝒦2 = 3.  

 Second permutation:  𝒦𝒦1= 3 , 𝒦𝒦2 = 4. 

In order to transform the system into general controller canonical form, the similarity 

transformation 𝑇𝑇𝐶𝐶 is constructed and the matrices 𝐴𝐴𝐶𝐶 , 𝐵𝐵𝐶𝐶, 𝐶𝐶𝐶𝐶 are calculated. 

 2.1- First Permutation  

The resulting 𝑇𝑇𝐶𝐶 for the input sequence  𝑆𝑆R1 and the corresponding system in general 

controller canonical form are   shown below. 
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2.2- Second Permutation  

The resulting 𝑇𝑇𝐶𝐶 for the input sequence  𝑆𝑆R2 and the corresponding system in general 

controller canonical form are   shown below. 
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In the simulation process, we choose 12 different sets of desired closed loop poles. For 

each set we calculate the corresponding feedback gain, and then we do a performance 

analysis:  feedback gain magnitude, robust performance and stability. 

 

The desired eigenvalues 

case 1 case 2 case 3 case 4 

-0.05 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

-0.1 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

case 5 case 6 case 7 case 8 

-0.0167 
-1 

-0.4224-2.5 
-0.4224+2.5 

-3.6152 
-20.2 
-20.2 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

-0.05 
-1 

-0.4224-2.5 
-0.4224+2.5 

-3.6152 
-20.2 
-20.2 

-0.1 
 -1 

-0.4224-2.5 
-0.4224+2.5 

-3.6152 
-20.2 
-20.2 

case 9 case 10 case 11 case 12 

-0.2 
 -1 

-0.4224-2.5 
-0.4224+2.5 

-3.6152 
-20.2 
-20.2 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

-0.2 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

The comparison is done according to:  

 Number of blocks. 

 Input sequence (permutation). 

 Distribution of desired closed loop poles. 

To distinguish between the different cases and to make the comparison easier, we 

introduce the following table. 

 

 

Table 4.1: The different chosen sets of desired eigenvalues  
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Table 4.2: Numbering of the different cases 

Cases Meaning  

case: 1.1.1 --- 12.1.1 Set from 1to 12, 1 block, first permutation  

case: 1.1.2 --- 12.1.2 Set from 1to 12, 2 blocks (dominant & non-dominant 

distribution) , first permutation 

case: 1.1.3 --- 12.1.3 Set from 1to 12, 2 blocks (random distribution), first 

permutation 

case: 1.2.1 --- 12.2.1 Set from 1to 12, 1 block, second permutation 

case: 1.2.2 --- 12.2.2 Set from 1to 12, 2 blocks (dominant & non-dominant 

distribution) , second  permutation 

case: 1.2.3 --- 12.2.3 Set from 1to 12, 2 blocks (random distribution), second 

permutation 

 

3- Performance of The Actual System 

 

 

 

4- Performance of The Different Desired Simulated Cases 

The resultant feedback gains and their corresponding performance analysis, for each 

case, are summarized in the following tables. 

 

 

 

Eigenvalues S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 

-0.0167 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

132.6212 

 
5.1230 

54.6941 
27.9476 
27.9476 
5.9276 
1.0010 
1.0010 

 
 

1.2626 * 10-4 

 
 

0.0033 

Table 4.3: Performance analysis of the actual system  
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4.1- First Permutation 

 

Cases Eigenvalues Norm1 Norm2 Norm∞ S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 
 

Case 
1.1.1 

-0.05 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0892 
*106 

 
 
 

8.8085 
*105 

 
 
 

9.1016 
*105 

 
 
 

7.9862 
*107 

803.8715 
4.9301*103 

6.9168*104 

6.9168*104 
7.9844*104 

2.8407*107 

1.3157*106 

 
 
 

6.3891 
*10-10 

 
 
 

6.9417 
*10-7 

 
 
 

Case
2.1.1 

-0.1 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0996 
*106 

 
 
 

8.8936 
*105 

 
 
 

9.2030 
*105 

 
 
 

8.0073 
*107 

865.9350 
5.1152*103 
6.9643*104 
6.9643*104 
8.149*104 

2.8383*107 
1.3109*106 

 

 
 
 

1.2626 
*10-9 

 
 
 

6.9451 
*10-7 

 
 
 

Case
3.1.1 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1205 
*106 

 
 
 

9.0638 
*105 

 
 
 

9.4057 
*105 

 
 
 

8.0511 
*107 

1.0192*103 
5.5554*103 
7.056*104 
7.056*104 

8.4972*104 
2.834*107 

1.3015*106 

 
 
 

2.5001 
*10-9 

 
 
 

6.951 
*10-7 

 
 
 

Case
4.1.1 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.2963 
*106 

 
 
 

1.0476 
*106 

 
 
 

1.0650 
*106 

 
 
 

8.5922 
*107 

908.5925 
5.7751*103 
8.5785*104 
8.5785*104 
1.1536*105 
3.0672*107 

1.26*106 

 
 
 

2.0699 
*10-10 

 
 
 

6.3996 
*10-7 

 
 
 

Case
5.1.1 

-0.0167 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.5627 
*105 

 
 
 

6.9179 
*105 

 
 
 

6.9799 
*105 

 
 
 

7.3571 
*107 

1.2852*103 
6.4469*103 

4.5242*104 

4.5242*104 

8.1031*104 

2.6244*107 

1.3787*106 

 
 
 

2.4585 
*10-10 

 
 
 

7.5425 
*10-7 

 

 

 

Table 4.4: Performance analysis corresponding to 1 block  
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Case
6.1.1 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.1359 
*105 

 
 
 

6.5848 
*105 

 
 
 

6.8877 
*105 

 
 
 

7.9202 
*107 

6.4775*103 
4.2272*104 

3.7062*104 

3.7062*104 

2.034*105 

2.6852*107 

1.3543*106 

 
 
 

2.7856 
*10-10 

 
 
 

7.3619 
*10-7 

 
 
 
 

Case
7.1.1 

-0.05 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.6421 
*105 

 
 
 

6.9822 
*105 

 
 
 

7.0502 
*105 

 
 
 

7.3860 
*107 

1.3493*103 
6.6339*103 

4.553*104 

4.553*104 

8.244*104 

2.6268*107 

1.3735*106 

 
 
 

6.9666 
*10-10 

 
 
 

7.5339 
*10-7 

 
 
 

Case
8.1.1 

-0.1 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.7613 
*105 

 
 
 

7.0787 
*105 

 
 
 

7.1558 
*105 

 
 
 

7.4321 
*107 

1.4563*103 
6.9407*103 

4.5953*104 

4.5953*104 

8.4608*104 

2.6316*107 

1.3669*106 

 
 
 

1.3666 
*10-9 

 
 
 

7.5176 
*10-7 

 
 
 

Case
9.1.1 

-0.2 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.9999 
*105 

 
 
 

7.2718 
*105 

 
 
 

7.3669 
*105 

 
 
 

7.5219 
*107 

1.7196*103 
7.6710*103 

4.676*104 

4.676*104 

8.9133*104 

2.6417*107 

1.3547*106 

 
 
 

2.6833 
*10-9 

 
 
 

7.4835 
*10-7 

 
 
 

Case
10.1.1 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.2571 
*105 

 
 
 

6.6822 
*105 

 
 
 

6.9819 
*105 

 
 
 

7.9744 
*107 

7.0174*103 
4.3819*104 

3.7848*104 

3.7848*104 

2.074*105 

2.6984*107 

1.3493*106 

 
 
 

6.9971 
*10-10 

 
 
 

7.3237 
*10-7 

 
 
 

Case
11.1.1 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.4390 
*105 

 
 
 

6.8287 
*105 

 
 
 

7.1234 
*105 

 
 
 

7.0559 
*107 

7.9476103 
4.6359*104 
3.9053*104 

3.9053*104 

2.1352*105 

2.7191*107 

1.3429*106 

 
 
 

1.3225 
*10-9 

 
 
 

7.2650 
*10-7 
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Cases Eigenvalues Norm1 Norm2 Norm∞ S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 
 
 
 

Case
1.1.2 

-0.05 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1621 
*104 

 
 
 

9.4868 
*103 

 
 
 

1.0521 
*104 

 
 
 

1.6783 
*107 

76.0099 
681.0467 
495.2866 
495.2866 

2.0224*103 

5.9614*106 

5.9602*106 

 
 
 

0.3009 
*10-8 

 
 
 

0.3385 
*10-5 

 
 
 

Case
2.1.2 

-0.1 
-1 

-0.4224-i3.0633 
-

0.4224+i3.0633 
-3.6152 

-20.2 
-20.2 

 

 
 
 

1.1621 
*104 

 
 
 

9.4869 
*103 

 
 
 

1.0521 
*104 

 
 
 

1.6842 
*107 

80.3083 
684.839 

496.0199 
496.0199 

2.0224*103 

5.9614*106 

5.9602*106 

 
 
 

0.5968 
*10-8 

 
 
 

0.3385 
*10-5 

 
 
 

Case
3.1.2 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1621 
*104 

 
 
 

9.4872 
*103 

 
 
 

1.0521 
*104 

 
 
 

1.6963 
*107 

90.6474 
694.0623 
496.266 
496.266 

2.0224*103 

5.9614*106 

5.9602*10 

 
 
 

0.1182 
*10-7 

 
 
 

0.3385 
*10-5 

 
 
 

Case
4.1.2 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.164 
*104 

 
 
 

9.5053 
*103 

 
 
 

1.0541 
*104 

 
 
 

1.6744 
*107 

6.84612 
702.4089 
453.6747 
453.6747 

2.0224*103 

5.9614*106 

5.960*106 

 
 
 

0.1025 
*10-8 

 
 
 

0.3385 
*10-5 

 
 
 

Case
12.1.1 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

8.8028 
*105 

 
 
 

7.1215 
*105 

 
 
 

7.4063 
*105 

 
 
 

7.3579 
*107 

1.0387*104 
5.2410*104 

4.1548*104 

4.1548*104 

2.2623*105 

2.4741*107 

1.0966*106 

 
 
 

2.8350 
*10-9 

 
 
 

7.9632 
*10-7 

Table 4.5: Performance analysis corresponding to 2 blocks dominant and 

non-dominant distribution 
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Case
5.1.2 

-0.0167 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1619 
*104 

 
 
 

9.4864 
*103 

 
 
 

1.0528 
*104 

 
 
 

1.6777 
*107 

364.7539 
702.4089 
605.8303 
605.8303 

2.0224*103 

5.9614*106 

5.960*106 

 
 
 

0.1038 
*10-8 

 
 
 

0.3385 
*10-5 

 
 
 

Case
6.1.2 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1647 
*104 

 
 
 

9.5144 
*103 

 
 
 

1.057 
*104 

 
 
 

1.7733 
*107 

2.4918*103 
5.6523*103 
2.3242*103 
2.3242*103 
2.022*103 

5.9614*106 

5.960*106 

 
 
 

1.0734 
*10-9 

 
 
 

0.3355 
*10-6 

 
 
 
 

Case
7.1.2 

-0.05 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1620 
*104 

 
 
 

9.4867 
*103 

 
 
 

1.0529 
*104 

 
 
 

1.6826 
*107 

378.063 
954.5496 
606.4325 
606.4325 

2.0224*103 

5.9614*106 

5.9602*106 

 
 
 

3.0153 
*10-9 

 
 
 

0.3355 
*10-6 

 
 
 

Case
8.1.2 

-0.1 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1620 
*104 

 
 
 

9.4822 
*103 

 
 
 

1.0529 
*104 

 
 
 

1.6899 
*107 

413.38 
973.9613 
607.2312 
607.2312 

2.0224*103 

5.9614*106 

5.9602*106 

 
 
 

5.9634 
*10-8 

 
 
 

3.3855 
*10-6 

 
 
 

Case
9.1.2 

-0.2 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1621 
*104 

 
 
 

9.4882 
*103 

 
 
 

1.053 
*104 

 
 
 

1.7037 
*107 

452.8884 
1.0203*103 

608.3987 
608.3987 

2.0224*103 

5.9614*106 

5.9602*106 

 
 
 

1.1791 
*10-8 

 
 
 

3.3855 
*10-6 

 
 
 

Case
10.1.2 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1648 
*104 

 
 
 

9.5151 
*103 

 
 
 

1.0571 
*104 

 
 
 

1.7774 
*107 

2.6614*103 

5.8183*103 

2.358*103 

2.358*103 
2.0224*103 

5.9614*106 

5.960*106 

 
 
 

2.9532 
*10-9 

 
 
 

3.3855 
*10-6 
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Cases Eigenvalues Norm1 Norm2 Norm∞ S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 
 

Case 
1.1.3 

-0.05 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0670 
*104 

 
 
 

1.0005 
*104 

 
 
 

1.1951 
*104 

 
 
 

1.4274 
*107 

429.6364 
1.5378*103 

1.6581*104 

1.6581*104 

532.5384 

4.7596*106 

4.7596*106 

 

 
 
 

3.5029 
*10-9 

 
 
 

4.2440 
*10-6 

 
 
 

Case
2.1.3 

-0.1 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0670 
*104 

 
 
 

1.0665 
*104 

 
 
 

1.1951 
*104 

 
 
 

1.4321 
*107 

462.6911 
1.564*103 

1.6581*103 

1.6581*103 

534.646 

4.7596*106 

4.7596*106 

 

 
 
 

6.9817 
*10-9 

 
 
 

4.2440 
*10-6 

 
 
 

Case
3.1.3 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0671 
*104 

 
 
 

1.0666 
*104 

 
 
 

1.1950 
*104 

 
 
 

1.4411 
*107 

543.8557 
1.629*103 

1.6581*103 

1.6581*103 

539.1303 

4.7596*106 

4.7596*106 

 

 
 
 

1.3876 
*10-8 

 
 
 

4.2440 
*10-6 

 
 
 

Case
4.1.3 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1020 
*104 

 
 
 

1.1018 
*104 

 
 
 

1. 2326 
*104 

 
 
 

1.6811 
*107 

409.8848 
1.5219*103 

1.6018*103 

1.6018*103 

531.1774 

5.618*106 

5.618*106 

 

 
 
 

9.9311 
*10-10 

 
 
 

3.5956 
*10-6 

 
 
 

Case
11.1.2 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1649 
*104 

 
 
 

9.5161 
*103 

 
 
 

1.0572 
*104 

 
 
 

1.783 
*107 

2.3482*103 

6.0916*103 

2.4056*103 

2.4056*103 
2.0224*103 

5.9614*106 

5.960*106 

 
 
 

5.7628 
*10-9 

 
 
 

3.3855 
*10-6 

 
 
 

Case
12.1.2 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1648 
*104 

 
 
 

9.5151 
*103 

 
 
 

1.0571 
*104 

 
 
 

1.7774 
*107 

2.6614*103 
5.8183*103 
2.358*103 
2.358*103 

2.0223*103 

5.9614*106 

5.960*106 

 
 
 

2.9532 
*10-9 

 
 
 

3.3855 
*10-6 

Table 4.6: Performance analysis corresponding to 2 blocks random distribution 
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Case
5.1.3 

-0.0167 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

6.8474 
*103 

 
 
 

6.8604 
*103 

 
 
 

7.9907 
*103 

 
 
 

1.1417 
*107 

409.8842 
1.5219*103 

1.1406*103 

1.1406*103 

539.1303 

3.7880*106 

3.7880*106 

 

 
 
 

1.4623 
*10-9 

 
 
 

5.3327 
*10-6 

 
 
 

Case
6.1.3 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1204 
*103 

 
 
 

1.4551 
*103 

 
 
 

2.1995 
*103 

 
 
 

2.6805 
*107 

409.8858 
1.5219*103 

516.6466 

516.6466 

531.1715 

8.5864*105 

8.5864*105 

 

 
 
 

6.2285 
*10-9 

 
 
 

2.3526 
*10-5 

 
 
 
 

Case
7.1.3 

-0.05 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

6.8476 
*103 

 
 
 

6.8605 
*103 

 
 
 

7.9905 
*103 

 
 
 

1.1443 
*107 

429.6362 
1.5378*103 

1.1406*103 

1.1406*103 

532.5368 

3.788*106 

3.788*106 

 

 
 
 

4.3693 
*10-9 

 
 
 

5.3327 
*10-6 

 
 
 

Case
8.1.3 

-0.1 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

6.8479 
*103 

 
 
 

6.8607 
*103 

 
 
 

7.9901 
*103 

 
 
 

1.1482 
*107 

462.6909 
1.5643*103 

1.1406*103 
1.1406*103 

534.6444 

3.7888*106 

3.7888*106 

 

 
 
 

8.7075 
*10-9 

 
 
 

5.3327 
*10-6 

 
 
 

Case
9.1.3 

-0.2 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

6.8485 
*103 

 
 
 

6.8610 
*103 

 
 
 

7.9893 
*103 

 
 
 

1.1557 
*107 

543.8554 
1.6294*103 

1.1406*103 

1.1406*103 

539.1286 

3.788*106 

3.788*106 

 

 
 
 

1.7304 
*10-8 

 
 
 

5.3327 
*10-6 

 
 
 

Case
10.1.3 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1206 
*103 

 
 
 

14549 
*103 

 
 
 

2.1992 
*103 

 
 
 

2.7227 
*106 

429.6378 
1.5378*103 

516.6466 

516.6466 

532.5336 

8.7038*105 

8.7038*105 

 
 
 

1.8363 
*10-8 

 
 
 

2.3208 
*10-5 
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Case
11.1.3 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1209 
*103 

 
 
 

1.4546 
*103 

 
 
 

2.1986 
*103 

 
 
 

2.7307 
*106 

462.6924 
1.5643*103 

516.6465 
516.6465 

535.6412 

8.7038*105 

8.7038*105 

 

 
 
 

3.6614 
*10-8 

 
 
 

2.3208 
*10-5 

 

 4.2- Second Permutation 

 

Cases Eigenvalues Norm1 Norm2 Norm∞ S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 
 

Case 
1.2.1 

-0.05 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

2.4073 
*104 

 
 
 

2.5419 
*104 

 
 
 

3.6381 
*104 

 
 
 

9.7204 
*106 

44.40443 
89.8437 

526.0910 
526.0910 

4.6649*103 
3.2436*106 
3.2436*106 

 

 
 
 

5.0978 
*10-9 

 
 
 

6.2253 
*10-6 

 
 
 

Case
2.2.1 

-0.1 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

2.4268 
*104 

 
 
 

2.5673 
*104 

 
 
 

3.6911 
*104 

 
 
 

2.3407 
*106 

57.714 
90.9248 

530.3288 
530.3288 

4.7522*103 

7.879*106 

7.879*106 

 

 
 
 

4.6304 
*10-9 

 
 
 

2.5627 
*10-6 

 
 
 

Case
3.2.1 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 
 
 

2.4979 
*104 

 
 
 

2.6306 
*104 

 
 
 

3.7657 
*104 

 
 
 

6.9749 
*106 

45.6368 
119.0271 
543.7617 
543.761 

4.9033*103 

2.2965*106 

2.2965 
*106 

 

 
 
 

2.6077 
*10-8 

 
 
 

8.7931 
*10-6 

 

 

 

         
         

 
 
 

Case
12.1.3 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.1215 
*103 

 
 
 

1.4541 
*103 

 
 
 

2.1976 
*103 

 
 
 

2.7448 
*106 

543.8569 
1.6294*103 

516.6463 

516.6463 

539.1253 

8.7038*105 
8.7038*105 

 

 
 
 

7.2856 
*10-8 

 
 
 

2.3208 
*10-5 

Table 4.7: Performance analysis corresponding to 1 block 
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Case
4.2.1 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 
 

2.7036 
*104 

 
 
 

2.8510 
*104 

 
 
 

4.0616 
*104 

 
 
 

2.3105 
*106 

52.5566 
107.8491 
768.9888 
768.9888 

5.7265*103 

7.5085*104 

7.5085*104 

 

 
 
 

7.0925 
*10-8 

 
 
 

2.6416 
*10-4 

 
 
 

Case
5.2.1 

-0.0167 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.7067 
*104 

 
 
 

1.7950 
*104 

 
 
 

2.5447 
*104 

 
 
 

8.9177 
*106 

58.8838 
100.5411 
549.6773 
549.6773 

4.0018*103 

2.6359*106 

2.6359*106 

 

 
 
 

1.8165 
*10-6 

 
 
 

7.6605 
*10-6 

 
 
 

Case
6.2.1 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0691 
*104 

 
 
 

1.1057 
*104 

 
 
 

1.4954 
*104 

 
 
 

8.0801 
*106 

266.309 
584.6525 

1.0166*103 

1.0166*103 

5.7986*103 
2.3721*106 

2.3721*106 

 

 
 
 

1.8665 
*10-9 

 
 
 

8.5120 
*10-6 

 
 
 
 

Case
7.2.1 

-0.05 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.7240 
*104 

 
 
 

1.8130 
*104 

 
 
 

3.6381 
*104 

 
 
 

2.5722 
*106 

62.1157 
103.5171 
554.6566 
554.6566 

4.0564*103 
2.6524*106 

2.6524*106 

 

 
 
 

5.4983 
*10-9 

 
 
 

7.6129 
*10-6 

 
 
 

Case
8.2.1 

-0.1 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.7501 
*104 

 
 
 

1.8401 
*104 

 
 
 

2.6136 
*104 

 
 
 

9.0063 
*106 

67.4020 
108.3963 
562.0659 
562.0659 

4.1403*103 

2.664*106 

2.664*106 

 

 
 
 

1.0997 
*10-8 

 
 
 

7.5797 
*10-6 

 
 
 

Case
9.2.1 

-0.2 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.8023 
*104 

 
 
 

1.8944 
*104 

 
 
 

2.6964 
*104 

 
 
 

9.1535 
*106 

79.5218 
119.9641 
576.5928 
576.5928 
4.315*103 

2.7114*106 

2.7114*106 

 

 
 
 

2.1672 
*10-8 

 
 
 

7.4471 
*10-6 
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Case
11.2.1 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
 

-20.2 
-20.2 

 

 
 
 

1.1301 
*104 

 
 
 

1.1697 
*104 

 
 
 

1.5881 
*104 

 
 
 

8.2127 
*106 

325.4034 
652.3381 

1.0916*103 
1.0916*103

46.1993* 
103 

2.4126*106 
2.4126*106 

 

 
 
 

1.1774 
*10-8 

 
 
 

8.3693 
*10-6 

 
 
 

Case
12.2.1 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.2033 
*104 

 
 
 

1.2467 
*104 

 
 
 

1.6993 
*104 

 
 
 

8.4612 
*106 

414.4044 
750.1652 

1.1861*103 
1.1861*103 
6.7050*103 

2.4889*106 

2.4889*106 

 

 
 
 

2.2919 
*10-8 

 
 
 

8.1126 
*10-6 

 

 

Cases Eigenvalues Norm1 Norm2 Norm∞ S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 
 
 
 

Case
1.2.2 

-0.05 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
627.82

24 

 
 

 
520.58

73 
 

 
 

 
669.131

5 

 
 
 

6.0956 
*105 

24.0858 
67.2119 
29.8121 
29.8121 

105.2778 
2.5765*105 
2.576*105 

 

 
 
 
 

8.1802 
*10-8 

 
 
 
 

7.8314 
*10-5 

 
 
 

Case
2.2.2 

-0.1 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
627.86

62 

 
 

 
520.59

83 
 

 
 

 
669.131

5 

 
 
 

6.0861 
*105 

24.3694 
67.5865 
29.8202 
29.8202 

105.2779 
2.5765*105 
2.5765*105 

 

 
 
 
 

1.6407 
*10-7 

 
 
 

7.8314 
*10-5 

 
 
 

Case
3.2.2 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 
 

 
627.95

36 
 

 
 

 
520.62

05 
 

 
 

 
669.131

5 

 
 
 

6.0645 
*105 

15.0491 
68.4758 
29.8315 
29.8315 

105.2779 
2.5765*105 
2.5765*105 

 
 
 
 

3.295 
*10-7 

 
 
 

7.8314 
*10-5 

 
 
 

Case
10.2.1 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

1.0935 
*104 

 
 
 

1.1313 
*104 

 
 
 

1.5324 
*104 

 
 
 

8.1606 
*106 

288.3824 
610.4138 

1.0461*103 
1.0461*103 
5.9566*106 
2.3963*106 

2.3963*106 

 
 
 

5.8536 
*10-9 

 
 
 

8.4263 
*10-6 

Table 4.8: Performance analysis corresponding to 2 blocks dominant and 

non-dominant distribution 
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Case
4.2.2 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
633.45

36 

 
 

 
522.11

08 
 

 
 

 
669.131

5 

 
 
 

6.5666 
*105 

22.3087 
69.3253 
35.7961 
35.7961 

105.2781 
2.5765*105 
2.5760*105 

 

 
 
 
 

2.5243 
*10-8 

 
 
 

7.8314 
*10-5 

 
 
 

Case
5.2.2 

-0.0167 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 

 
627.37

13 
 

 
 

 
520.40

54 
 

 
 

 
669.131

5 

 
 
 

7.2732 
*105 

118.8897 
92.9487 
58.5536 
58.5536 

105.2783 
2.5765*105 
2.576*105 

 

 
 
 
 

2.2684 
*10-8 

 
 
 

7.8314 
*10-5 

 
 
 
 

Case
6.2.2 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 

 
635.33

82 
 

 
 

 
522.46

19 
 

 
 

 
669.131

5 

 
 
 

7.6125 
*105 

804.6529 
550.7445 
548.1290 
548.1290 
105.2819 

2.5765*105 
2.5760*105 

 

 
 
 
 

2.1112 
*10-8 

 
 
 

1.9973 
*10-5 

 
 
 

Case
7.2.2 

-0.05 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

627.47
31 

 
 
 
 

520.43
21 
 

 
 
 
 

669.131
5 

 
 
 

7.2692 
*105 

119.9073 
94.1135 
58.6113 
58.6113 

105.2783 
2.5765*105 
2.5760*105 

 

 
 
 
 

6.85 
*10-8 

 
 
 
 

7.8314 
*10-5 

 
 
 

Case
8.2.2 

-0.1 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

627.62
59 

 
 

 
520.47

24 
 

 
 

 
669.131

5 

 
 
 

7.2626 
*105 

121.5404 
96.0189 
58.6889 
58.6889 

105.2784 
2.5765*105 
2.5765*105 

 

 
 
 
 

1.3738 
*10-7 

 
 
 
 

7.8314 
*10-5 

 
 
 

Case
9.2.2 

-0.2 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 
 

627.86
99 

 
 

 
520.53

65 
 

 
 

 
669.131

5 

 
 
 

7.2708 
*105 

131.7880 
105.5874 
59.0729 
59.0729 

105.2785 
2.5765*105 
2.5760*105 

 

 
 
 
 

2.9418 
*10-7 

 
 
 
 

7.8314 
*10-5 
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Case
10.2.2 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

635.54
83 

 
 

 
522.52

11 
 

 
 

 
669.131

5 

 
 
 

7.6111 
*105 

535.4455 
566.4192 
555.9742 
555.9742 
105.2819 

2.5765*105 
2.5760*105 

 

 
 
 
 

6.4803 
*10-8 

 
 
 
 

5.9037 
*10-5 

 
 
 

Case
11.2.2 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

635.86
38 

 
 

 
522.61 

 

 
 

 
669.131

5 

 
 
 

7.6086 
*105 

884.977 
592.1156 
567.9393 
567.9393 
105.282 

2.5765*105 
2.5760*105 

 

 
 
 

1.3043 
*10-7 

 
 
 

7.8314 
*10-5 

 
 
 

Case
12.2.2 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 
 

636.49
48 

 

 
 
 

522.78
85 

 
 
 

669.131
5 
 

 
 
 

7.6025 
*105 

997.5172 
653.0404 
592.374 
592.374 

105.2822 
2.5765*105 
2.5765*105 

 

 
 
 

2.618 
*10-7 

 
 
 

7.8314 
*10-5 

 

 

Cases Eigenvalues Norm1 Norm2 Norm∞ S(V) S(𝜆𝜆𝜆𝜆) M2 M3 

 
 
 
 

Case
1.2.3 

-0.05 
-1 

-0.4224-i3.0633 
0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
3.0342 
*103 

 
 

 
3.0428 
*103 

 

 
 

 
3.4106 
*103 

 
 
 

4.2197 
*106 

12.5761 
48.7209 
99.6684 
99.6684 
18.09 

1.385*106 

1.385*106 

 
 
 
 

1.1854 
*10-8 

 
 
 
 

1.4585 
*10-5 

 
 
 

Case
2.2.3 

-0.1 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
3.0342 
*103 

 
 

 
3.0428 
*103 

 

 
 

 
3.4106 
*103 

 
 
 

4.2193 
*106 

13.5439 
48.1334 
99.6684 
99.6684 
18.0056 

1.385*106 

1.385*106 

 
 
 
 

2.3702 
*10-8 

 
 
 
 

1.4585 
*10-5 

 
 
 

Case
3.2.3 

-0.2 
-1 

-0.4224-i3.0633 
-0.4224+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
3.0342 
*103 

 
 

 
3.0428 
*103 

 

 
 

 
3.4106 
*103 

 
 
 

4.2168 
*106 

15.9199 
46.8233 
99.6684 
99.6684 
17.8307 

1.385*106 

1.385*106 

 
 
 
 

4.7429 
*10-8 

 
 
 
 

1.4585 
*10-5 

 

Table 4.9: Performance analysis corresponding to 2 blocks random distribution 
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Case
4.2.3 

-0.0167 
-1 

-0.8-i3.0633 
-0.8+i3.0633 

-3.6152 
-20.2 
-20.2 

 

 
 

 
3.1354 
*103 

 
 

 
3.1446 
*103 

 

 
 

 
3.5187 
*103 

 
 
 

4.9341 
*106 

11.9980 
49.0888 

126.3709 
126.3709 
18.1451 
1.1451 

1.5599*106 

1.5599*106 

 
 
 
 

3.3882 
*10-9 

 
 
 
 

1.295 
*10-5 

 
 
 

Case
5.2.3 

-0.0167 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 

 
1.9302 
*103 

 
 

 
1.9438 
*103 

 

 
 

 
2.2665 
*103 

 
 
 

3.4952 
*106 

11.998 
49.0889 

110.2396 
110.2396 
18.1452 

1.0152*106 

1.0152*106 

 

 
 
 
 

4.7831 
*10-9 

 
 
 
 

1.9897 
*10-5 

 
 
 

Case
6.2.3 

-0.0167 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 

 
276.43

49 

 
 

 
390.54

27 
 

 
 

 
593.56 

 
 

 
8.56 
*105 

11.9983 
49.0877 

122.1799 
122.1799 
18.1454 

2.432*105 

2.432*105 

 
 
 
 

1.953 
*10-8 

 
 
 
 

8.3058 
*10-5 

 
 
 

Case
7.2.3 

-0.05 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 

 
1.9302 
*103 

 
 

 
1.9438 
*103 

 

 
 

 
2.2665 
*103 

 
 
 

3.4949 
*106 

12.5762 
48.7210 

110.2396 
110.2396 
18.0901 

1.0152*106 

1.0152*106 

 
 
 
 

1.4313 
*10-8 

 
 
 
 

1.9897 
*10-5 

 
 
 

Case
8.2.3 

-0.1 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 

 
1.9302 
*103 

 
 

 
1.9438 
*103 

 

 
 

 
2.2665 
*103 

 
 
 

9.4942 
*106 

13.5439 
48.1335 

110.2396 
110.2396 
18.0056 

1.0152*106 

1.0152*106 

 
 
 
 

2.862 
*10-8 

 
 
 
 

1.9897 
*10-5 

 
 
 

Case
9.2.3 

-0.2 
-1 

-0.4224-i2.5 
-0.4224+i2.5 

-3.6152 
-20.2 
-20.2 

 

 
 

 
1.9301 
*103 

 
 

 
1.9438 
*103 

 

 
 

 
2.2665 
*103 

 
 
 

3.4917 
*106 

15.9199 
46.8234 

110.2396 
110.2396 
17.8308 

1.0152*106 

1.0152*106 

 
 
 
 

5.7279 
*10-8 

 
 
 
 

1.9897 
*10-5 
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Case
10.2.3 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 

 
276.43

1 

 
 

 
390.54

19 

 
 

 
593.555

2 

 
 
 

8.5603 
*105 

12.5764 
48.7197 

122.1799 
122.1799 
18.0903 

2.432*105 

2.432*105 

 
 
 
 

5.8435 
*10-8 

 
 
 
 

8.3058 
*10-5 

 
 
 

Case
11.2.3 

-0.1 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 

 
276.42

52 

 
 

 
390.54

08 
 

 
 

 
593.548 

 

 
 
 

8.5597 
*105 

13.5442 
48.1321 

122.1799 
122.1799 
18.0058 

2.432*105 

2.432*105 

 
 
 
 

1.1683 
*10-7 

 
 
 
 

8.3058 
*10-5 

 
 
 

Case
12.2.3 

-0.05 
-1 

-1-i 
-1+i 

-3.6152 
-20.2 
-20.2 

 

 
 

 
276.41

35 

 
 

 
390.53

85 

 
 

 
593.533

7 
 
 

 
 
 

8.5562 
*105 

15.9204 
46.8219 

122.1799 
122.1799 
17.8310 

2.432*105 

2.432*105 

 
 
 
 

2.3375 
*10-7 

 
 
 
 

8.3058 
*10-5 

 

5- Discussion  

In each of the following sections we are going to analyze the effect of number of blocks 

either one or two blocks, the effect of permutation: the first or the second permutation 

and the effect of distribution either by taking a dominant block and a non-dominant 

block or by distributing the poles (eigenvalues) randomly on the gain magnitude, 

individual and overall sensitivities and the robust stability. 

5.1-The Effect of Number of Blocks  

I-First Permutation  

I.1- Feedback Gain Magnitude  

It is noticed that the magnitude is smaller for two blocks, where the best case is case 

8.1.2 with n1=1.1620*104, n2=9.4822*103, n∞=1.0529*104. 
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I.2- Overall & Individual Sensitivity  

 The overall sensitivity is smaller for two blocks, where the best is case 4.1.2 with: 

S(V) =1.67644*107 . 

 The poles have smaller individual sensitivity for two blocks, where the best case is 

case 4.1.2 with: {S1 =6.8461, S2 =702.2489, S3,4 =453.6747, S4=2.0224*103, 

S6=5.9614*106, S7=5.9060 *106}. 

I.3- Robust Stability 

 The robust measure M2 is bigger for two blocks, where the best case is case 3.1.2 

with: M2=0.1182*10-7. 

 The robust measure M3 is bigger for two blocks, where its value is identical for all 

cases and it is equal to 0.3385*10-5. 

II-Second Permutation  

II.1- Feedback Gain Magnitude  

It is noticed that the magnitude is smaller for two blocks, where the best case is case 

5.2.2 with: n1=627.37613, n2=520.4054, n∞=669.1315. 

PS: n∞ has the same value for all cases. 

II.2- Overall & Individual Sensitivity  

 The overall sensitivity is smaller for two blocks, except for case4 and the best is 

case 4.2.2 with: S(V)=2.3105*105 . 

 The poles have smaller individual sensitivity for two blocks, except for cases from 

5 to 12 where the most dominant pole has smaller individual sensitivity for one 

block, and  the best case is case 1.2.2 with: {S1 =24.0858, S2 =676.2117, 

S3,4=29.8121, S4=105.2778, S6=2.5765*105, S7=2.576*105}. 

II.3- Robust Stability 

 The robust measure M2 is bigger for two blocks, except for cases 4 and 5, and the 

best case is case 5.2.1 with: M2=1.8165*10-6. 

 The robust measure M3 is bigger for two blocks, except for case4 where the best 

case is case 4.2.1 with M3=2.6416*10-4. 
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PS: M3 has the same value which is equal to 7.8314*10-5, except for cases 6 and 10.  

5.2-The Effect of Permutation: [b1, b2], [b2, b1] 

I- One Block 

I.1- Feedback Gain Magnitude  

It is noticed that the magnitude is smaller for the second permutation, where the best 

case is case 6.2.1 with: n1 =1.0691*104, n2 =1.1057*104, n∞ =1.4954*104. 

I.2- Overall & Individual Sensitivity  

 The overall sensitivity is smaller for the second permutation, where the best is case 

4.2.1 with: S(V) =2.3105*105. 

 The poles have smaller individual sensitivity for the second permutation, where the 

best case is case 1.2.1 with: {S1 =44.4043, S2 =89.8437, S3,4 =526.0910 

S5=4.6649*103, S6 =3.2436*106, S7 =3.2436*106}. 

I.3- Robust Stability 

 The robust measure M2 is bigger for the second permutation, where the best case is 

case 5.2.1with: M2 =1.8165 *10-6. 

 The robust measure M3 is bigger for the second permutation, where best case is 

case 4.2.1with: M3 =2.6416 *10-4. 

II- Two Blocks   

II.1- Feedback Gain Magnitude  

It is noticed that the magnitude is smaller for the second permutation, where the best 

case is case 5.2.2 with: n1 =627.37613, n2 =520.4054, n∞ =669.1315. 

II.2- Overall & Individual Sensitivity  

 The overall sensitivity is smaller for the second permutation, where the best is case 

3.2.2 with: S(V) =6.0645*105 . 

 The poles have smaller individual sensitivity for the second permutation, where the 

best case is case 1.2.2 with: {S1 =24.0858, S2 =67.2117, S3,4 =29.8121, 

S5=105.2778, S6 =2.5765*105, S7 =2.5765*105}. 
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II.3- Robust Stability 

 The robust measure M2 is bigger for the second permutation, where the best case is 

case 3.2.2 with: M2 =3.295*10-7. 

 The robust measure M3 is bigger for the second permutation, where the best case is 

cases 1/2/3/4/5/7/8/9/11/12 .2.2 with: M3 =7.8314*10-5. 

5.3- The Effect of Distribution:”Dominant/Non-dominant”&”Random” 

I- First Permutation  

I.1- Feedback Gain Magnitude  

It is noticed that from case 1 to 3: the magnitude is smaller for dominant/non-dominant 

distribution. Where from case 4 to 12: the magnitude is smaller for random distribution. 

 The best case is case 12.1.3 with: n1 =1.1215*103, n2 =1.4541*103, n∞ =2.1946*103. 

I.2- Overall & Individual Sensitivity  

 The overall sensitivity is smaller for random distribution, where the best is case 

6.1.3 with: S(V) =2.6805*106. 

 The dominant poles have a smaller individual sensitivity for dominant/non-

dominant distribution, except for cases: 6,10,11,12 and the non-dominant poles 

have a bigger individual sensitivity for dominant/non-dominant distribution. The 

best case is case 4.1.2 with: {S1 =6.84612, S2 =702.4089, S3,4 =453.6747 

S5=2.0224*103, S6 =5.9614*106, S7 =5.9062*106}. 

I.3- Robust Stability 

 The robust measure M2 is bigger for random distribution, except for case 4, and the 

best case is case 12.1.3 with: M2 =76.2856 *10-8. 

 The robust measure M3 is bigger for random distribution, where best case is case 

6.1.3 with: M3 =2.3526 *10-5. 
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II- Second Permutation    

II.1- Feedback Gain Magnitude  

It is noticed that the magnitude is smaller for the dominant/non-dominant distribution, 

except for the cases 10, 11, 12 where the best case is 12.1.3 with: n1 =276.4135, 

n2=390.5385, n∞ =593.5337. 

II.2- Overall & Individual Sensitivity  

 The overall sensitivity is smaller for dominant/non-dominant distribution, where the 

best is case 3.2.2 with: S(V) =4.2168*106 . 

The poles (-20.2 and the complex pair) have smaller individual sensitivity for 

dominant/non-dominant distribution, except for the cases: 6, 10, 11, 12.The other poles 

have smaller individual sensitivity for random distribution, where the best case is case 

1.2.3 with: {S1 =12.5761, S2 =48.7209, S3,4  =99.6684  , S5 =18.09, S6=1.385*106, 

S7=1.385*106}. 

II.3- Robust Stability 

 The robust measure M2 is bigger for dominant/non-dominant distribution, where the 

best case is case 3.2.2 with: M2 =3.295*10-7. 

 The robust measure M3 is bigger for dominant/non-dominant distribution, except 

for cases: 6/10/11/12 .2.3 with: M3 =8.3058*10-5. 

6-The Effect of the Similarity Transformation 𝑇𝑇𝐶𝐶   

6.1- Norm of 𝑇𝑇𝐶𝐶 

As we can notice from the previous section, the similarity transformation of the second 

permutation gives the smallest gain magnitudes compared to the results gotten by the 

similarity transformation of the first permutation. We can explain this by the 

relationship that exists between 𝑇𝑇𝐶𝐶 and 𝑲𝑲, which is expressed by the equation:  

𝑲𝑲=𝑲𝑲𝒄𝒄*𝑇𝑇𝐶𝐶 . This implies that: ||𝑲𝑲 ||= ||𝑲𝑲𝑲𝑲|| || 𝑇𝑇𝐶𝐶 ||. 

To confirm that, the norm of Tc has been calculated: 

 The first permutation gives a 𝑇𝑇𝐶𝐶 that has a norm-2 equal to: ||𝑇𝑇𝐶𝐶 ||2 =27.3032. 

 The second permutation gives a 𝑇𝑇𝐶𝐶 that has a norm-2 equal to: ||𝑇𝑇𝐶𝐶 ||2 =7.6419. 
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6.2- Condition number of 𝑇𝑇𝐶𝐶 

To see the effect more and more we introduce the condition number of the similarity 

transformation 𝑇𝑇𝐶𝐶, which has an effect on the sensitivity. We have noticed that the 

similarity transformation of the second permutation gives the smallest individual and 

overall sensitivities compared to the results gotten by the similarity transformation of 

the first permutation. 

PS: With the similarity transformation of the second permutation, we notice that the 

individual sensitivity of the pole “-1” is enhanced.  

 The first permutation gives a 𝑇𝑇𝐶𝐶 that has a condition number equal to:   

𝜒𝜒(𝑇𝑇𝐶𝐶)=1.1196 *104. 

 The second permutation gives a 𝑇𝑇𝐶𝐶 that has a condition number equal to:   

𝜒𝜒(𝑇𝑇𝐶𝐶)=2.6679 *103. 

As said previously in chapter 2, the smaller the condition number the better or the well-

conditioned. Hence ones again the second permutation gives better system 

performance.  
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Conclusion 

 
The main objective of this work was to see the effect of the similarity transformation on 

the system performance in order to select the best control design that satisfies the 

requirements, in the case of airplane “F-16 fighter”.  

Different cases has been simulated and evaluated in terms of performance stability, 

robustness measures and gain magnitudes. This was done in three different ways 

considering the number of blocks, permutation and the distribution of the closed-loop 

poles. 

During the work, the general controller canonical form was used since it is simple and 

easy for use. 

Throughout the simulation, we noticed that the second permutation with two blocks 

gives the best results. However, there was a tradeoff between the feedback gain 

magnitude & overall sensitivity and individual sensitivity. Since they are inherently 

different sets of requirements, improvement of one of them must inevitably result in a 

degradation of the other. For the two blocks “dominant/non-dominant distribution”, the 

smallest gain magnitudes and overall sensitivity were obtained. Whereas, for the two 

blocks “random distribution”, the smallest individual sensitivities were introduced; in 

addition to that, the individual sensitivity of the poles “-1” was decreased so the 

performance of the system was enhanced. 

As a further work, we may suggest to do the control design using the second 

permutation with two blocks. And also, we may suggest calculating the time domain 

criteria for more concrete results.   
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Appendix A 
 

 
• Simulation code:  

 
In order to facilitate our work, the following MATLAB program was used to proceed 

with the simulation. 
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 This code was used while working with the first permutation [b1, b2]. 

 

 In order to use the program with the second permutation  [b2, b1], we have done 

some modification presented as follows: 
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