
Registration Number:…..…../2018

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Power and Control

Final Year Project Report Presented in Partial Fulfilment of

the Requirementsfor the Degree of

MASTER

In Electrical and Electronic Engineering

Options: Control,Computer

Title:

Presented by:

- RAIS Mohamed Cherif

- ZEROUATI Abdelmalek

Supervisors:

Dr, A. MAACHE Dr, I.AKLI

RFID platform for mobile robot navigation

i

ACKNOWLEDGEMENT

First and foremost, we would like to thank ALLAH the almighty, for

giving us the strength, knowledge and the ability to undertake this project

study and complete it satisfactorily. Without his blessings, this

achievement would not have been possible.

We would like to express our deepest sense of gratitude to the supervisor

Dr. AKLI Isma and Dr. MAACHE Ahmed for his guidance, support and

help throughout the different phases of the project, Mr. DJAZAIRI Salim

the future Doctor with God’s willing, And to all and every teacher who

taught and guide us from primary school to the last year of study.

ii

DEDICATION

Every challenging work needs self-efforts as well as guidance of Elders

those who were very close to our heart.

My humble effort I dedicate to my loving

parents and my family members, Whose affection, love, encouragement

and prays of day and night make me able to get such success and honor.

Along with all my friends, hardworking and respected Teachers.

Abdelmalek ZEROUATI.

iii

ABSTRACT

Localization , map-building and motion control (navigation) are the three major tasks

for a successful mobile robot navigation. This report studies a hardware in the loop

simulation system using the Radio Frequency Identification (RFID) technology for

the design and implementation of cost-effective and modular control technique to

navigate a mobile manipulator in a virtual static environment.

The implemented navigation system is mainly composed of two parts: the RFID

hardware platform and the Gazebo simulator for the robotic virtual environment. The

RFID platform consists of multiple antennas, an RFID reader, and RFID tags which

are placed in a three dimensional workspace. These tags provide necessary

information about the environment for the reader. This information are then passed, in

real-time, to the Gazebo simulator in order to generate appropriate control actions for

the robot’s actuators. These control actions make the robot reach target positions or

track predefined trajectory in the virtual environment depending on the desired task.

The system was successfully implemented and gave promising preliminary results.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. i

DEDICATION ... ii

ABSTRACT ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vii

GLOSSARY .. viii

GENERAL INTRODUCTION .. 1

CHAPTER 01: BACKGROUND .. 2

1.1. RFID .. 2

1.1.1. definition .. 2

1.1.2. Why RFID .. 2

1.1.3. Applications ... 3

1.2. Robotics ... 3

1.2.1. definition .. 3

1.2.2. Navigation .. 3

1.2.3. Perception .. 4

1.2.4. Localization.. 4

1.2.5. Path planning ... 5

1.2.6. Motion control ... 6

1.3. Technology and terminology .. 6

1.4. Summary ... 7

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN 8

2.1. System architecture ... 8

2.1.1. Embedded platform .. 9

2.1.2. Robuteur/UML ... 10

2.1.3. RFID platform .. 10

2.1.4. Simulation station .. 11

2.1.5. Cloud .. 12

2.2. Simulation Setup ... 12

2.2.1. Robot 3D Model .. 12

2.2.2. Gazebo 3D model .. 12

v

2.2.3. Creation of Meta-Package ... 13

2.2.4. Configuring the controllers .. 13

2.2.5. Navigation Stack Setup .. 14

2.2.6. The move base node... 15

2.3. Summary ... 16

CHAPTER 03: SYSTEM IMPLEMENTATION .. 17

3.1. Simulation using navigation stack... 17

3.1.1. Map Building using SLAM .. 17

3.1.2. Adaptive Monte Carlo Localization localization 19

3.1.3. Autonomous Navigation .. 20

3.2. RFID platform ... 22

3.2.1. Main system layout .. 23

3.2.2. Application design ... 23

3.2.3. RFID reader configuration ... 25

3.2.4. Application features ... 26

3.2.5. The database schema.. 27

3.2.6. TAG naming specification ... 29

3.2.7. RSSI to distance resolution .. 31

3.3. RFID Based Navigation approach... 33

3.3.1. Goal .. 34

3.3.2. Feedback .. 34

CHAPTER 04: RESULTS AND DISCUSSION ... 37

4.1. RFID platform analysis ... 37

4.1.1. Advantages ... 37

4.1.2. Limitations ... 37

4.1.3. Solutions .. 38

4.2. Simulation issues and observation .. 38

4.2.1. Height and Orientation of the laser sensor ... 38

4.2.2. Environment Selection ... 39

4.2.3. Navigation stack tuning ... 39

4.3. Summary ... 40

GENERAL CONCLUSION .. 41

REFERENCES .. 43

vi

I. APPENDIX A .. 45

1.1. An Introduction to Robot Operating System ROS : 45

1.2. Understanding the ROS file system level : ... 46

1.3. Installing ROS Indigo.. 47

1.4. Simulation launch and Configuration files.. 49

II. APPENDIX B .. 52

1.5. Components ... 52

1.5.1. Reader .. 52

1.5.2. Antennas .. 52

1.5.3. Tags .. 52

1.6. Configuration .. 53

1.6.1. Hardware configuration ... 53

1.6.2. Software configuration... 54

1.6.3. Algorithms configuration ... 54

1.6.4. Raspberry pi setup.. 54

1.7. Implemented commands ... 54

vii

LIST OF FIGURES

Figure 1.1:Structure of an UHF RFID system[20]. _______________________________________ 2

Figure 1.2: Control loop for autonomous mobile robot.[2] _________________________________ 4

Figure 1.3: General schematic for mobile robot localization.[2] _____________________________ 5

Figure 2.1: The overall system[21]. __ 8

Figure 2.2: Overall system architecture___ 9

Figure 2.3: Robuteur chassis dimensions [22] __ 10

Figure 2.4: RFID hardware configuration in IT environment _____________________________ 10

Figure 2.5: Passive RFID tag [14] __ 11

Figure 3.1:Navigation stack functionalities and operation. ________________________________ 17

Figure 3.2: Gazebo simulator. ___ 18

Figure 3.3: Step by step map building process __ 18

Figure 3.4: Map saving from the CLI. ___ 19

Figure 3.5:Rviz configuration pop-up screen. ___ 19

Figure 3.6:AMCL particle cloud ___ 19

Figure 3.7:Local navigation using local cost-map _______________________________________ 20

Figure 3.8:Global navigation using global cost-map. _____________________________________ 20

Figure 3.9: move_base launch file __ 21

Figure 3.10: Rviz popup screen to start the robot navigation. ______________________________ 22

Figure 3.11: Step by step path planning execution. ______________________________________ 22

Figure 3.12: Three-antennas setup[21]. ___ 23

Figure 3.13: Four-antennas setup[21]. __ 23

Figure 3.14: The main program flow chart. __ 24

Figure 3.15: RFID hardware configuration interface[21]. ________________________________ 25

Figure 3.16: Tag scan algorithms interface[21]. ___ 25

Figure 3.17: hostGreeting command XML file __ 26

Figure 3.18:: hostGreeting reply XML file ___ 26

Figure 3.19: Reader connection establishment/termination. _______________________________ 26

Figure 3.20: Main menu entries. ___ 26

Figure 3.21: Tag menu entries. __ 26

Figure 3.22: Configuration menu entries. __ 26

Figure 3.23: Application output in automatic mode. _____________________________________ 26

Figure 3.24: Tag relation schema. __ 27

Figure 3.25: Task relation schema. ___ 28

Figure 3.26: Robot state relation schema. __ 28

Figure 3.27: Notification relation schema. ___ 29

Figure 3.28: Tag memory banks(blocks). __ 30

Figure 3.29: Binary representation of the tag naming specification. _________________________ 30

Figure 3.30: Class hierarchy. __ 31

Figure 3.31: Top View of the constructed model. __ 31

Figure 3.32: Side View of the constructed model. __ 31

Figure 3.33: Ros action client/server interface[4]. _______________________________________ 31

Figure 3.34: Ros action based application[4]. ___ 31

Figure 3.35: Task execution. __ 31

Figure 4.1: Directional radiation pattern in polar representation[20]. _______________________ 31

Figure 4.2: propagation of UHF RFID antenna fields[20]. ________________________________ 31

Figure I.1:ROS file system level. ___ 46

Figure I.2: Structure of a typical ROS package. ___ 46

Figure II.1RFID tag. __ 52

Figure II.2: WBM (reader web interface). ___ 53

Figure II.3: Antennas adjustment interface. __ 53

Figure II.4: Operation algorithms configuration page. ___________________________________ 54

file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212079
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212081
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212082
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212083
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212084
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212086
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212088
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212088
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212089
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212090
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212091
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212092
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212093
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212094
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212095
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212096
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212097
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212098
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212099
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212100
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212101
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212102
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212103
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212104
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212105
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212106
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212108
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212109
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212111
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212112
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212113
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212114
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212115
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212116
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212117
file:///C:/Users/user/Desktop/send/last.docx%23_Toc518212118

viii

GLOSSARY

A* : A star.

Actionlib : Action library.

AIDC. : automatic Identification and Data Capture.

AMCL. : Adaptive Monte carlo Localization.

API. : Application Programming Interface.

CAD. : Computer Aided Design.

D* : D star.

DBMS. : Data Base Management System.

EPC. :Electronic Product Code.

GPIO. : General Purpose Input Output.

OPC UA: Open Process Control Unified Architecture.

RFID : Radio Frequency Identification.

ROS:Robotic Operating system.

RVIZ : Robot Visualization tools.

SBC. : Single Board Computer.

SLAM. : Simultaneous Localization and Map Builduing.

TID. : Tag Identifier.

TF : Transform.

URDF. : Unified Robot Description File.

WMR :Wheeled Mobile Robot.

XML: eXtensible Markup Language.

1

GENERAL INTRODUCTION

Among the most common mobile robot navigation strategies, a large amount of effort

has been put on navigation strategies where vision sensors are employed as key

perception tools for a robot to realize its location. Without any doubt , these

navigation schemes provide satisfactory results in terms of robot’s pose estimation

capability. Often, the performance is even better when sensor fusion techniques are

used for such navigation systems. While vision-based navigation systems have

significant advantages for robot’s localization, they often suffer from restrictive

operating environments, deploying complex image processing techniques, dedicated

hardware, and a prohibitive computational complexity. For example, they fail to

operate mobile robots which are deployed for night navigation. Moreover, it is often

hard to use vision information as a navigation means as opposed to robot localization

one.

The rising prominence of guiding mobile robots in many real-life applications,

requires the development of a new generation of indoor navigation systems.

The primary objective of this project is to design and implement modular navigation

(or motion control) approach for mobile robots to navigate in indoor environment

with high accuracy and robustness. A modular solution is presented for the robot

navigation problem, taking advantage of the RFID technology. The proposed control

approach mainly generate control actions with the help of an RFID system deployed

in the robot’s operating environment.

Nevertheless, the proposed navigation strategies are not meant to substitute vision-

based robot navigation systems, rather, they might be regarded as promising

alternatives where vision systems fail to operate, night navigation environments, for

example.

This report is organized as follows. Chapter 01 Background where RFID approach,

mobile robot navigation and Hardware in the loop simulation are explained. Chapter

02 System Architecture and design is a general picture and description of the RFID

based navigation system. Chapter 03 System Implementation shows all the steps

needed for a successful navigation. First, an RFID application is used by the robot to

communicate with the RFID tags. The ROS based simulation using Gazebo is

configured such that mapping, localization and navigation are presented using Rviz

which is the visualization tool. Chapter 04 Results and discussion describes the main

results, issues related either to the RFID subsystem or the simulation part.

CHAPTER 01: BACKGROUND

2

1. CHAPTER 01: BACKGROUND

1.1. RFID

1.1.1. definition

RFID is an acronym that stands for radio frequency identification which is a

technology used to store and retrieve data remotely in memory elements that are

called tags.

RFID tag is a small contact-less storage element that is composed of a ROM /

EEPROM memory, coils, and circuitry for providing power and access to the digital

data stored in the tag.

 Figure 1.1:Structure of an UHF RFID system[20].

Most RFID tags are passive, i.e. they draw power from the electromagnetic field

generated by the reader’s antenna. But there is also active tags which are tags that has

a battery to power its circuitry.

RFID systems can also be classified according to their operating frequency (I)LF-low

frequency: 30-500 KHz-, (II) HF -High frequency: 10-15 MHz-,(III) UHF -Ultra high

frequency: 400-1000 MHz- where UHF are the highest range tags.

The tags used in this work are UHF passive tags, the most suited for robotic

application since they are cheap (around 20 dollar cents or less) and do not require

any maintenance.

1.1.2. Why RFID

RFID represents a technological advancement in AIDC (Automatic Identification and

Data Capture) because it offers advantages that are not available in other AIDC

systems such as barcode reading. RFID offers these advantages because it relies on

radio frequencies to transmit information rather than light. The use of radio

frequencies means that RFID can communicate :

 without line of sight, as radio waves can penetrate many materials.

 At greater speed, as a result, many tags can be read quickly.

CHAPTER 01: BACKGROUND

3

 over greater distances, since many radio technologies can transmit and receive

signals

1.1.3. Applications

RFID technology is used in many applications like the biometric passport but the

main fields of applications are :

 Logistics and assets management.

 Access control and object tracking.

 Augmented reality and interactive gaming.

1.2. Robotics

1.2.1. definition

Mobile robots are physical systems which perform tasks in their environment and are

not fixed to one physical location. Nowadays Different applications demand accurate

navigation procedures for mobile robot, among them industrial and service

applications.

Robot navigation means the robot ability to determine its own position in its reference

frame and then to plan a path toward some goal locations. In order to navigate in its

environment, the robot requires representation, i.e. a map of the environment and the

ability to interpret that representation.

1.2.2. Navigation

Generally the mobile robot has to answer the following three questions :

 Where am I?

 Where am I going?

 How do I get there?

In order to answer these questions, the robot has to [2] :

 Handle a map of its environment.

 Self-localize itself in the environment.

 Plan a path from its location to a desired location.

An autonomous robot navigation system has traditionally been hierarchical , the

following diagram show the closed control loop for a successful autonomous

navigation :

CHAPTER 01: BACKGROUND

4

 Figure 1.2: Control loop for autonomous mobile robot.[2]

1.2.3. Perception

The first action in the control loop is perception of the robot itself and its

environment, which is done through proprioceptive and exteroceptive sensors.

Proprioceptive sensors capture information about the self-state of the robot; whereas,

exteroceptive sensors capture information about the environment. The types of

sensors being used on mobile robots shows a big variety. The most relevant ones can

be briefly listed as encoders, gyroscopes, accelerometers, sonars, laser range finders,

beacon-based sensors and vision sensors.

1.2.4. Localization

The goal for an autonomous robot is to be able to construct (or use) a map or floor

plan and to localize itself in it.

The problem of robot localization consists of answering the question: Where am I?.

From the robot’s point of view, this means that the robot has to find out its location

relative to the environment. And, this poses difficult challenges because of the

inaccuracy and incompleteness of the sensors and actuators. The robot must also have

a representation of its belief regarding its position on the map. Where the design

questions for belief representation are: Does the robot identify a single unique

position as its current position?, or Does the robot describe its position in terms of a

set of possible positions? If multiple possible positions are expressed in a single

belief, How are those multiple positions ranked?

 Other localization methods include the use of passive objects in the environment

such as landmark-based navigation, positioning beacon systems, and route-based

localization strategies.

CHAPTER 01: BACKGROUND

5

 Figure 1.3: General schematic for mobile robot localization.[2]

1.2.5. Path planning

Path planning can be defined as searching a suitable path in a map from one place to

another, without colliding with any obstacles. The Robot motion planning can be

basically divided into two main categories: (I) local path planning and (II) global path

planning:

In global path planning, the environment is known in advance and the terrain is static

or the obstacles are known in advance. Hence, the path planning algorithm is able to

make a complete map of the environment form the start point to the goal even before

the robot starts motion.

On the other hand, in local path planning, the environment is completely unknown to

the mobile robot; i.e. the environment is dynamic and unstructured or the obstacles

are not known in advance. In such a situation, the robot needs to gather information

about the environment in real time and update its control laws so as to achieve this.

Sample algorithms for path planning are:

 Dijkstra’s algorithm.

 A*.

 D*.

 Artificial potential field method.

 Visibility graph method.

Path planning algorithms may be based on graph or occupancy grid

CHAPTER 01: BACKGROUND

6

1.2.5.1. Graph methods

Method that is using graphs, defines places where robot can be and possibilities to

traverse between these places. In this representation graph vertices define places e.g.

rooms in building while edges define paths between them e.g. doors connecting

rooms. Moreover each edge can have assigned weights representing difficulty of

traversing path e.g. door width or energy required to open it. Finding the trajectory is

based on finding the shortest path between two vertices while one of them is robot

current position and second is destination

1.2.5.2. Occupancy grid methods

Method that is using occupancy grid divides area into cells (e.g. map pixels) and

assign them as occupied or free. One of cells is marked as robot position and another

as a destination. Finding the trajectory is based on finding shortest line that do not

cross any of occupied cells

1.2.6. Motion control

A mobile robot needs locomotion mechanisms that enable it to move unbounded

throughout its environment. But, there are a large variety of possible ways to move;

so, the selection of a robot’s approach to locomotion is an important aspect of mobile

robot design. In locomotion, the environment is fixed and the robot moves by

imparting force to the environment.

Locomotion share the same core issues of stability, contact characteristics and

environmental type [2] :

Stability: number and geometry of contact points, canter of gravity,static/dynamic

stability, inclination of terrain.

Characteristics of contact: contact point/path size and shape, angle of contact, friction.

Type of environment: structure, medium (e.g. water, air, soft or hard ground).

In mobile robotics, we need to understand the mechanical behavior of the robot both

in order to design appropriate mobile robots for tasks and to understand how to create

control software for an instance of mobile robot hardware.

1.3. Technology and terminology

1.3.1.1. ROS

The Robot Operating System (ROS) is a flexible framework for writing robot

software. It is a collection of tools, libraries, and conventions that aim to simplify the

task of creating complex and robust robot behavior across a wide variety of robotic

platforms.

CHAPTER 01: BACKGROUND

7

The advantage of using ROS over traditional robotic development methods is the

ability to share and reuse libraries and packages in another platform in addition to the

modularity and encapsulation provided by this platform which allows the system to

function even if a subsystem fails.

1.3.1.2. Python

Python is an interpreter, interactive, object-oriented programming language which

combines remarkable power with very clear syntax.

Furthermore is extensible in C or C++, has interfaces to many system calls , libraries

and various window systems.

1.3.1.3. XML

Extensible Mark-up Language (XML) is a simple, very flexible text format derived

from SGML (ISO 8879). Originally designed to meet the challenges of large-scale

electronic publishing, XML is also playing an increasingly important role in the

exchange of a wide variety of data on the Web and elsewhere.

1.3.1.4. MySQL

MySQL is an open source DBMS that is one of the best and most robust relational

DBMS available. It is scalable , well documented and available on almost any

operating system.

1.3.1.5. Hardware in the loop Simulation

Hardware In the Loop is a form of real time simulation. FILs differs from real time

simulation by the addition of a real component in the loop [11].

HILS is a technique frequently applied in computer system design, especially for

embedded systems and control systems design.

1.4. Summary

This chapter provides a brief introduction to the main concepts and jargon related to

autonomous mobile robots, RFID technology and Hardware in the loop simulation.

Starting from the main steps and key concepts of a successful navigation followed by

descriptions and definitions of the used technologies and terminologies.

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

8

2. CHAPTER 02: SYSTEM ARCHITECTURE AND

DESIGN

Robuteur/UML is the robot proposed by the CDTA. i.e. the institution where the

development took place, It has been the robotic platform for many researches and

publications [7] and still is the object of study to many other researches, we may refer

to the research about “RFID task planning” being conducted by a graduate IGEE

student Salim Djazairi in order to get his PHD.

In this chapter we will explain the design and describe the architecture of the overall

system as of its components that has been selected in order to build an RFID platform

that is capable of integrating the ROS system to test it with robot and has the ability to

be adaptable to fit any future work on Robuteur/UML.

2.1. System architecture

The system could be divided into five main components

(I) Embedded platform refers to the SBC(single board computer) where that

all the other sub-systems are connected to, it acts as the switch that

connects all computer systems and as the executing environment of the

RFID application.

(II) Robuteur/UML refers to the physical robot, the embedded computer

wired to it, and the electronic boards (micro controller boards), its main

functionality is to connect hardware (sensors and actuator) with the high

level software interface of ROS.

(III) RFID platform refers to the RFID reader and application responsible for

the bridging and interfacing of the RFID reader with the robot through a

ROS(Robotic Operating System) node.

(IV) Simulation station refers to the computer platform and the ROS

application which are acting as the central brain of the robot.

(V) Cloud refers to the remote database and the API used for

Figure 2.1: The overall system[21].

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

9

notification(SMS).Which are run from the embedded platform.

Figure 2.2: Overall system architecture

2.1.1. Embedded platform

The embedded platform is an embedded SBC (single board computer).This board acts

as :

 Execution platform for the RFID application.

 A network link between the RFID reader using Cable, Robuteur/UML using

Wi-Fi , and the Simulation station also using WI-FI.

 A testing and troubleshooting platform for the whole system because of it

extensibility(WI-FI, GPIO, USB ,Bluetooth …etc.), flexibility(OS install on

SD-CARD), ease of use i.e. no special hardware required to program it, and

availability of software(ROS, python, Bash, Node-red , …etc).

 A data logging platform.

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

10

2.1.2. Robuteur/UML

Robuteur/UML is the robot proposed by the CDTA as a platform for testing and

validation.

The main features and functionalities of the Robuteur/UML are

 Communication with other robot components that uses the ROS as the

simulation station , and the RFID platform.

 Real-time OS with synchronization and scheduling capabilities provided by

SynDEx.

 Communication with low level and hardware through MPC555

microcontroller boards using the CAN bus.

 The MPC555 based boards are responsible of interacting with the hardware

(ultrasonic ranging detector, infrared sensors , motors …).

2.1.3. RFID platform

The RFID system consists of the RFID reader which requires antennas to send radio

waves and tags to store the data.

Figure 2.3: Robuteur chassis dimensions [22]

Figure 2.4: RFID hardware configuration in IT environment

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

11

A. The reader

The RFID reader used in this project is the Simatic RF 680R. The main functionality

of the reader is to communicate with antennas and to give a higher level interface for

interacting with Tags. The system that we are using has three interfaces WBM (web

interface) , XML(IT) and OPC (automation). In our work, we have used the WBM

interface when configuring the reader and adjusting antennas, while we used the XML

interface in the programming part.

B. The antennas

The RFID antennas used in this project are the Simatic RF 650A. The antennas have

been deployed over the robot in a way to give a 360 degrees coverage of its

surrounding environment.

C. The tags

The RFID tags used in this project are the Simatic RF630L Smart-label variant. Also

called transponders, these are the memory elements where the data is being stored.

2.1.4. Simulation station

This stands for the computer used to visualize, monitor, and control the robot using

Gazibo and Rviz. This is also the platform where the path planning and all the

robotics decisions occur.

It has the robotic and simulation packages and software

 ROS stands robotic operating system which is the meta operating system used

to inter connect all the robot components and implement the robotics

algorithms.

 Gazebo is a robot simulation and modeling platform used to monitor and test

the reobot.

 Rviz is a robot visualization tool.

It is connected to the other sub-systems via the embedded platform (Raspberry pi)

using a WI-FI network.

Figure 2.5: Passive RFID tag [14]

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

12

2.1.5. Cloud

The cloud consists of the services that either require internet as the SMS API or the

components that are not mandatory for a robot to function correctly as the remote

database (central DB).

2.2. Simulation Setup

In this section , we will explain all the steps needed to configure the simulation

model of the robot and the control package as well. Also , a clear description of the

navigation stack which is a set of ROS nodes and packages which are used for path

planning and obstacle avoidance is given.

2.2.1. Robot 3D Model

At first, a 3D model of the Robot must be created. It can be done using one of the

CAD tools such as Solidworks, AutoCAD, Blender and so on. This model is then

transformed to an URDF file. Another technique is to write directly an URDF file that

describes the kinematic and Dynamical model of the Robot. This URDF file is an

XML based file which specifies the following features of the Robot[1]:

• The kinematic and dynamic description of the robot.

• The visual representation of the robot.

• The collision model of the robot.

Basically The description of the robot (URDF file) consists of a set of links (parts),

elements, and a set of joint elements, which connect these links together.

The 3D model of the Robot Robuter/ULM has been previously built (at CDTA)

using Solidworks and then an URDF model (Unified Robot Description Format) has

been extracted, the one that is suitable to be processed in Robot operating system

(ROS). This URDF file has been updated according to the simulation requirements.

2.2.2. Gazebo 3D model

To make The URDF file of Robuter/ULM accessible by gazebo simulator, gazebo

references, plugins and appropriate parameters must be added. The following will

clarify all the steps followed.

2.2.2.1. Gazebo reference

We use gazebo reference in the URDF file to define and add each link (part).Also, we

can specify different parameters such as color , gravity and so on.

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

13

2.2.2.2. Transmition Tags

Transmition tags are elements that describe the relation between actuators and joints.

Mainly , they are used such that we can control our robot joints using ROS

controllers. We have to specify the hardware interface for the joint and the actuator as

well.

2.2.2.3. gazebo plugins

Gazebo plugins give our URDF model greater functionalities and can add ROS

messages and service calls for sensor output and motor input. Here are the plugins

added to the URDF file :

a-Gazebo ROS. control

After adding the transmission tags , we have to add the gazebo_ros_control plugin

in the URDF file to analyze the transmit tags and assign the appropriate hardware

interfaces and control manager.

b – Differential Drive Controller

In order to move the robot in Gazebo, we have added a Gazebo ROS plugin file

called libgazebo_ros_diff_drive.so to get the "Differential drive" behavior in the

robot.

c- Laser

 We have used the Gazebo ROS plugin file called libgazebo_ros_laser.so to simulate

the Laser.

2.2.3. Creation of Meta-Package

The ROS community has established conventions for packages that define robots,

their ROS bindings, and the gazebo integration. we have followed all of these

conventions in our work. we have created the following packages :

● Gazebo : this package holds all the launch and world files needed for the gazebo

simulator and different stages of the simulation.

● Description : this package contains the URDF file and the meshes exported from

Solidworks.

● Control : this package has a configuration file and a launch file for ROS

controllers and their interface for the joints of our robot.

2.2.4. Configuring the controllers

In order to control each joint, we have to specify a controller compatible with the

specified transmission tag defined previously in the URDF file for each joint.

Connecting these controllers mainly requires writing a configuration file [appendix

A1] which contains three types of controllers that ROS provides :

● Joint state controllers : these controllers publish the states of the robot’s joints.

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

14

● Joint velocity controllers : these controllers are used for sending the right and left

velocities to the mobile base , specifically for the wheels joints.

● Joint position controllers : these controllers are used for the joints of the arm

mounted on the mobile base.

2.2.5. Navigation Stack Setup

The Navigation stack is a set of ROS nodes and algorithms which are used to

autonomously move a robot from one point to another , avoiding all obstacles the

robot might find in his way. The ROS Navigation package comes with an

implementation of several navigation related algorithms such as SLAM, A *(star),

Dijkstra’s, AMCL, and so on, which can directly be used in our application.

The navigation stack will take as input: the current location of the robot, the desired

location the robot wants to go, the odometry data of the robot, and data from a sensor

such as laser. In exchange, it will output the necessary velocity commands to the base

controller in order to move the robot to the desired location.

To sum up, we can say that the main objective of the Navigation stack is to move a

robot from point A to point B , assuring it will not crash against obstacles or get lost

in the process.

2.2.5.1. Hardware requirements :

The ROS navigation stack is designed as generic.There are some hardware

requirements that should be satisfied by the robot. Following are the requirements:

- The Navigation package will work better in differential drive and holonomic. Also,

the mobile robot should be controlled by sending velocity commands in the form :

* x,y (linear velocity)

* z (angular velocity)

-The robot should mount a planar laser somewhere around the robot. It is used to

build the map of the environment.

- The Navigation stack will perform better for square and circular shaped mobile base.

Following are the basic building blocks of the Navigation stack. We can see what are

the purposes of each block and how to configure the Navigation stack for a our robot :

According to the shown diagram , we must provide some functional blocks in order to

work and communicate properly with the navigation stack. Following are brief

explanations of all the blocks which provided as inputs to the navigation stack :

• Odometry source : Odometry data of a robot gives the robot position with respect

to its starting position.Our odometry source is the wheel encoders.

• Sensor source : sensors are used for two tasks in navigation , One for localizing the

robot in the map or to detect obstacles. We have used laser scan and wheel encoders.

• sensor transforms/tf : the data captured by different sensors of the robot must be

referenced to a common frame of reference (usually the base_link) in order to

compare data coming from different sensors. The robot should publish the

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

15

relationship between the robot coordinate frame using ROS tf.

• base_controller : The main function of the base controller is to convert the output

of the Navigation stack, which is a twist (geometry_msgs/Twist) message, and

convert it into corresponding motor velocities of the robot. We have used the

Differential drive controller as the base controller.

2.2.6. The move base node

This is the most important node of the navigation stack. It is where most of the

processing happens.

Basically, The move_base node is an implementation of Simple Action Server which

takes a goal pose (position and orientation) as an input. We can send goal position to

it using a Simple Action Client node. After the goal pose is received, the move base

node links to components such as global_planner and local_planner for global and

local path planning, recovery_behavior if the robot is get stuck in some obstacle,

global_costmap and local_costmap, and generates the output which is the command

velocity (geometry_msgs/Twist), and sends to the base controller for moving the

robot for achieving the goal pose.

Following is the list of all packages which are linked by the move base node :

• Global planner : used for global path planning by finding the shortest path.

• Local planner : This package executes the global path given by the global planner.

• rotate-recovery: This package helps the robot to recover from a local obstacle by

performing a 360 degree rotation.

• clear-costmap-recovery: This package is also for recovering from a local obstacle

by clearing the costmap.

• costmap-2D: This package manages the costmaps of the environment.

The other packages which can be interfaced to the move_base node are :

• map-server : Map server package allows us to save and load the map generated by

the costmap-2D package.

• AMCL: AMCL is a method to localize the robot in map. This approach uses particle

filter to track the pose of the robot with respect to the map, with the help of

Figure 2.6: Navigation stack architecture [3].

CHAPTER 02: SYSTEM ARCHITECTURE AND DESIGN

16

probability theory. In the ROS system, AMCL can only work with maps which were

built using laser scans.

• Gmapping: The gmapping package is an implementation of an algorithm called Fast

SLAM which takes the laser scan data and odometry to build a 2D occupancy grid

map.

2.3. Summary

In this chapter we described system architecture, main components, and the different

blocks of the navigation stack.

CHAPTER 03: SYSTEM IMPLEMENTATION

17

3. CHAPTER 03:SYSTEM IMPLEMENTATION

In this chapter we will see the system implementation.

3.1. Simulation using navigation stack

In this section , we will see the three main steps needed for a successful navigation as

described previously. Also, we will see all the configurations and launch files needed

for each step.The following diagram simplify the whole process and clarify the work

of the navigation stack.

3.1.1. Map Building using SLAM (simultaneous localization and map

building)

Mapping

Mapping is the process of creating a spatial model of the environment surrounding the

robot using its sensors information. The map is then used for localization and

navigation. In order to build the map using ROS, the following commands are

executed on the Linux command line

$ roscore

$ roslaunchRobuterULMgazebo.launch[Annex1]

First, we start the robot simulation in a simple created environment by executing the

above launch file.

 Figure 3.1: Navigation stack functionalities and operation.

CHAPTER 03: SYSTEM IMPLEMENTATION

18

$ roslaunchRobuterULMgmapping.launch :

By launching the slam _gmapping node, the mapping process start.This node will use

Laser scan data and odometry topics. Also , this node requires two transformations

one from laser to base link and from base link to odom link. These transformations are

displayed in the TF topic. The slam gmaping node publishes the map in the map topic.

$rosrunRobuterULM teleoperation.py :

by running this node the robot can move using the keyboard and explore the whole

environment.

$ roslaunchRobuterULMrviz.launch :

Rviz is used to visualize the mapping process by adding specific displays (laser scan

map, TF topics)

Figure 3.3: Step by step map building process

.

Figure 3.2: Gazebo simulator.

CHAPTER 03: SYSTEM IMPLEMENTATION

19

$ rosrun map server map saver -f mymap :

After scanning the whole environment we can save the map created using map server

package. after executing the above command we can save our map :

Figure 3.4: Map saving from the CLI.

Once this process is done, the two files mymap.pgm and mymap.yaml are created.

The PGM file is the map’s image whereas the YAML file is the description of this

map. This YAML file can be later provided by map_server node for the localization

and navigation.

3.1.2. Adaptive Monte Carlo Localization (AMCL) localization

After successfully building the map, it can be used for navigation. But before

performing navigation , we need a localization algorithm such that we can know the

position and orientation of our robot in the map. Localization tells the robot where it

is in relation to the environment. AMCL localization uses odometry, laser data and a

static map.

In addition to the roscore , gazebo launch file and teleopeartion node , the following

commands are used for the robot localization :

$ roslaunchRobuterULMamcl.launch[Annex1] :

This launch file will run two nodes. The first node provided by the Amcl package

which does the localization. The node is highly configurable and it uses the particle

filter based localization method.Localization needs the map server node to get the

mymap.yaml file.

$ rosrunrvizrviz :

Now , to show that our localization algorithm is working , we will add the topics

needed for the localization which are the laser scan , map and the pose array display

which is published by the AMCL node. The following figure shows the localization.

 Figure 3.6: Amcl particle cloud

 Figure 3.5:Rviz configuration pop-up screen.

CHAPTER 03: SYSTEM IMPLEMENTATION

20

3.1.3. Autonomous Navigation

Once mapping and localization are successfully done then navigation can be easily

achieved. Package “move_base” is used to accomplish autonomous navigation.

This package provides the move base node that uses localization information. This

package also maintains two cost-maps each for the local and global planner. The

global planner is based on A∗ search algorithm while the local planner used the

dynamic window approach.

Four yaml files are used by the move base node which are : common cost

parameters, local cost-map, global cost-map, and base local planner. These files

are used for path planning to help autonomous navigation. We will go through each

one of them in details and understand their functionalities.

- Cost-map Configuration (global and)

Our robot will move through the map using two types of navigation—global and local

Cost-maps are used to save all the information of our map based on the occupancy

grid map built previously and user specified inflation radius.The cost-maps have

parameters to configure the behaviors, and they have common parameters as well,

which are configured in a shared file. Configuration basically consists of three files

where we can set-up different parameters. These files are as follows:

costmap common parameters
set obstacle_range to 2.5

set raytrace_range to 3.0

Fix footprint position to [[-0.4, -0.4], [-0.4,0.4], [0.4, 0.4], [0.4, -0.4]]

set inflation_radius to 0.50

set observation_sources to the value of laser_scan_sensor

global costmapparamters
set global_frame to path /map

set robot_base_frame to path /base_footprint

set update_frequency to 1.0

set spublish_frequency: 0.0

set static_map to true

rolling_window: false

local cost-map parameters

Figure 3.7: Global navigation using global

cost-map.
Figure 3.8:Local navigation using local cost-map

CHAPTER 03: SYSTEM IMPLEMENTATION

21

set global_frame to path /odom

set robot_base_frame to path /base_footprint

set update_frequency to 1.0

set publish_frequency to 2.0

set static_map to true

set rolling_window to false

set width to 6.0

set height to 6.0

set resolution to 1

Once we have the cost-maps configured, it is necessary to configure the base local

planner. The base local planner is used to generate the velocity commands to move

the robot :

base local planner parameters
set max_vel_x to 1.5

set min_vel_x to 0.5

set max_rotational_vel to 1.0

set min_in_place_rotational_vel to 0.4

set acc_lim_th to 3.2

set acc_lim_x to 2.5

set acc_lim_y to 2.5

set holonomic_robot to false

sim time : 1.0

sim granularity: 0.0325

yaw_goal tolerance : 0.1

xy_goal_tolerance : 0.1

Now, we will create a launch file for the move base node with the four yaml files that

have been configured as its parameters.

Now , the previous launch file is tested by sending our robot to a specific location

using the 2D Nav goal button of Rviz using the following commands :

$ roscore // to start roscore node

$ roslaunchRobuterULMgazebo.launch

Figure 3.9:move_base launch file

CHAPTER 03: SYSTEM IMPLEMENTATION

22

$ roslaunchRobuterULMamcl.launch

$ roslaunchRobuterULMmove_base.launch

Here, Rviz is also used to show the navigation related topics such as global and local

paths , the global and local costmaps.

$ roslaunchRobuterULMrviz.launch

Now, we just perform navigation in the map that we have created using the rviz

parameter “2D Nav Goal” which is used to create an optimum path for the robot to

reach the needed goal. Figure below shows the step by step path execution for a

desired goal in known generated map.

3.2. RFID platform

In this section we will describe the main system layout, the application design, the

database schema, and the tag naming specification.

Figure 3.11: Step by step path planning execution.

Figure 3.10: Rviz popup screen to start the robot navigation.

CHAPTER 03: SYSTEM IMPLEMENTATION

23

3.2.1. Main system layout

The left figure below represents the originally planned four-antennas design. This

design has the advantage of covering all the field around the robot. But due to the fact

the antennas require some distance between each other to operate safely this design

was changed. The adopted antennas configuration is the one described in right figure

below which uses only three-antennas, the drawback of this design is that the robot

has a tight blind spot, in the near front of the robot, where tags cannot be identified.

3.2.2. Application design

The application was developed using python and MySQL on Raspberry Pi 3 model B.

The main functionality of the application is to make a bridge and act like an API

between the Robot (ROS) and the exterior world (using Tags) by constantly scanning

for nearby tags , reading their content then sending the tags information (RSSI , TID

…) to the Robot platform for path and task planning.

3.2.2.1. Flow chart.

The application start by connecting through TCP/IP socket to the reader, when the

connection fails it will exit the application and throw the error causing the problem.

After the application connects to the reader, a menu appears containing entries to

menus, commands, and the auto mode.

That menus are the entries with “m” at the most left side, when selecting a menu entry

the application show us the next menu to choose from.

The commands are entry with either + or – at the most left side, when typing a

command entry the application generate the appropriate XML then send it to the

reader through TCP/IP connection. When receiving the reader reply the application

first it executes the quick action function that reacts based on data stored in the ID tag

field for emergency procedures like robot emergency stop, change direction … etc. in

Figure 3.12: Four-antennas setup[21]. Figure 3.13: Three-antennas setup[21].

CHAPTER 03: SYSTEM IMPLEMENTATION

24

order to avoid collision or danger; Then the application stores the sent command in a

file then reads the reply and stores the fetched information in the database.

The information that will be stored are RSSI , tag ID , block memory content, and

other information specific to commands themselves (configuration …)

Then the application displays the menu again to select the next action.

From entries there is also the auto scan mode which leads the application to scan

repeatedly for observed tag (IDs) then executes the quick action procedure, update

database, and send the fetched information to the ROS.

 Figure 3.14: The main program flow chart.

CHAPTER 03: SYSTEM IMPLEMENTATION

25

3.2.3. RFID reader configuration

In order to use the RFID system we need to configure the reader to operate safely and

accordingly.These modification are made using the web interface which is referred by

WBM.

Hardware configuration : These configurations help identify equipment (antennas,

cables…etc.), services, and Protocols (OPC , XML ,RF …), of the reader.

Algorithmic configuration : These configurations determine how the scan, tag

handling algorithms work, we aimed to get the best performance possible(high power

ramp, high RSSI delta …etc.).

Tag memory configurations: These configurations aim to define the tag memory

structure and tag fields(identifiers for memory blocks).

Figure 3.15: RFID hardware configuration interface[21].

Figure 3.16: Tag scan algorithms interface[21].

CHAPTER 03: SYSTEM IMPLEMENTATION

26

The picture below shows how to establish and terminate a connection with the RFID

reader.

3.2.4. Application features

The auto-scan functionality is invoked by typing “auto” at the main menu.

In addition to the auto-scan functionality a manual mode is available to enable and

simplify, debugging, testing, and the execution of commands.

The pictures below show the menu entries of main program where
“+” stand for implemented command

“-” stand for non-implemented command

“m” Stands for Menu entries

Figure3.19: Reader connection establishment/termination.

 Figure 3.17: hostGreeting command XML

file

Figure 3.18: host Greeting reply XML

file

Figure 3.20: Main menu entries. Figure 3.21: Tag menu entries. Figure 3.22: Configuration menu

entries.

Figure 3.23: Application output in automatic mode.

CHAPTER 03: SYSTEM IMPLEMENTATION

27

3.2.4.1. Other features

We have also implemented two other features independently from the Main

application

 Programmable SMS messaging(send a message when the reader disconnects).

 Remote database synchronization.

3.2.5. The database schema

 The relational databases are organized into 4 tables : (i) “tag” is the table which holds

the information related to the tags and the objects they represent (ii) “task” is the

relation which holds data related to the tasks (iii) “state” is the relation which holds

the robot state (iv) “notif” is the table that holds the configurations and notifications.

We have chosen to store X_cor, Y_cor, teta, as integers (SMALLINT) rather than real

numbers in order to save memory and have the same exact data in the tags, as in the

programming environment (database and code) which leads to the removal of

conversion errors, and the improve code maintainability. Same applies to ID_EPC and

data fields.

3.2.5.1. Tag relation description

Field Meaning Comments Field Meaning Comments
ID_EPC Tag EPC memory content (our tag memory size is 32

Bytes)
Name Object name This is added by

user

X_cor Tag x coordinate in cm

related to specific zone

plan

None. Y_cor Tag y coordinate in cm

related to specific zone

plan

None.

Zone Room, sector … None. Teta The angle with plan 32767 is equivalent

to 2Pi

Mobility Tag object ability to move None. Interference Parameters to reduce

RSSI to distance error

None.

Data Tag user memory content. None. Protection If tag is password

protected and password

None.

 Table 3.1: Tag relation fields description.

Figure 3.24: Tag relation schema.

CHAPTER 03: SYSTEM IMPLEMENTATION

28

3.2.5.2. task relation description

Figure 3.25: Task relation schema.

Field Meaning Comments Field Meaning Comments
ID Database internal ID. None. handle States whether task is in

process, processed, no,

scheduled, etc.

None.

X_cor Task x coordinate in cm
related to specific zone

plan

None. Y_cor Task y coordinate in cm
related to specific zone plan

None.

Zone Room, sector … None. Teta The angle with plan the
robot needs to be in.

32767 is equivalent
to 2Pi

T_def Time task has been

defined.

None. T_die Time when task will no

longer require execution.

None.

Description User defined description
for the task.

None. Source Refers to the task
owner(generator).

None.

 Table 3.2: Task relation fields description.

3.2.5.3. state relation description

 Figure 3.26: Robot state relation schema.

CHAPTER 03: SYSTEM IMPLEMENTATION

29

Field Meaning Comments Field Meaning Comments
ID Database internal ID. None. Time Time when data was valid. None.

X_cor Robot x coordinate in cm
related to specific zone plan

None. Y_cor Robot y coordinate in cm related to
specific zone plan.

None.

Zone Room, sector … None. Teta The robot orientation. 32767 is

equivalent to 2Pi.

Velocity The signed amplitude of the
velocity.

1 represents 10-6 m.s-1. source Refers to algorithm and source (
robot , tag …) used to fill generate

state.

None.

 Table 3.3:Robot state relation fields description.

3.2.5.4. Notification relation description

Field Meaning Comments Field Meaning Comments
ID Database internal ID. None. handle Notification processing status. None.

Type Configuration, error ,

warning , info …etc.

None. source The entity which has generated the

notification.

None.

destination The entity which has needs
the notification.

None. data The notification code, text, xml,
…etc. depending on the source.

None.

Time Time when notification has

been generated

None.

Table 3.4: Notification relation fields description.

3.2.6. TAG naming specification

Because RFID tags have a limited amount of memory and since robot needs a real-

time application, then the information about the tags (environment and objects) must

be coded in a more compressed way in order to be all stored in the tags , so the robot

will not need to access the main database in order to get information related to its

navigation.

Figure 3.27: Notification relation schema.

CHAPTER 03: SYSTEM IMPLEMENTATION

30

To further reduce latency, information and navigation data need to be stored in EPC

(memory block used to store tag ID), because it requires less time for be read

compared to other memory fields.

Figure 3.28: Tag memory banks(blocks).

Class defines what type of object does this tag refer according to its mobility.

ID define an identifier to the object

Position define the x coordinate, y coordinate and angle related the plan of the tag

Safety define the minimum distance to be kept if any from the tag in order to avoid

collision or damage.

Interference define some parameter when included in distance resolution process

(From RSSI to distance) will reduce the error caused by electromagnetic interference

(EMI), which leads to a more reliable and precise tag localization.

Figure 3.29: Binary representation of the tag naming specification.

CHAPTER 03: SYSTEM IMPLEMENTATION

31

a. Infrastructure are the tags used to help the robot identify its location and the

characteristics of its environment

b. Objects are the tags used by the robot to identify the objects and the tasks related to

them.

c. Credentials these are the tags that stores the necessary information (user, pass ...

etc.) to help the robot connecting to the available networks and systems.

3.2.7. RSSI to distance resolution

Since we do not have a predefined command in the reader which gives the distance

between the Tag and antennas, so in order to define a function that relies RSSI and

distance we have conducted a series of measurements of RSSI values in some

predefined position.

3.2.7.1. Experiment procedure

A number of points has been defined as: A0, B4…. with known coordinates on a

paper plan which was attached vertically away from any object that may cause

interference (free space) then we measure the equivalent RSSI of a tag at the

predefined

points , the paper plan is shifted a little more, then we repeat the process until we

cannot get any RSSI readings.

After this experimentation we measured data from more than 300 measuring point

,using these data we have defined the shape of the antennas field and the parameters

for the RSSI to distance function.

The actual RSSI value depends on numerous parameters[20]:

 Distance between antenna and transponder.

 Transponder type used (tag).

 Chip used in the transponder.

 Connected antenna.

 Transmit power.

Figure 3.30: Class hierarchy.

CHAPTER 03: SYSTEM IMPLEMENTATION

32

 Reflections.

 Noise level in the channel used and in neighbouring channels.

 Tag orientation compared to the antennas field.

3.2.7.2. RSSI to distance formula

The simplified formula for finding the Distance from the RSSI is [17],[18],[19].

𝐷 = 10
(
𝑃0−𝑅𝑆𝑆𝐼

10𝑁
)

 (3-1)

D= distance between antennas and tag

P0= -RSSI at the highest absolute value of RSSI (D=0).

RSSI = Received Signal Strength Indicator.

N = Path-Loss Exponent.

Because of the non-homogeneous antenna field, which has a narrow range in the

horizontals, and a wide range in the verticals of the antennas, an RSSI value of the tag

may refer to many distances depending on the zone where it is i.e. a tag having an

RSSI of 60 may be at 2.30 m if it is in the good zone , and it could be 0.84 m if it is in

the bad zone.

we have defined a function to compensate the shape of the antennas which is defined

as follow

𝛼(𝑐𝑜𝑠(𝜃))² + 𝛽(𝑠𝑖𝑛⁡(𝜃)⁡)² (3-2)

Where

𝜃=The angle of the tag on the plan(at horizon 𝜃 = 0).

𝛼 , 𝛽= experimental values defined usinf curve fitting.

The our function becomes

𝐷 =
𝑐∗𝑒

(
𝑃0−𝑅𝑆𝑆𝐼

10
)

[𝛼(𝑐𝑜𝑠(𝜃))2+𝛽(𝑠𝑖𝑛(𝜃))2]
 (3-3)

Where c is a constant

Using Matlab curve fitting tool we have defined the coefitions and the shape of the

function that relates the distance with the RSSI and 𝜃

𝛼 𝛽 C

0.034 0.313 1.055 10-5

 Table 3.5: Curve fitting parameters

CHAPTER 03: SYSTEM IMPLEMENTATION

33

 Figure 3.32: ide view of the constructed model.

Note:-

The graphs values in are not accurate because they are a 2D view of the 3D model.

In this graph the blue zones represents a short distance where red zones represents

long distances from reader and so on.

We notice that the distance estimated for a specific RSSI increases when the angle is

near 00 or 1800 which is as far compliant with the antennas characteristics.

3.3. RFID Based Navigation approach.

In this part , we will see the final step in our project, where the RFID subsystem (

client) will provide necessary information and give simple tasks to be accomplished

by the robot (server).This can be achieved using Actionlib package. Basically , this

package has a simple action interface that can be used to implement an action

client/server application as the following :

 Figure 3.31: Top view of the constructed model.

CHAPTER 03: SYSTEM IMPLEMENTATION

34

The Action-Client and Action-Server communicate via a "ROS Action Protocol",

which is built on top of ROS messages. The client and server then provide a simple

API for users to request goals (on the client side) or to execute goals (on the server

side) via function calls and callbacks.

In order for the client and server to communicate, we need to define a few messages

on which they communicate. This is with an action specification. This defines the

Goal, Feedback, and Result messages with which clients and servers communicate.

3.3.1. Goal

To accomplish tasks using actions, we introduce the notion of a goal that can be sent

to an Action-Server by an Action-Client. In the case of moving the base, the goal

would be a Pose Stamped message that contains information about where the robot

should move to in the world. For controlling the tilting laser scanner, the goal would

contain the scan parameters (min angle, max angle, speed, …etc.).

3.3.2. Feedback

Feedback provides server implementers a way to tell an Action-Client about the

incremental progress of a goal. For moving the base, this might be the robot's current

pose along the path. For controlling the tilting laser scanner, this might be the time left

until the scan completes.

Figure 3.33: ROS action client/server interface[4].

CHAPTER 03: SYSTEM IMPLEMENTATION

35

Now, the above application can be implemented using the following diagram:

The input node works as an action client , which is based on the RFID information

gathered from tags placed at the environment and it is a part of the RFID

subsystem.Accordingly, certain tasks will be ordered to the robot.Since the

move_base node is an implementation of a simple action server , it will execute the

goal positions given by the client node.

Since the move base is configured previously (chapter 2) we will mainly test directly

our application. A simple task is ordered to the move base which is navigating a series

of locations according to the RFID tags information.

Figure 3.35:Task execution.

Figure 3.34: ROS action based application[4].

CHAPTER 03: SYSTEM IMPLEMENTATION

36

Summary :

In this chapter , we have seen all the implementation steps of the RFID application

and robot navigation simulation.

All the necessary configurations and design of the system has been presented and

explained including RFID reader, ROS, simulation configurations, tag naming

conventions, database schema, and RSSI to distance calculation.

Finally, an RFID based navigation approach has been tested using ROS Action

interface.

CHAPTER 04: RESULTS AND DISCUSSION

37

4. CHAPTER 04: RESULTS AND DISCUSSION

In this chapter we will discuss the problems, results, and suggestion that we have

found and made to the RFID-based Robot navigation system.

4.1. RFID platform analysis

we have found that the delay between two scans is approximately 0.3 seconds which

is good only for soft robotic applications.

Then we tested only with scan tag ids using the “readTagIDS” command , then the

result was dramatically different, the delay decreased to around 0.050 S and

sometimes less. Which is a reasonable tome response for most wheeled robotic

application.

Unfortunately we could not test the final work on the robot in order to define and

analysis the whole system time response and latency, the maneuverability, and safety

regarding our RFID based navigation.

For RSSI to distance resolution curve fitting was successful, but requires multiple

antennas and testing in order to localizeprecisely tags , which we could not realize due

to time constraint.

4.1.1. Advantages

 RFID reader has the advantage of the lower infrastructure cost.

1. Passive tags does not require any maintenance during their operation life.

2. Low price of RFID tag (around 20 cents each) leads to cheaper installation and

extension costs.

4.1.2. Limitations

 Non-uniform distribution of the antennas fields leads to increasing complexity

in distance determination.

Figure 4.1: Directional radiation pattern in polar representation[20].

CHAPTER 04: RESULTS AND DISCUSSION

38

 Metallic object can cause overshoots and sometimes gaps in the antennas field.

 Areas with dense RFID tags are suseptible to higher positive and negative

false detections.

Figure 4.2: Propagation of UHF RFID antenna fields[20].

4.1.3. Solutions

 make multiple scans and using the common and repeated values of

measurement for calculations.

 For tags that are used to localise the robot (infrastructure), an approche to

solve the problem of reliability is to store some data about the tag and how it is

deployed (orientation , nearest objects) in order to compensate error in

measurements.

 To reduce the problems caused by high desity tag areas is by using the black-

list command which will ignore the tags that has been processed which keads

to simpler inventories and less interference.

4.2. Simulation issues and observation

During the simulation part, some aspects of the environment has been detected that

affected indoor mapping and autonomous navigation. These aspects are related to

both the environment and the robot. In order to have precise mapping and navigation,

these factors should be given proper attention. These issues and observations include :

4.2.1. Height and Orientation of the laser sensor

The position of the laser scanner on the robot is very critical to mapping and

navigation. Of course sensors are always mounted on the robot at some height above

the ground. One should carefully select the height and orientation of the laser sensor

as these are very critical to mapping and navigation. In such situations all the objects

below the laser scan become undetectable during mapping and navigation. The map

obtained can be incomplete and hence the robot can collide with objects not

CHAPTER 04: RESULTS AND DISCUSSION

39

recognized by the laser.

4.2.2. Environment Selection

Environment is very important specifically in the mapping building process.When the

robot is performing navigation in a closed environment with many landmarks , the

map generated is better and hence navigation will be also better.

4.2.3. Navigation stack tuning

One of the major features that has to be tuned is the navigation stack.Specifically the

move base node which is the core node of the navigation stack responsible for path

planning and obstacle avoidance.This node has at least four configuration files that

have to be set as good as possible. Those parameters are either related to cost-maps or

the base local planner.

4.2.3.1. Simulation time

Basically, the local planner takes velocity samples in robot’s control space, and

examine the circular trajectories represented by those velocity samples, and finally

eliminate bad velocities (ones whose trajectory intersects with an obstacle). Each

velocity sample is simulated as if it is applied to the robot for a set time interval,

controlled by sim time parameter. sim time is the time allowed for the robot to move

with the sampled velocities. Through our work, we observed that the longer the value

of sim time, the heavier the computation load becomes. Also, when sim time gets

longer, the path produced by the local planner is longer as well, which is logical.

4.2.3.2. Simulation granularity

sim granularity is the step size to take between points on a trajectory. It basically

means how frequent should the points on this trajectory be examined (if they intersect

with any obstacle or not). A lower value means higher frequency, which requires more

computation power.

4.2.3.3. Robot Footprint Model

The robot footprint model approximates the robots' 2D contour for optimization

purposes. The model is crucial for the complexity of distance calculations and hence

for the computation time. The footprint is used in the navigation to estimate a

collision-free path through the environment. The robot’s footprint is always specified

in such a way that it should not intersect with any point representing objects in the

map. Circular and complete square footprints are more suitable than the rectangular

ones. We have applied both circular and square footprints that gave pretty good

results.

The rectangular and polygon footprint of the robot was suitable but it caused many

delays and problems in the navigation. Hence the choice of footprint does not only

depend upon the robot’s shape but the structure of the environment is also important.

CHAPTER 04: RESULTS AND DISCUSSION

40

4.3. Summary

In this chapter we have discussed the results of our work, which was good

according to our estimation for running the robot platform. Unfortunately due

the disk failure that had not been fixed by the maintenance staff which

occurred to the robot platform, we could not run the application on the robot to

test it in real world.

We have found some limitations of the RFID-platform in regards to distance

resolution and localization due to the complex nature of radio signal but we

proposed an approach to overcoming the limitation by storing data related to

tag distortion the tag themselves.

When it comes to robotic development we have improved the packages and

previous work given by the CDTA , and we have given some recommendation

and consideration to be considered when developing with the Robuteur/UML

platform.

The CDTA internship was good as a whole but we prefer if we had a

document presenting all the tools and resources that we can access and at

which condition, in order to better tackle problems and issues.

41

GENERAL CONCLUSION

The goal of this project was to implement an RFID based navigation system for

autonomous mobile robot. The mobile robot must be able to achieve tasks by itself,

including the perception of its surrounding environment, determination of its position

and direction instantaneously, finding and executing its path.

At the beginning, we have stated some generalities about RFID technologies,

autonomous navigation and Hardware in the loop simulation. Then, a clear

description of the overall system architecture is given where the two subsystems

(RFID hardware and simulation) are presented.

We started by a setting up the simulation environment including the robot model such

that it can be accessible by ROS, the control package and launch files configurations.

Also, the main features of the navigation stack are described and tuned according to

our robot specifications.

The RFID platform is implemented using three antennas, the reader and multi tags.

An application was developed using python and MySQL on Raspberry Pi 3 model B.

Different configurations have been done concerning the RFID reader and tag naming

specifications such that the application is working properly. Using this application,

the robot can communicate with the RFID tags, read and write their contents. Finally,

the received RSSI signal by the robot is transformed into the right distance using

curve fitting and hence objects are localized.

To test our work, we started by investigating the simulation. SLAM algorithm is used

allowing the mobile robot to model its environment and constructing the occupancy

grid map by using laser and encoders sensors. AMCL algorithm is used for

localization in the previously build map.Finally, the move base node is used for path

planning and obstacle avoidance. Rviz is used for the visualization of topics and data

needed for each step.

Finally, a successful RFID based navigation is presented. A ROS action based

application is implemented where a simple task is executed by the robot based on the

information given by RFID subsystem.

Robot Experimental Problems

Due to a disk failure the Robuteur/UML could not recovered by CDTA maintenance

staff, which made us unable to test the work on a real environment.

First, we thank the CDTA staff for giving us the opportunity to work with some of the

cutting edge technologies especially our supervisor for all the support and advice they

give us during the internship. However, we have some comments and remarks for

improvement.

42

 Equipment testing and maintenance took a long time.

 Lack of a clear view regarding the internship process, the available equipment

and resources in order to save time and increase productivity for both staff and

students.

Future work

 Enhance the RFID Application connectivity so it could be integrated with

other applications.

 Using neural networks in tags localization.

 Adding notification features like SMS, e-mail, and voice.

 Adding a MongoDB to store the serialization of the xml command in order to

be queried efficiently.

 Deal with a dynamic environment with many obstacles and moving objects.

43

REFERENCES

[1] Lentin joseph “ Learn robotics using python” PACKT PUBLISHING 2015.

[2] Roland Siegwart and Illah R. Nourbakhsh“Introduction to autonomous mobile

robots” MIT press. 2004.

[3] Lentin joseph “Mastering Ros for Robotics Progrmming” PACKT

PUBLISHING 2015.

[4] Lentin joseph “ Ros Robotics projects” PACKT PUBLISHING 2017.

[5] R.PATRICK GOEBEL “ROS By Example” Volume1 API ROBOT P

RODUCTION 2015.

[6] SafdarZaman, Wolfgang Slany, Gerald Steinbauer “ ROS-based Mapping,

Localization and Autonomous Navigation using a Pioneer 3-DX Robot and their

Relevant Issues“ Graz University of Technology, Austria.

[7] BAKDI Azzeddine “Autonomous mobile robot navigation: Application on

RobuTER/ULM“ Master thesis , IGEE , 2015.

[8] Suruz Miah “Design and Implementation of Control Techniques for

Differential Drive Mobile Robots: An RFID Approach” Phd Thesis , University of

Ottawa 2012.

[9] Xiaolin Hu, Member, IEEE “ Applying Robot-in-the-Loop-Simulation to Mobile

Robot Systems” , Georgia State University , 2004.

[10] Rahul Kumar Bhadani, “The CAT Vehicle Testbed: A Simulator with

Hardware in the Loop for Autonomous Vehicle Applications”, University of Arizona.

[11] M. Bacic, IEEE member , “On hardware-in-the-loop simulation” , University

of Oxford 2005.

[12] KaiyuZheng , “ROS Navigation Tuning Guide” , September 2, 2016.

[13] SIMATIC Ident RFID systems SIMATIC RF650R/RF680R/RF685R

Configuration Manual

[14] https://support.industry.siemens.com/cs/ww/en/pv/6GT2810-2AB04

[15] https://support.industry.siemens.com/cs/ww/en/pv/6GT2812-0GB08

[16] https://support.industry.siemens.com/cs/ww/en/pv/6GT2811-6AA10-0AA0

[17]https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-

from-the-rssi-value-of-the-ble-beacon/

https://support.industry.siemens.com/cs/ww/en/pv/6GT2810-2AB04
https://support.industry.siemens.com/cs/ww/en/pv/6GT2812-0GB08
https://support.industry.siemens.com/cs/ww/en/pv/6GT2811-6AA10-0AA0
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/

44

[18]https://electronics.stackexchange.com/questions/83354/calculate-distance-from-

rssi

[19]Indoor Positioning System by “Wade Jarvis”, “Arthur Mason”, “Kevin hornhill”

, and”Bobby Zhang”

[20] SIMATIC Ident RFID systems SIMATIC RF600 System Manual.

[21] Pictures from CDTA.

[22] ROBUTER/ULM(Étude de Fonctionnement).

https://electronics.stackexchange.com/questions/83354/calculate-distance-from-rssi
https://electronics.stackexchange.com/questions/83354/calculate-distance-from-rssi

45

I. APPENDIX A

1.1. An Introduction to Robot Operating System ROS :

Robot Operating System (ROS) is a trending robot application development platform

that provides various features such as message passing, distributed computing, code

reusing, and so on.

The ROS project was started in 2007 with the name Switchyard by Morgan Quigley

as part of the Stanford STAIR robot project. The main development of ROS happened

at Willow Garage.

Here are some of the reasons why people choose ROS over other robotic platforms

such as Player, YARP, Orocos, MRPT, and so on :

• High-end capabilities : ROS comes with ready to use capabilities, for example,

SLAM (Simultaneous Localization and Mapping) and AMCL (Adaptive Monte

Carlo Localization) packages in ROS which can be used for performing autonomous

navigation in mobile robots.

• Tons of tools : ROS is packed with tons of tools for debugging, visualizing, and

performing simulation. The tools such as rqt_gui , RViz and Gazebo are some of the

strong open source tools for debugging, visualization, and simulation.

• Inter-platform operability : The ROS message-passing middleware allows

communicating between different nodes. These nodes can be programmed in any

language that has ROS client libraries. We can write high performance nodes in C++

or C and other nodes in Python or Java. This kind of flexibility is not available in

other frameworks.

• Modularity: One of the issues that can occur in most of the standalone robotic

applications are, if any of the threads of main code crash, the entire robot application

can stop. In ROS, the situation is different, we are writing different nodes for each

process and if one node crashes, the system can still work. Also, ROS provides robust

methods to resume operation even if any sensors or motors are dead.

• Concurrent resource handling: In ROS, we can access the devices using ROS

topics from the ROS drivers. Any number of ROS nodes can subscribe to the same

message from the ROS driver and each node can perform different functionalities. It

can reduce the complexity in computation and also increase the debug-ability of the

entire system.

• Active community: When we choose a library or software framework, especially

from an open source community, one of the main factors that needs to be checked

before using it is its software support and developer community. There is no

guarantee of support from an open source tool. Some tools provide good support and

46

some tools don't. In ROS, the support community is active. The ROS community has

a steady growth in developers worldwide.

1.2. Understanding the ROS file system level :

Similar to an operating system, ROS files are also organized on the hard disk in a

particular fashion. In this level, we can see how these files are organized on the disk.

The following graph shows how ROS files and folder are organized on the disk:

A typical structure of a ROS package is shown here:

Let us now introduce some of ROS’s architecture keywords. ROS uses the concept of

nodes, messages, topics, stacks, and packages, below a quick described of this

concepts Node : A process that performs computation; nodes communicate with each

other through messages.

Figure I.1:ROS file system level.

Figure I.2: Structure of a typical ROS package.

47

Message: A strictly type of data structure; a node sends a message by publishing it to

a topic.

Topic: Channel between two or more nodes; nodes communicate by publishing

and/or subscribing to the appropriate topics.

Package: Compilation of nodes that can easily be compiled and ported to other

computers, necessary to build a complete ROS-based controller system.

Stack: Groups of ROS packages making easier the process of sharing code with the

community.

1.3. Installing ROS Indigo

The following steps are needed for a successful ROS indigo installation. We assume

that Ubuntu repository was successfully installed.

C.1. Configure your Ubuntu repositories :

First, you must check that your Ubuntu accepts restricted, universal, and multiversal

repositories.

C.2. Setup your sources.list : Setup your computer to accept software from

package.ros.org.

C.3. Set up your keys : It is important to add the key because with it we can be sure

that we are downloading the code from the right place and no body modified it.

C.4. Installation:

Before doing something, it is necessary to update all the programs used by ROS. We

do it to

avoid incompatibility problems. Type the following command in a shell and wait:

48

Then :

C.5.Initialize rosdep : rosdep enables you to easily install system dependencies for

source you want to compile and is required to run some core components in ROS.

C.6. Environment setup :

C.7. Getting rosinstall :

D – Installing gazebo : Gazebo can be installed as a standalone application or an

integrated application along with ROS. To work with Gazebo and ROS, we don't need

to install it separately.

The ROS package that integrates Gazebo with ROS is named gazebo_ros_pkgs ,

which has created wrappers around a standalone Gazebo. This package provides the

necessary interface to simulate a robot in Gazebo using ROS message services.

For The complete Gazebo_ros_pkgs can be installed in ROS Indigo using the

following command:

$ sudo apt-get install ros-indigo-gazebo-ros-pkgsros-indigo-gazebo-ros-control

Assuming that the ROS environment is properly set up, we can start roscore before

starting Gazebo using the following command:

49

$ roscore

The following command will run Gazebo using ROS:

$ rosrungazebo_ros gazebo

E- launching Rviz :

First Check for any system dependencies.

$ Rosdep install rviz

Now , you can start Rviz using the following command line :

$ rosrunrvizrviz

1.4. Simulation launch and Configuration files

1-Gazebo launch file

50

2- Amcl launch file

3- Robot_control Configuration file :

51

4- Robot control launch file :

52

II. APPENDIX B

In this we will talk about the RFID system by describing its components and their

characteristics, the configuration that we have used in our work, and the commands

that has been implemented in the application.

1.1. Components

The RFID system consists of a reader, antennas, tags, and embedded platform where

the application will be executed.

1.1.1. Reader

The reader is the device that provides an interface for using the tags. The reader used

in our work in the SIMATICS RF680R which is designed to be used in industrial

environment. The reader has two Profinet ports, capable of controlling UFH 4

antennas. it has also 4digital input and 4 digital output

For more information refer to datasheet https://support.industry.siemens.com/cs/ww/en/pv/6GT2811-6AA10-0AA0

1.1.2. Antennas

The antennas are the devices that are responsible of delivering power and

communicating with tags. The ones used in this work are RF650A, it is an UFH

antenna which can reach 1000mW of radiation power.

For more information refer to datasheet https://support.industry.siemens.com/cs/ww/en/pv/6GT2812-0GB08

1.1.3. Tags

The tags are the storage elements, the ones used in this work are 6GT2810-2AB04,

these are passive tags that has a range of 4m, the memory configuration is 64B user,

32B EPC, and 64B TID

These tags are classified as Class 1 Gen 2 / ISO 18000-6C
For more information refer to datasheet https://support.industry.siemens.com/cs/ww/en/pv/6GT2810-2AB04

Figure II.1RFID tag.

https://support.industry.siemens.com/cs/ww/en/pv/6GT2811-6AA10-0AA0
https://support.industry.siemens.com/cs/ww/en/pv/6GT2812-0GB08
https://support.industry.siemens.com/cs/ww/en/pv/6GT2810-2AB04

53

1.2. Configuration

The reader was configured using the WBM interface which is an interface accessible

by the browser by typing the IP address of the reader, (192.168.0.2/24).

1.2.1. Hardware configuration

The objective is to identify the hardware to be used with the reader (Antennas, cables,

Tags), then configuring the country profile which stands for the operation

characteristics approved by the country (frequency , max power …) since Algeria was

not in the country approval list we have chosen the most used one “ETSI”.

Figure II.2: WBM (reader web interface).

Figure II.3: Antennas adjustment interface.

54

1.2.2. Software configuration

The objective is to adjust and configure antennas for the highest capture range … then

we configure tag one by one by giving them new identifiers because when they come

from the factory they all come with the same ID which make it impossible to

distinguish and modify then when they all are in the range on the antennas.

1.2.3. Algorithms configuration

After configuring the antennas and tag we

proceed to configuring the way the reader scan

and modify tags, in our configuration we aimed

to get the best performance possible from the

reader by increasing the power ramp (value of

power to increase when action fail), reducing the

blacklist size, increasing the RSSI delta… for

more information on tag algorithms please refer

to the configuration manual(C79000-G8976-

C386-06)

1.2.4. Raspberry pi setup

The operating system installed in the raspberry pi is the latest Raspbian Jessie , we

installed this specific version because it is the only version which is compatible with

ROS Indigo.

Indigo and Jessie are naming version of ROS and Raspbian.

We also install MySQL and MongoDB , to be used for data storage.

1.3. Implemented commands

This is the list of commands that has been implemented in the application.

Figure II.4: Operation algorithms

configuration page.

55

CMD comments CMD Comments
hostGreetings Create link. lockTagBank

hostGoodbye Broke link. getObservedTagIDs

heartBeat Test link. readTagIDs Read from EPC memory.

getAllSources Get configuration read points. readTagField Read from a predefine field.

getConfiguration Get the configuration stored. readTagMemory Read from a specific location.

getConfigVersion Get configuration unique id. writeTagField Write to a predefine field.

getActiveConfiguration Get the actual active configuration. writeTagID Write to EPC memory.

getTime Get reader time. writeTagmemory Write to a specific location.

setTime Set reader time. getParameter Get reader specific parameter.

getLogFile Get log file.

 Table II.1: Implemented commands

For more information on commands meaning and usage option please refer to this

manual Configuration Manual, 03/2018, C79000-G8976-C386-06

