
Registration Number:…..…../2016

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of
the Requirements for the Degree of

MASTER

In Electrical and Electronic Engineering

Option: Computer Engineering

Title:

Presented by:

- LALAOUI Dyhia

- ABDERRAHMANE Nassim

Supervisor:

Mr. R.NAMANE

FPGA-BASED REAL-TIME SPEECH
RECOGNITION SYSTEM

I

Dedications

I would like to dedicate this modest work to all whom I love.

Special thanks to my dearest parents, sisters and brother for their support
and encouragement.

A. Nassim

I would like to dedicate this modest work to my dearest family especially my

beloved father and mother and my lovely husband for their valuable help and

moral support.

To all my friends and colleagues.

L. Dyhia

II

Acknowledgement

It is a great pleasure to thank our supervisor Mr. NAMANE Rachid for his

devotion, orientation, advice and encouragement during the accomplishment

of our project.

Then we owe a great many thanks to a great many people who helped

during our work.

We owe a debt of gratitude to the teachers of IGEE being a necessary part

in our success during our five years of studies at the institute, for their care

and support.

III

ABSTRACT

The main objective of this project is to design and implement a real time speech recognition

system using a Field Programmable Gate Array (FPGA). Our system will be based on the Mel

Frequency Cepstral Coefficients (MFCC) and a distance-based matching algorithm which fit

very well the targeted system. The model will be implemented on the DE2 FPGA board

including both SOPC and non-SOPC modules. Spoken words will be entered via a

microphone connected to the audio input of the board. The recognized words will be

displayed on the LCD module of the board. The obtained system can be used in several

applications such as mobile robot control with voice command.

Contents

IV

DEDICATION ……………….…………………………………..………………………........I

ACKNOWLEDGEMENT ..………….…………………………………..……………….......II

ABSTRACT .……………….…………………………………..…………………………….III

CONTENTS ..………..…….…………………………………..……………………………..IV

LIST OF FIGURES …..……….…………………………………..…………………….......VII

LIST OF TABLES ..…………….…………………………………..…………………….....IX

NOMENCLATURE ..…………….…………………………………..………………………X

GENERAL INTRODUCTION ...……………………………………………………………...1

CHAPTER I: THEORETICAL BACKGROUND

Introduction .. 3

1. Speech Recognition .…………….…...………………………...……..….…………….3

1.1 Speech Signal………...…………………………………………………………….3

1.1.1 Type of Speech …………………………………………………………….3

1.2 Speech Recognition Basics ..………………………………………………………4

1.3 Feature Extraction………………………………………………………………….5

1.3.1 Mel Frequency Scale and Coefficients………………………………….…6

1.4 Matching Stage…………………………………………………………………….8

2. Development and Educational Board and Quartus II CAD Software…………………8

2.1 Audio Codec……………………………………………………………………….9

2.1.1 I2C Bus…………………………………………………………………....11

2.1.2 I2C Protocol……………………………………………………………….11

2.2 IP (Intellectual Property) Cores…….……………………………………………..12

2.2.1 FFT IP core……………………………………………………………….13

2.3 Altera SOPC………………………………………..……………………………...14

2.4 NIOS II Processor…………………………...…………………………………….14

2.4.1 NIOS II system………………………….………………………………...14

Contents

V

CHAPTER II: HARDWARE AND SOFTWARE IMPLEMENTATION

Introduction…………………………………………………………………………………..15

1. Audio Codec………………………………………………………………………….15

1.1 Configuration Part…………………………………………………….…………....16

1.2 Data Flow Part…………………………………………………………………....18

1.3 Delay Counter………………………………………………………….………….20

1.4 Clock Divider…………………………………………………………………….21

1.5 Memory Block………………………………………………………..…………...21

1.5.1 ROM..…...21

1.5.2 RAM……………………………………………………………………...22

1.6 Audio Codec General Block Diagram…………………………………………...22

2. Fast Fourier Transform Module……………………………………………………...23

2.1 FFT IP core……………………………………………………………………....24

2.2 FFT FSM………………………………………………………………………....24

2.3 FFT Memory Block………………………………………………………………25

3. NIOS II System………………………………………………………………………26

4. Top Level……………………………………………………………………...……...27

5. Software Implementation……………………………………………………..……...29

5.1 MFCC Algorithm………………………………………………………………...29

5.2 Data-Base ………………………………………………………………………..31

5.3 Recognition Algorithm ……………………………………………..……………..32

CHAPTER III: RESULT AND DISCUSSION

Introduction …………………………………………………………………………………34

1. Audio Codec Simulation……………………………………………………………34

1.1 Wolfson Chip Configurations………………………………………………......34

1.2 Data Flow……………………………………………………………………….38

1.3 Master Clock(XCLK) Generation ……………………………………………...38

2. Hardware Result …………………………………..………………………………..39

2.1 Compilation Report…………………………………..…………………………39

2.2 Download the Project to the DE2 Board………………………………………..39

Contents

VI

2.3 Results…………………………………..………………………………………40

GENERAL CONCLUSION …………….….……………………..……………………….43

REFERENCES.……………….…………………………………..………….………….. XII

List of Figures

VII

Figure 1.1: Block Diagram of Speech Recognition ... 3

Figure 1.2: MFCC Block Diagram ... 6

Figure 1.3: Mel Scale Filter Bank .. 7

Figure 1.4: DE2 Board Top View .. 9

Figure 1.5: Functional Block Diagram of WM8731 Audio CODEC 10

Figure 1.6: Start and Stop Condition of I2C Bus .. 12

Figure 1.7: Data Transmission in the I2C Bus .. 12

Figure 1.8: FFT IP core I/O .. 13

Figure 2.1: General implementation block diagram ... 15

Figure 2.2: Audio Codec Block ... 16

Figure 2.3: I2C FSM Diagram... 17

Figure 2.4: Audio Codec Controller Block ... 18

Figure 2.5: Left Justified Mode .. 19

Figure 2.6: Slave Mode Connections ... 20

Figure 2.7: Data Flow Controller Block ... 20

Figure 2.8: Delay Counter Block .. 21

Figure 2.9: Clock Divider Block... 21

Figure 2.10: ROM Block... 22

Figure 2.11: 256x16 RAM Block.. 22

Figure 2.12: Audio Codec General Block Diagram.. 23

Figure 2.13: FFT Module Block ... 23

Figure 2.14: FFT Burst Data Flow Simulation Waveform .. 24

Figure 2.15: FFT Module FSM Diagram.. 25

Figure 2.16: FFT RAM Block... 26

Figure 2.17: NIOS II System Block.. 27

Figure 2.18: Complete Hardware Implementation Block Diagram .. 28

Figure 2.19: MFCC Flow Chart ... 30

Figure 2.20: Flow Chart of the Data Base... 31

Figure 2.21: Recognition Flow Chart.. 33

Figure 3.1: Audio Codec Simulation .. 34

Figure 3.2: Transmission of Ten Frames of Data to the Wolfson Chip Using I2C Protocol .. 35

Figure 3.3: 24-Bits Configuration Frame.. 35

Figure 3.4: Transmission of Register 1 Data Configuration ... 36

List of Figures

VIII

Figure 3.5: Transmission of Register 2 Data Configuration. .. 36

Figure 3.6: Transmission of Register 4 Data Configuration ... 37

Figure 3.7: Audio Data Flow Simulation.. 38

Figure 3.8: Master Clock (XCK) Generation Simulation ... 38

Figure 3.9: Compilation Report ... 39

Figure 3.10: Hardware Limited Time Message ... 40

Figure 3.11: Connecting to Computer Message.. 40

Figure 3.12: Word Recognized ‘Right’... 41

Figure 3.13: Word Recognized ‘Left’ ... 41

Figure 3.14: Word Not Recognized ‘Hello’.. 42

Figure 3.15: Speech Not Present ... 42

List of Tables

IX

Table 1.1: Mapping of Program Register. .. 11

Table 3.1: Control Interface Address Selection .. 35

Table 3.2: Line Input Software Control ... 36

Table 3.3: Analog Audio Path Control .. 37

Nomenclature

X

ASR: Automatic Speech Recognition

CODEC: enCOder/DECoder

CAD: Computer Aided Design

DAC: Digital to Analogue Converter

DCT: Discrete Cosine Transform

DFT: Discrete Fourier Transform

DSP: Digital Signal Processing

EOP: End Of Packet

FFT: Fast Fourier Transform

FPGA: Field Programmable Gate Array

FSM: Finite State Machine

I2C: (IIC) Inter Integrated Circuit

IP: Intellectual Property

LCD: Liquid Crystal Display

LE: Logic Element

LED: Light Emitting Diode

MFCC: Mel Frequency Cepstral Coefficients

MSB: Most Significant Bit

PIO: Parallel Input/Output

PLL: Phase-Locked Loop

RAM: Random Access Memory

ROM: Read Only Memory

SDA: Serial bi-directional data line

SDL: Serial bi-directional clock line

SDRAM: Synchronous Dynamic RAM

SoC: System-on-a Chip

SOPC: System On A Programmable Chip

Nomenclature

XI

SOP: Start Of Packet

SR: Speech Recognition

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuit

General Introduction

1

A very challenging area of research is making a machine understand natural language, a fact

that attracts a lot of researchers in recent years to develop speech recognition tools.

Speech recognition is a software or hardware that is capable to process a speech signal as an

input and gives as a result a recognized words or sentences, which can be used in many

applications like controlling a robot or simply speech to text applications.

It is of great importance not only in practical application but scientific research. The research

on speech recognition technology mainly concentrates on two aspects: One is the software

running on computer, the other is embedded systems. The advantages of Embedded Systems

are high-performance, convenience, cheap and they have huge potential for development.

The classical front end analysis in speech recognition is a spectral analysis which

parameterizes the speech signal into feature vectors. The most popular set of feature vectors

used in recognition systems is the Mel Frequency Cepstral Coefficients (MFCC) [25]. They

are based on a standard power spectrum estimate which is first subjected to a log-based

transform of the frequency axis; it results in a spectral representation on a perceptually

frequency scale, based on the response of the human perception system. After, they are

decorrelated using a modified discrete cosine transform, which allows an energy compaction

in its lower coefficients [25].

In this project, we desire to implement an FPGA-based real-time speech recognition system.

The system will be configured on our available Altera DE2 FPGA-based board. The system

processes a word spoken from head-styled microphone and outputs it on the inboard LCD

accessory. Our implementation includes mainly two parts: hardware and software. The

different components of our hardware circuit are designed based on VHDL hardware

description language before downloading them into the Cyclone II FPGA device. The

software part is developed using C programming language and executed on a soft processor

generated by a computer aided design (CAD) software, and which completes the work done

by the hardware circuit.

In the hardware part, we implement an audio codec controller that is responsible of the pre-

emphasis and sampling, an FFT module for transforming the time domain signal into

frequency domain, and finally a NIOS soft processor that will be used to execute the software

program which consists mainly of the MFCC and recognition algorithms.

General Introduction

2

MFCC technique is used to extract feature vectors of the spoken word; this latter is composed

of FFT, Mel filter bank, DCT and Mel spectrum. The first component is done in hardware

part, the remaining are achieved in software part. The complexity of these components made

us decide to develop them in software.

In the software part, a C language program running on the NIOS soft processor used to

perform the MFCC (Mel filter bank, DCT and Mel Spectrum) for feature extraction and the

matching algorithm for training and recognition.

Our system design is based on the FPGA because of the advantages of short development

cycle, low-cost design and low-risk. In recent years, FPGA has become the key components

in high-performance digital signal processing systems used in digital communication,

network, video and image fields [14].

The report is organized into three chapters:

Chapter I is an introduction to the field of speech recognition, where we have covered the

theoretical part of our project, from speech theory to hardware used in our realization.

Chapter II ‘Hardware and software implementation’ deals with the hardware and software

implementation descriptions of our system. The hardware part is divided into three main

blocks: audio codec, FFT Module, and NIOS system. This part gives explanation of the

different hardware blocks and how they are related to each other to form the overall hardware

system. The last part of this chapter deals with the software description of the implemented

feature extraction, training and recognition.

Chapter III ‘Result and Discussion’ represents the obtained results and their analysis.

The report is ended with a general conclusion and some suggestions for future works.

Chapter I: Theoretical Background

CHAPTER I: THEORETICAL BACKGROUND

Chapter I: Theoretical Background

3

Introduction

As a new suitable approach of human-machine interaction, speech recognition is widely

applied to many speech products. The crucial objective of speech recognition is to make

machine understand natural language. In this chapter we will introduce the theoretical

background of our project.

The chapter is divided into two main parts: the first goes through the speech recognition

basics and the second part focus on the means used, i.e., hardware and software.

1. Speech Recognition

Speech Recognition can be defined as the process by which a computer (or other type of

machine) identifies spoken words (speech signal) using different algorithms implemented in a

computer system. The goal of speech recognition is to interact with deferent machines.

Generally speaking, an Automatic Speech Recognition (ASR) system can be organized in two

blocks: the feature extraction and the modeling stage (or feature matching)[9]. As described in

figure 1.1.

Figure1.1: Block Diagram of Speech Recognition

1.1 Speech Signal

Speech signal is an analog representation of the vocalized form of communication based upon

the syntactic combination of lexical and names that are drawn from very large vocabularies.

1.1.1 Type of Speech

Speech recognition system can be classified into different classes by describing what type of

utterances they can recognize.

Chapter I: Theoretical Background

4

 Isolated Word

Isolated word recognizes attain usually require each utterance to have quiet on both side of

sample windows. It accepts single words or single utterances at a time .This is having “Listen

and Non Listen state”. Isolated utterance might be better name of this class [21].

 Connected Word

Connected word systems are similar to isolated words but allow separate utterance to be “run

together minimum pause between them [21].

 Continuous Speech

Continuous speech recognizers allow user to speak almost naturally, while the computer

determines the content. Recognizer with continuous speech capabilities are some of the most

difficult to create. They utilize special method to determine utterance boundaries [21].

 Spontaneous Speech

At a basic level, it can be thought of as speech that is natural sounding and not rehearsed. An

ASR System with spontaneous speech ability should be able to handle a variety of natural

speech feature such as complete sentences [21].

1.2 Speech Recognition Basics

 Utterance

An utterance is the vocalization (speaking) of a word or words that represent a single meaning

to the computer. Utterances can be a single word, a few words, a sentence, or even multiple

sentences [26].

 Speaker Dependence

Speaker dependent systems are designed around a specific speaker. They generally are more

accurate for the correct speaker, but much less accurate for other speakers. They assume the

speaker will speak in a consistent voice and tempo. Speaker independent systems are designed

for a variety of speakers. Adaptive systems usually start as speaker independent systems and

utilize training techniques to adapt to the speaker to increase their recognition accuracy [26].

Chapter I: Theoretical Background

5

 Vocabularies

Vocabularies (or dictionaries) are lists of words or utterances that can be recognized by the

SR system. Generally, smaller vocabularies are easier for a computer to recognize, while

larger vocabularies are more difficult [26].

 Accurate

The ability of a recognizer can be examined by measuring its accuracy - or how well it

recognizes utterances. This includes not only correctly identifying an utterance but also

identifying if the spoken utterance is not in its vocabulary. Good ASR systems have an

accuracy of 98% or more! The acceptable accuracy of a system really depends on the

application [26].

 Training

Some speech recognizers have the ability to adapt to a speaker. When the system has this

ability, it may allow training to take place. An ASR system is trained by having the speaker

repeat standard or common phrases and adjusting its comparison algorithms to match that

particular speaker. Training a recognizer usually improves its accuracy [26].

Training can also be used by speakers that have difficulty speaking, or pronouncing certain

words. As long as the speaker can consistently repeat an utterance, ASR systems with training

should be able to adapt [26].

1.3 Feature Extraction

Feature extraction is a process that extracts valid feature parameters from an input speech

signal. Even if the same word is spoken, no two speech instances can produce the same

speech waveform. The reason for this phenomenon is that the speech waveform includes not

only speech information but also the emotional state and tone of the speaker. Therefore, the

goal of speech feature extraction is to extract feature parameters that represent speech

information. Further, this process is a part of compressing speech signals and modeling the

human vocal tract. The feature parameters are devised to represent the phonemes accurately

for speech recognition [22]. MFCC is commonly used for the above mentioned feature

extraction.

Chapter I: Theoretical Background

1.3.1 Mel Frequency Scale and C

The most popular spectral based parameter used in recognition approach is the

Cepstral Coefficients called MFCC

based on perception of human auditory systems

MFCC is based on human hearing perceptions which cannot perceive frequenci

In other words, MFCC is based on known variation of the human ear’s cr

with frequency. MFCC has two

below 1000 Hz and logarithmic spacing above 1000Hz. A

Frequency Scale to capture important characteristic of phonetic in speech

The overall process of the MFCC is shown in Figure

 Pre-emphasis

This step processes the input signal through a pre

characteristics. This process will increase the energ

 Framing

The process of segmenting the speech samples obtained from analog to digital conversion

(ADC) into a small frame with the length within the range of

is divided into frames of N samples [13]

Chapter I: Theoretical Background

Scale and Coefficients

The most popular spectral based parameter used in recognition approach is the

Cepstral Coefficients called MFCC [13]. MFCCs are coefficients, which represent audio,

based on perception of human auditory systems.

MFCC is based on human hearing perceptions which cannot perceive frequenci

is based on known variation of the human ear’s cr

MFCC has two types of filter which are spaced linearly at low

below 1000 Hz and logarithmic spacing above 1000Hz. A subjective pitch is present on Mel

ale to capture important characteristic of phonetic in speech [13]

The overall process of the MFCC is shown in Figure 1.2.

Figure1.2: MFCC Block Diagram

This step processes the input signal through a pre-emphasis filter which has high

characteristics. This process will increase the energy of signal at higher frequency

The process of segmenting the speech samples obtained from analog to digital conversion

(ADC) into a small frame with the length within the range of 20 to 40 msec. The voice signal

is divided into frames of N samples [13].

6

The most popular spectral based parameter used in recognition approach is the Mel Frequency

. MFCCs are coefficients, which represent audio,

MFCC is based on human hearing perceptions which cannot perceive frequencies over 1Khz.

is based on known variation of the human ear’s critical bandwidth

types of filter which are spaced linearly at low frequency

subjective pitch is present on Mel

[13].

emphasis filter which has high-pass filter

y of signal at higher frequency [13].

The process of segmenting the speech samples obtained from analog to digital conversion

20 to 40 msec. The voice signal

Chapter I: Theoretical Background

7

 Windowing

At the edges of each frame, there are discontinuities in the input signal that contain

unnecessary information. In order to minimize the discontinuities at the edges of the frames,

each frame is multiplied with the window coefficients [13].

Hamming window is used as window shape by considering the next block in feature

extraction processing chain and integrates all the closest frequency lines [13].

 Fast Fourier Transform (FFT)

In order to extract the feature parameters of the input speech, the FFT algorithm can be

applied to convert the time domain into the frequency domain to figure out the frequency

characteristics of the input. In the time domain, a speech signal has discrete non-periodic

features. Through FFT, which converts the time domain into the frequency domain, a speech

signal is transformed into a continuous periodic signal [13].

 Mel Filter Bank Processing

The frequencies range in FFT spectrum is very wide and voice signal does not follow the

linear scale. The human ear responds non-linearly to a speech signal. When the speech

recognition system performs a non-linear process, it improves the recognition performance.

By applying a Mel-filter bank, we can obtain a non-linear frequency resolution. The Mel

Filter bank method is widely used in the speech recognition process [13].

Figure 1.3: Mel Scale Filter Bank [13].

The figure 1.3 shows a set of triangular filters that are used to compute a weighted sum of

filter spectral components so that the output of process approximates to a Mel scale. Each

filter’s magnitude frequency response is triangular in shape and equal to unity at the center

Chapter I: Theoretical Background

8

frequency and decreases linearly to zero at the center frequency of two adjacent filters. Then,

each filter output is the sum of its filtered spectral components.

 Discrete Cosine Transform

The logarithm and discrete cosine transform (DCT) of the Mel-Filter bank energy are

computed to extract the required minimum information.

This process is to convert the log Mel spectrum into time domain using Discrete Cosine

Transform (DCT). The result of the conversion is called Mel Frequency Cepstrum

Coefficient. The set of coefficient is called acoustic vectors. Therefore, each input utterance is

transformed into a sequence of acoustic vector [13].

1.4 Matching Technique

The matching technique is used to compare a spoken word to referenced ones in a data base.

These words have to be in vector representation form with limited number of entrance, say N.

The matching algorithm compares the entries of the spoken word’s vector to the referenced

one element by element till N, by calculating the difference between them. Then it takes the

average of the differences and compares it to a referenced threshold value. Whenever, it finds

that average less than the threshold value it senses that it has found a spoken word.

2. Development and Educational Board and Quartus II CAD Software

DE2 is a board conceived for the practical implementation of digital and mixed-signal

circuits, even quite complex ones. It includes several I/O devices and interfaces, from simple

ones (switches, pushbuttons, LEDs, seven segment displays) to complex devices (LCD matrix

display, Ethernet network interface, USB 2.0, SD memory cards, analog audio I/O, analog

video input, VGA video output …etc.) [8].

The core of DE2 is an FPGA (Field Programmable Gate Array), composed by more than

30.000 Logic Elements (LE). DE2 may host simple introductory projects, and sophisticated

ones that may include one or more microcomputers [8]. The figure 1.4 represents DE2 Board

top view.

Chapter I: Theoretical Background

9

Figure 1.4: DE2 Board Top View [8].

2.1 Audio Codec

The DE2 board provides high-quality 24-bit audio via the Wolfson WM8731 audio CODEC

(Encoder/Decoder) [4]. This chip supports microphone-in, line-in, and line-out ports, with a

sample rate adjustable from 8 kHz to 96 kHz. The WM8731 is controlled by a serial I2C bus

interface, which is connected to pins on the Cyclone II FPGA [20].

This chip is used to sample and digitalize the audio signal using the Analogue to digital

conversion (ADC).

Chapter I: Theoretical Background

10

Figure 1.5: Functional Block Diagram of WM8731 Audio CODEC [20].

The digital audio interface takes the data from the internal ADC and places it on the

ADCDAT output. ADCDAT is the formatted digital audio data stream output from the ADC

digital filters with left and right channels multiplexed together. ADCLRC is an alignment

clock that controls whether Left or Right channels data is present on ADCDAT lines.

ADCDAT and ADCLRC are syncronised with the BCLK signal with each data bit transition

signified by a BCLK high to low transition. BCLK may be an input or an output dependent on

whether the device is in master or slave mode [20].

There are four digital audio interface formats accommodated by the WM8731/L. Refer to the

electrical characteristics section for timming information [20].

 Left justified mode is where the MSB is available on the first rising edge of BCLK

following ADCLRC transition [20].

 I2S Mode is where the MSB is available on the second rising edge of BCLK following

an ADCLRC transition [20].

 Right Justified Mode is where the LSB is available on the rising edge of BCLK

preceding an ADCLRC transition, yet MSB is still transmitted first [20].

 DSP Mode is where the left channel MSB is available on either the first or the second

rising edge of BCLK following a LRC transition high. Right channel immediately

follows left channel data [20].

Chapter I: Theoretical Background

11

All these modes are MSB first and operate with data width of 16 to 32 bits, but the right

justified mode does not support 32 bits [20].

The Audio Codec has 11 registers with 16 bits per register (7 bit address + 9 bits of data).

These can be controlled using either the 2 wire or 3 wire MPU interface. The complete

register map is shown in table 1.1.

Table 1.1: Mapping of Program Register [20].

2.1.1 I2C Bus

The I2C (Inter Integrated Circuit) bus is a simple bi-directional serial bus that supports

multiple master and slaves. It consists of only two lines; a serial bi-directional data line (SDA)

and a serial bi-directional clock line (SCL) [23].

2.1.2 I2C Protocol

The I2C bus is idle when both SCL and SDL are at logic 1 level. The master initiates a data

transfer by issuing a START condition, which is high to low transition on the SDA line while

the SCL line is as high as shown in figure 1.6. The bus is considered to be busy after the

START condition. After the START condition, a slave address is sent out on the bus by the

master. The address is 7 bits long followed by an eighth bit which is a data direction bit (R/W)

[23].

Chapter I: Theoretical Background

12

The master, who is controlling the SCL line, will send out the bits on the SDA line, one bit

per line can be changed only when the SCL line at a low.

Figure 1.6: Start and Stop Condition of I2C Bus [23].

Figure 1.7: Data Transmission in the I2C Bus [23].

2.2 IP (Intellectual Property) Cores

The Altera IP Library provides many useful IP core functions for a production use without

purchasing an additional license. Some Altera MegaCore® IP functions require that you

purchase a separate license for production use. However, the OpenCore® feature allows

evaluation of any Altera IP core in simulation and compilation in the software [2].

The most important IP core we have used in our project is the FFT IP core.

OpenCore Plus evaluation supports the following two operation modes:

 Untethered—run the design containing the licensed IP for a limited time.

 Tethered—run the design containing the licensed IP for a longer time or indefinitely.

For IP cores, the untethered time-out is 1 hour; the tethered time-out value is indefinite. The

design stops working after the hardware evaluation time expires [2].

Chapter I: Theoretical Background

13

2.2.1 FFT IP Core

The FFT IP core is a high performance, highly-parameterizable Fast Fourier transform (FFT)

processor. The FFT IP core implements a complex FFT or inverse FFT (IFFT) for high-

performance applications [2].

The FFT IP core I/O is illustrated in the figure 1.8.

Figure 1.8: FFT IP core I/O

In the I/O Data Flow of an FFT IP Core we distinguish four architectures [2]:

 Streaming FFT that allows continuous processing of input data, and outputs a

continuous complex data stream without the need to halt the data flow in or out of the

FFT IP core.

 The input order which allows you to select the order in which you feed the samples to

the FFT. (Natural order, Bit Reverse order, Digit Reverse Order or –N/2 to N/2 order).

 The buffered burst I/O data flow FFT requires fewer memory resources than the

streaming I/O data flow FFT, but the tradeoff is an average block throughput reduction.

 The burst I/O data flow FFT operates similarly to the buffered burst FFT, except that the

burst FFT requires even lower memory resources for a given parameterization at the

expense of reduced average throughput.

Note

The FFT IP core operates in both tethered and untethered modes [2].

Chapter I: Theoretical Background

14

2.3 Altera SOPC

SOPC (System On a Programmable Chip) is a hardware development tool used for integrating

various hardware components. The SOPC Builder system development tool simplifies the

task of creating high-performance System-On-a-Programmable-Chip (SOPC) designs by

accelerating system definition and integration [24].

Using SOPC Builder, system designers can define and implement a complete system, from

hardware to software, within one tool and in a fraction of the time of traditional System-On-a-

Chip (SoC) design. SOPC Builder is integrated within the Altera Quartus II CAD software to

give FPGA designers immediate access to a revolutionary new development tool [24].

SOPC Builder library components supplied by Altera include: Processors, Microcontroller

peripherals, Digital signal processing (DSP) cores, Intellectual property (IP) cores,

Communications peripherals, Interfaces, Middleware libraries …etc. [24].

2.4 NIOS II Processor

NIOS-II processor is a 32 bits soft processor that can be instantiated on an Altera FPGA

device. The NIOS-II processor and its associated memory and peripheral components are

easily instantiated by using Altera’s SOPC Builder in conjunction with the Quartus II

software CAD [24].

2.4.1 NIOS II system

A NIOS-II processor system is equivalent to a microcontroller (or computer on a chip) that

includes a processor and a combination of peripherals and memory on a single chip. A NIOS-

II system consists of a NIOS-II processor soft core, a set of on-chip peripherals, on-chip

memory, and interfaces to off-chip memory, all implemented on a single Altera device. Like a

microcontroller family, all NIOS-II processor systems use a consistent instruction set and

programming model. The new hardware designs could be tested easily by reconfiguring the

FPGA using JTAG interface.

The JTAG interface supports hardware and software development and can be used to perform

deferent tasks like: configuring the FPGA, communicating with the FPGA through a UART-

like interface and many others [24].

Chapter II: Hardware and Software Implementation

CHAPTER II:

HARDWARE AND SOFTWARE IMPLEMENTATION

Chapter II: Hardware and Software Implementation

15

Introduction

In this project we implemented a hardware system that recognizes a speech, by the mean of

head styled microphone and the Altera DE2-board. We used VHDL language to describe the

hardware of the different blocks used in our speech recognition system.

This chapter provides the reader with the different parts and components used in our hardware

design followed by a description of their functionalities.

Figure 2.1 shows the general block diagram of our system. As mentioned here, our design is

composed of three main components.These components are the audio codec, the FFT module,

and the NIOS system.

Figure 2.1: General implementation block diagram

1. Audio Codec

This Audio codec is the first block of our system, which is in charge of the reception of the

audio signal from the microphone. The analog signal produced by the microphone must be

converted to digital before processed by our system. To perform this, an analog to digital

converter (ADC) should be used. Fortunately, the DE2-Board is equipped by an audio chip

that does this task, which is the Wolfson WM8731 audio codec.

The WM8731 on the DE2 board is the small chip labeled U1 near the row of colored audio

connectors; it has a flexible digital interface, that we access using dedicated pins on the

Cyclone II FPGA device. It has internal analog-to-digital converters (ADCs) and digital-to-

Chapter II: Hardware and Software Implementation

16

analog converters (DACs) that allow the device to convert at sampling rates from 8kHz to

96kHz, supporting digital word lengths from 16-32 bits [20].

This chip can be configured by writing to 11 registers which can be accessed using the I2C

(Inter integrated circuit) protocol. For audio data path, WM8731 may be operated in either

one of the following four offered audio interface modes:

• Right justified

• Left justified

• I2S

• DSP mode

In this part we have developed a VHDL code to get the audio data from the MIC-line in of the

DE2 to the Wolfson chip, and save it in a memory block that we created using the Altera

Megafunction wizard tool of the Quartus II software. This VHDL code is composed of two

main parts, configuration controlling and data flow controlling. To deal with synchronization

aspects, we used two phase-locked loops (PLL) for dividing and buffering the 27MHz and

50MHz DE2-board clocks. The block symbol generated using Quartus II to this component is

shown in figure 2.2.

Figure 2.2: audio codec block

This symbol shows the different inputs and outputs of the audio codec. This block will be

connected later to other blocks for further processing of the audio signal.

1.1 Configuration Part

Accessing the configuration register needs a solid background on serial communication

protocols, specifically the I2C one. Based on the fact that the Wolfson chip supports the I2C

protocol, our application will use this chip just to send data (configuration) to it and there is

Chapter II: Hardware and Software Implementation

17

only one peripheral device that will be interfaced. We designed a specified FSM (finite state

machine) that has six states (reset state, start condition, send data, acknowledge, prepare for

stop, stop condition).

Following reset, the FSM entered the start condition, in which the I2C clock line was held

high while the I2C data line was pulled low. The FSM then entered the send data state, where

each of the 24-bits of the current packet was sent. After each 8 bits, the FSM entered the

acknowledge state, where the I2C data line was set to high impedance. Following

transmission of the full 24-bit packet, the FSM entered the stop condition, where the I2C

clock line was held high, while the I2C data line was pulled high.

In this configuration we have set the audio codec chip to be a slave device, and the FPGA be a

master device. Figure 2.3 is the FSM diagram we used in this configuration.

Figure 2.3: I2C FSM diagram

We created a small ROM to save these configuration packets, which will be retrieved by the

controller and send via the two-wire interface to the audio device. This process happens only

once and must be the first to be done in our system in order to get a correct data in right

moment. For this purpose, we created a delay counter module that is used to wait for 42ms

until it finishes the configuration, and then enable the data transmission carried by the

ADCDAC controller.

Chapter II: Hardware and Software Implementation

18

This ROM contains our specified configuration which differs from the default one. In fact, we

modified some of them and let others as they were by default. Among the modified ones, we

can list the most important of them, which are:

 Enable microphone input boost level

 Disable line in input to ADC

 Sampling frequency to 8KHz

 Left justified mode for digital audio

Figure 2.4 represents the symbol generated by Quartus II for configuring the audio codec chip

block. The different I/O ports of this block are mentioned in the symbol.

Figure 2.4: Audio codec controller block

As shown in the previous figure, the audio codec controller has two inputs and three outputs.

The two inputs are the provided DE2-board 50 MHz clock and a reset which is connected to

one of the push buttons of the board. For the outputs, we have the serial clock (I2C_SDK) and

the serial data line (I2C_SDAT) that we connect to the specified pins to control the chip

serially under the I2C protocol [7].

The remaining output line (SDA_Control) is used by the ADCDAC controller that we will

introduce in the following paragraphs.

1.2 Data Flow Part

In this part we developed data controller that ensures a send and a receive tasks with the audio

codec chip. Dealing with the audio data needs understanding the communication protocol

used by the Wolfson chip. To do so, we used its data sheet to take decision about the timing

and precision of the data to be used.

The data controller we developed remains idle for 42ms after the reset button was pressed.

The controller then generates two clock signals, which were used by the codec. The bit clock

signal is used to clock the output bits from the digital to analog conversion by the codec. The

Chapter II: Hardware and Software Implementation

19

bit clock signal run at 3.07MHz, using the 18.42105 MHz (master clock XCK) signal

produced by a PLL. The second clock, the left/right select clock, runs at 192 KHz. The

left/right select clock is used to switch channels within the codec [20].

We set the digital audio interface format in the configuration part by accessing the register 7

[20]. We have used the following parameters:

 Left justified mode

 16 bit data precision

 Right channel ADC/DAC data available when DACLRC/ADCLRC is low

 MSB is available on the first BCLK rising after ADCLRC/DACLRC rising edge

 Right channel ADC/DAC data Right and vice-versa

 Enable slave mode

 Don’t invert BCLK

The left justified mode works as follows:

Figure 2.5: Left justified mode [20]

The type of communication we used is the master slave one, where our data controller module

acts as a master and the Wolfson chip as a slave; we used five lines to control the data

transaction. Three of them are for the different clocks and the remaining ones are for data.

The following figure shows how this connection is made.

Chapter II: Hardware and Software Implementation

20

Figure 2.6: Slave Mode Connections [20]

For testing purposes, we created a loop back of the sound from the MIC-line in to the Line-

Out line by writing the data gotten from the ADC (ADCDAT) to the DAC using DACDAT

line. With this technique we can adjust our configuration in the way to get a right data in the

right moment and see the effect of different configurations. The figure 2.7 is the block

generated using Quartus II of the data flow controller that we named data_controller, which

has three inputs and seven outputs.

Figure 2.7: data flow controller block

1.3 Delay Counter

Since the configuration part must be held before any data transaction, we estimated a wait

time to be 42ms for the data transaction to start after the first one. Thus, we have developed a

VHDL code such that the clock signal will be generated to data controller 42ms after the reset

button is pressed. The following figure 2.8 shows its block generated using Quartus II.

Chapter II: Hardware and Software Implementation

21

Figure 2.8: delay counter block

1.4 Clock Divider

A clock divider is used to generate a master clock of 18 MHZ. Referred to the Wolfson data

sheet, the Wolfson chip is configured under the normal mode to get a sampling frequency of 8

KHz [20].

In order to get this MCLK we use a Megafunction wizard tool of Quartus II software to create

a PLL that takes as input the 27MHz DE2-board clock and divides it to get as output clock

18.42105Mhz. Figure 2.9 shows the resulting block symbol.

Figure 2.9: clock divider block

1.5 Memory Blocks

Memory blocks are required for the proper operation of the system for either to hold

configuration data of to store temporarily audio data. In our design we have tried to use

minimal amount of memory in the system. Both memory types are used: ram and rom.

1.5.1 ROM

Read only memory of the size 32x24 bits, which is used to store 10x24 bits of the audio codec

configuration. We created this memory using the Megafunction Wizard embedded in Quartus

II CAD software. The resulting schematic block of the created ROM is shown in figure 2.10.

Chapter II: Hardware and Software Implementation

22

Figure 2.10: ROM Block

1.5.2 RAM

Random access memory is used in our system to store a voice chunk of 32ms duration. Note

that the voice is stored before its FFT is performed. Since the sampling frequency used is 8

KHz, a total of 256 samples are taken in a timeframe of 32ms. Therefore the required size of

that RAM would be 256x16bits. The resulting schematic block of the created RAM is shown

in figure 2.11.

Figure 2.11: 256x16 RAM Block

As noticed, the RAM of the above figure is a 2-port RAM that can be accessed for both read

and write actions simultaneously. In fact, we have used this type of memory because we are

implementing a real-time speech recognition system which should provide the possibility to

write and read data at the same time. This RAM stores the output data from the ADC of the

audio codec in the form of a 16-bits word each and which can then be accessed by the FFT

module to read that audio data to be transform.

1.6 Audio Codec General Block Diagram

The different circuit diagrams discussed previously are instantiated and connected to

construct the audio codec block including both the configuration and the data flow control

functions. The resulting audio codec diagram circuit is shown in figure 2.12.

Chapter II: Hardware and Software Implementation

23

VCC
CLOCK50 INPUT

VCC
CLOCK27 INPUT

VCC
KEY INPUT

VCC
AUD_ADCDAT INPUT

VCC
rdclock INPUT

VCC
rdaddress[7..0] INPUT

I2C_SDAOUTPUT

I2_SDKOUTPUT

AUD_DACDATOUTPUT

AUD_DACLRCOUTPUT

AUD_ADCLRCOUTPUT

AUD_BCLKOUTPUT

AUD_XCLKOUTPUT

DATA_ADC[15..0]OUTPUT

Cy clone II

inclk0 f requency : 27.000 MHz

Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)

c0 92/135 0.00 50.00

inclk0

areset

c0

audioPLLClock

inst

clock

reset

resetAdc

delay

inst1

clock50

rst

I2C_SDK

I2C_SDA

SDA_Control

CodecConf iguration

inst2

rst_n

clock_18

adc_data

dac_data

bitClock

dacLRSelect

adcLRSelect

AdcRamEn

addressRamVector[7..0]

dataAdc[15..0]

data_controller

inst3

2
5

6
W

o
rd

(s
)

R
A

M

Block Ty pe: AUTO

data[15..0]

w raddress[7..0]

w ren

rdaddress[7..0]

w rclock

rdclock

q[15..0]

ram

inst4

NOT

inst7

Figure 2.12: Audio Codec General Block Diagram

2. Fast Fourier Transform Module

Fast Fourier transform is a method for fast calculation of discrete Fourier transforms. In this

work we are dealing with a speech signal which is digitized using an analog to digital

convertor. The output of the ADC is a digital representation of the speech signal in time

domain. To extract feature vectors representation of the speech signal, we need to perform

some DSP manipulations which cannot be accomplished in time domain. To get rid of this

problem, mapping the signal from time to frequency domain should be done, where the

calculations are easier than keeping them in time domain. For that reason, calculating the DFT

of that signal is needed.

To satisfy the real time criteria in the desired system, a faster algorithm is required, and then

the FFT approach fits this requirement perfectly.

The FFT Module contains an FFT and a 256x16 memory block. The following figure is the

FFT Module block.

Figure 2.13: FFT Module Block

Chapter II: Hardware and Software Implementation

24

2.1 FFT IP Core

To calculate the FFT of the speech signal we use the embedded Altera FFT Megafunction

core available in Quartus II CAD software. However, this core has many parameters to be

taken into account. Understanding the functionality of this mega core has taken a great

amount of time for us. Once this was done, a VHDL code to control the core was written, i.e.,

import data from the RAM of audio codec, treat it, and then save it in another RAM. The

second RAM has been implemented in similar fashion as did for the audio codec one. Our

code is based on an FSM methodology consisting of four different states.

2.2 FFT FSM

Based on the FFT IP Core and the Verilog code proposed by Cornell University [1] [2], we

have developed a VHDL code of an FSM that controls this IP core.

The module is configured so as to produce a 256-point FFT. It takes data input in natural

order, and output the transformed data in natural order too. In the Megafuncion

parameterization of the FFT module, we tried out various architectures for the FFT, i.e. Burst,

Buffered Burst, Streaming and Variable Streaming. It turns out that the Burst architecture was

most efficient one [1]. This fact was true for our implementation too.

After studying the Burst architecture and using the FFT Burst Data Flow Simulation

Waveform shown in the figure 2.14 and which was taken from [2], we have developed an

FSM that has four states.

Figure 2.14: FFT Burst Data Flow Simulation Waveform [2]

Chapter II: Hardware and Software Implementation

25

A best way to handle the inputs of the FFT is by implementing a state machine. This later is

implemented to control the functioning of the FFT module using four states. We have set

‘reset_n’ to make the program be in SOP (start of packet) state initially. When it is in the SOP

state, the ’sink_sop’ is set to indicates the start of incoming FFT frame, begin counting by

setting the count to one and assign the input signal to ‘sink_real’ that will be processed by the

FFT, then it goes to Transforming state. This state is where it does its job of transforming the

time signal to frequency one, it releases ‘sink_sop’ and increments ‘count’ to indicate that it is

in that state. Once ‘count’ reaches (255-2) it leaves this state and goes to EOP (end of packet)

state where it does the last transformation and signals the end by setting ‘sink_eop’, then

enters the IDLE state where it will wait for the next incoming FFT frame. The signal ‘go’

indicates the presence of data ready for processing, so in this state it stays checking for this

signal, when it is set it goes to start state (SOP) and repeat the same process. The following

figure represents this FSM.

Figure 2.15: FFT Module FSM Diagram

The data processed by the FFT will be saved in a memory block before interfacing it to the

NIOS_II.

2.3 FFT Memory Block

We created 256x16 bits of memory in order to store the FFT output. The memory is

synchronized with FFT by getting the same clock and is also interfaced to the NIOS-II. The

Chapter II: Hardware and Software Implementation

26

completion of FFT operation is indicated to the NIOS through a PIO. When the NIOS senses

that signal, it checks for the ‘source_exp’ of the FFT value, to know whether there is a speech.

In case of the presence of any speech, the NIOS-II reads the next 31 blocks of that memory.

Figure 2.16: FFT RAM Block

3. NIOS II System

The last hardware part of our implementation is creating a NIOS II soft processor in order to

treat the data produced by the FFT module, which is very difficult to implement in hardware.

This is why we decided to complete the feature extraction in software, i.e., with a C program

executed by the soft processor.

Using the SOPC builder tool of the Quartus II, we created a NIOS-II system consisting of:

 NIOS processor

 On-chip memory

 SDRAM

 I/O inputs and outputs for the LEDs and Switches

 I/O inputs and outputs to interface the system to the FFT module

 LCD

2
5
6

W
o

rd
(s

)

R
A

M

Block Ty pe: AUTO

data[15..0]

w raddress[7..0]

w ren

rdaddress[7..0]

w rclock

rdclock

q[15..0]

ramfft

inst

Chapter II: Hardware and Software Implementation

27

After creating this system, we have generated a schematic block for instantiating it and

synchronize it to the other parts of the system in the top-level that we called speech-

recognition. The following figure shows the block diagram representation of this NIOS-

System.

Figure 2.17: NIOS II System Block

4. Top Level

The schematic diagram Top level module connects and synchronizes the audio codec, FFT

module and NIOS-II System. In order to properly generate the required clock signals for the

NIOS, SDRAM and AUDIO CODEC, it uses 2 PLLs which are inbuilt in the DE2 board. The

general block diagram of our hardware implementation is represented in the next page.

clk

reset_n

in_port_to_the_iFFTCoeff [15..0]

in_port_to_the_iFFTComplete

in_port_to_the_iFFTLevel[5..0]

in_port_to_the_iKeys[2..0]

in_port_to_the_iSw itches[7..0]

LCD_E_from_the_lcd_0

LCD_RS_from_the_lcd_0

LCD_RW_from_the_lcd_0

out_port_from_the_oFFTAddress[7..0]

out_port_from_the_oFFTStart

out_port_from_the_oLEDG[7..0]

out_port_from_the_oLEDR[7..0]

zs_addr_from_the_sdram_0[11..0]

zs_ba_from_the_sdram_0[1..0]

zs_cas_n_from_the_sdram_0

zs_cke_from_the_sdram_0

zs_cs_n_from_the_sdram_0

zs_dqm_from_the_sdram_0[1..0]

zs_ras_n_from_the_sdram_0

zs_w e_n_from_the_sdram_0

LCD_data_to_and_from_the_lcd_0[7..0]

zs_dq_to_and_from_the_sdram_0[15..0]

nios_system

inst

Chapter II: Hardware and Software Implementation

28

Figure 2.18: Complete Hardware Implementation Block Diagram

V
C

C
C

L
O

C
K

_
5
0

IN
P

U
T

V
C

C
C

L
O

C
K

_
2
7

IN
P

U
T

V
C

C
K

E
Y

IN
P

U
T

V
C

C
A

U
D

_
A

D
C

D
A

T
IN

P
U

T

V
C

C
s
w

it
c
h
e

s
[7

..
0

]
IN

P
U

T

I2
C

_
S

C
L
K

O
U

T
P

U
T

A
U

D
_
A

D
C

L
R

C
K

O
U

T
P

U
T

A
U

D
_
D

A
C

L
R

C
K

O
U

T
P

U
T

A
U

D
_
D

A
C

D
A

T
O

U
T

P
U

T

A
U

D
_
X

C
K

O
U

T
P

U
T

A
U

D
_
B

C
L

K
O

U
T

P
U

T

L
C

D
_
E

O
U

T
P

U
T

L
C

D
_

R
S

O
U

T
P

U
T

L
C

D
_

R
W

O
U

T
P

U
T

L
E

D
G

[7
..

0
]

O
U

T
P

U
T

z
s

_
c
k

e
O

U
T

P
U

T

z
s

_
c
s

_
n

O
U

T
P

U
T

z
s

_
c
a

s
_

n
O

U
T

P
U

T

z
s

_
ra

s
_

n
O

U
T

P
U

T

z
s

_
a
d

d
r[

1
1
..

0
]

O
U

T
P

U
T

z
s

_
b
a

[1
..

0
]

O
U

T
P

U
T

z
s

_
d
q

m
[1

..
0
]

O
U

T
P

U
T

z
s

_
w

e
_

n
O

U
T

P
U

T

D
R

A
M

_
C

L
K

O
U

T
P

U
T

L
E

D
R

[7
..

0
]

O
U

T
P

U
T

O
N

O
U

T
P

U
T

B
L

O
N

O
U

T
P

U
T

V
C

C
I2

C
_

S
D

A
T

B
ID

IR

V
C

C
L
C

D
_

d
a

ta
[7

..
0
]

B
ID

IR V
C

C
z
s

_
d

q
_
to

_
a
n

d
[1

5
..

0
]

B
ID

IR

iR
e
s
e

t

iS
ta

rt

iS
ta

te
C

lk

iS
a
m

p
[1

5
..

0
]

iR
e
a
d

A
d
d

r[
7
..

0
]

iR
e
a
d

C
lo

c
k

o
S

a
m

p
A

d
d
r[

7
..

0
]

o
P

o
w

e
r[

1
5
..

0
]

o
E

x
p
[5

..
0

]

o
D

o
n

e

in
s
ta

te
[2

..
0
]

F
F

T
_

M
o
d

u
le

in
s

t1

K
E

Y

C
L
O

C
K

_
5
0

C
L
O

C
K

_
2
7

A
U

D
_
A

D
C

D
A

T

rd
a

d
d

re
s
s
[7

..
0
]

rd
c

lo
c
k

I2
C

_
S

C
L

K

A
U

D
_
A

D
C

L
R

C
K

A
U

D
_
D

A
C

L
R

C
K

A
U

D
_
D

A
C

D
A

T

A
U

D
_
X

C
K

A
U

D
_
B

C
L

K

D
A

T
A

_
A

D
C

[1
5
..

0
]

I2
C

_
S

D
A

T

a
u
d

io
_
c
o

d
e

c

in
s

t

C
y
c

lo
n
e

II

in
c

lk
0

fr
e

q
u
e

n
c
y

:
5

0
.0

0
0

M
H

z

O
p

e
ra

ti
o

n
M

o
d

e
:

N
o
rm

a
l

C
lk

R
a

ti
o

P
h

(d
g

)
D

C
(%

)

c
0

1
/1

-5
4
.0

0
5

0
.0

0

in
c
lk

0
c
0

s
d
ra

m
_
P

L
L

in
s

t3

V
C

C

c
lk

re
s

e
t_

n

in
_
p
o

rt
_
to

_
th

e
_

iF
F

T
C

o
e
ff

[1
5

..
0
]

in
_
p
o

rt
_
to

_
th

e
_

iF
F

T
C

o
m

p
le

te

in
_
p
o

rt
_
to

_
th

e
_

iF
F

T
L
e
v

e
l[5

..
0
]

in
_
p
o

rt
_
to

_
th

e
_

iK
e

y
s
[2

..
0

]

in
_
p
o

rt
_
to

_
th

e
_

iS
w

itc
h
e

s
[7

..
0
]

L
C

D
_

E
_
fr

o
m

_
th

e
_
lc

d
_

0

L
C

D
_

R
S

_
fr

o
m

_
th

e
_
lc

d
_

0

L
C

D
_
R

W
_
fr

o
m

_
th

e
_
lc

d
_

0

o
u

t_
p
o
rt

_
fr

o
m

_
th

e
_

o
F

F
T

A
d

d
re

s
s
[7

..
0

]

o
u

t_
p
o
rt

_
fr

o
m

_
th

e
_

o
F

F
T

S
ta

rt

o
u
t_

p
o
rt

_
fr

o
m

_
th

e
_
o
L
E

D
G

[7
..

0
]

o
u
t_

p
o
rt

_
fr

o
m

_
th

e
_
o
L
E

D
R

[7
..

0
]

z
s

_
a
d
d

r_
fr

o
m

_
th

e
_
s

d
ra

m
_
0
[1

1
..

0
]

z
s

_
b
a
_

fr
o
m

_
th

e
_

s
d
ra

m
_
0
[1

..
0
]

z
s

_
c
a
s

_
n
_

fr
o
m

_
th

e
_

s
d
ra

m
_
0

z
s
_

c
k
e
_

fr
o
m

_
th

e
_

s
d
ra

m
_
0

z
s
_
c
s

_
n
_

fr
o
m

_
th

e
_

s
d
ra

m
_
0

z
s

_
d
q
m

_
fr

o
m

_
th

e
_

s
d
ra

m
_
0
[1

..
0
]

z
s
_

ra
s

_
n
_

fr
o
m

_
th

e
_

s
d
ra

m
_
0

z
s
_
w

e
_
n
_

fr
o
m

_
th

e
_

s
d
ra

m
_
0

L
C

D
_
d
a

ta
_

to
_
a
n
d

_
fr

o
m

_
th

e
_
lc

d
_

0
[7

..
0
]

z
s
_
d

q
_
to

_
a

n
d
_
fr

o
m

_
th

e
_
s

d
ra

m
_
0
[1

5
..

0
]

n
io

s
_
s
y
s
te

m

in
s
t6

V
C

C

V
C

C

Chapter II: Hardware and Software Implementation

29

5. Software Implementation

As mentioned previously, the first step in any ASR system is to extract features from the

audio signal will be used in the recognition stage.

The first different parts of the MFCC algorithm ranging from the pre-processing up to the

FFT phase are implemented in the previous section. The remaining parts are implemented

using the SOPC builder and the NIOS-II processor. Matching algorithm is also executed

within the NIOS processor.

The following section goes through the description of the software part used in our speech

recognition system.

5.1 MFCC Algorithm

After processing the audio signal within the FFT module, most of its outputs precede into the

NIOS-II system to be process through the remaining parts.

As shown in figure 2.19, first the system has to make sure that it receives a speech signal

which is loud enough in order to be processed. The level of the sound is given by the FFT

module.

Once the sound is detected, for each sample, FFT coefficients are read from the FFT module

that are used as arguments in some required functions.

After getting all the FFT coefficients, the MFC Coefficients are gathered by applying first the

filter bank, then computing the Mel transform, and finally applying the DCT transform.

The result will be 12 coefficients which are the MFCC (coefficients) required for the

matching.

Chapter II: Hardware and Software Implementation

Yes

No

No

Yes

N

Figure 2.19: MFCC Flow Chart

Start FFT

Is FFT

completed?

Is sound level

>Sd?

Is t

sam

c

Apply the DCT

Apply the filter bank

and compute the Mel

Start

MFCC

End

FFTFinished
Yes
he number of

ples reached?
No
30

Yes

o

Yes

No

Start FFT

Is FFT

ompleted?

Is the sample

size reached?

Get the FFT coeff

Get the FFT address

Increment the

sample size

Pass to the next

sample

Chapter II: Hardware and Software Implementation

31

5.2 Data-Base

In our project we have made our database using the MFCC coefficients resulted from the

processing of the speech signal. The data base contains four words each one has 12

coefficients stored in the memory.

In our design we have taken only 12 coefficients of the 26 DCT coefficients into

consideration because the higher DCT coefficients represent fast changing in filter bank

energies: these fast changes degrade the SR performance.

The figure 2.20 shows how the data stored into the memory.

No

Yes

Yes

No

Figure 2.20: Flow Chart of the Data Base

Start

Libraries declaration

While (1)

MFCC coefficient

Reach the last

address

Store the set

End

Increment

Chapter II: Hardware and Software Implementation

32

5.3 Recognition Algorithm

The flow chart of figure 2.21 models the recognition part of the system.

After getting the MFCC of the spoken word, the following steps are performed:

1. Retrieve the first predefined word’s MFCC from the database

2. Calculate the distance between the spoken word MFCC and the predefined one.

3. Verify the threshold condition (DS<|Th|):

 If satisfied, give an order to display the corresponding word on the LCD (word

matched)

 If not satisfied, retrieve the next predefined word from the database and go to

step 2.

Chapter II: Hardware and Software Implementation

Start

Libraries and variables

declarations

While (1)

End

MFCC coeffReach the

last address

No

Yes

Incre

o

s

N

ment the line

address
Ye
33

Figure 2.21: Recognition Flow Chart

Calculate the distanceData Base

DS<|Th|

Matched

Display word

No Yes

Chapter III: Result and Discussion

CHAPTER III: RESULT AND DISCUSSION

Chapter III: Result and Discussion

34

Introduction

This chapter deals with the discussion of our simulation results obtained with Quartus II CAD

software. Some implementation results will be shown for testing the functionality of our

system on DE2 board.

1. Audio Codec Simulation

The simulator tool included in the Quartus II CAD software was used to simulate the behavior

of the audio codec block of our system. The time interval chosen for that simulation is 9.5

msec. The obtained results are shown in figure 3.1.

Figure 3.1: Audio Codec Simulation

The above simulation waveforms demonstrate the well functionality of the audio codec

circuit. These results deal with the two major phases for the audio codec block, the audio

codec chip configuration and the audio data flow. Both phases are discussed below.

1.1 Wolfson Chip Configurations

Figure 3.2 clearly shows the ten activations of the serial clock signal line (I2C_SCLK) for the

transmissions of ten frames of data using the serial data line (I2C_SDA). The size of each

frame is 24 bits. On each activation, an 8-bits Wolfson’s register is configured accordingly.

Chapter III: Result and Discussion

35

Figure 3.2: Transmission of Ten Frames of Data to the Wolfson Chip Using I2C Protocol

The two first corresponding Wolfson chip register configurations are hold by the two first

frames. The Wolfson chip can be accessed using two addresses which are selected using the

control interface address selection as shown in the table below.

Table 3.1: Control Interface Address Selection [20]

Since the CSB is tied to ground, and referring to the schematic in the DE2 user Manuel. The

audio codec address is ‘0011010‘. The seventh bit is zero because the Wolfson chip is

configured in a slave mode (just writing to it).

The first 8-bits of each frame correspond to the address of the audio codec chip (bits [7:1])

and a writing bit (bit 0). The corresponding value is ‘00110100’.

The next 8-bits is the configuration register’s address (bits [7:1]), followed by the writing bit

(bit 0). The last 8-bits are for the configuration. As shown in figure III.3

Figure 3.3: 24-Bits Configuration Frame

Chapter III: Result and Discussion

Figure 3.4:

In figure 3.4, bits [4:0] are set to

disable the line input mute to ADC by setting bit 7

default.

Figure 3.5:

In figure 3.5, bits [4:0] are set to

disable the line input mute to ADC by setting bit 7, and left the

default. These configurations are achieved referring to the table

Table

Chapter III: Result and Discussion

: Transmission of Register 1 Data Configuration

its [4:0] are set to ‘11111’ for stepping up the Left channel input volume,

disable the line input mute to ADC by setting bit 7, and left the other configurations as

: Transmission of Register 2 Data Configuration

its [4:0] are set to ‘11111’ for stepping up the right channel input volume

the line input mute to ADC by setting bit 7, and left the other configurations as

default. These configurations are achieved referring to the table 3.2.

Table 3.2: Line Input Software Control [20]

36

the Left channel input volume, then

and left the other configurations as

for stepping up the right channel input volume , then

other configurations as

Chapter III: Result and Discussion

37

The most important register, by which our work is concerned more, is the analog path control

one. The zoomed-in view of the simulation results for this phase is illustrated in figure 3.5.

Figure 3.6: Transmission of Register 4 Data Configuration

Notes

 Enable microphone input level boost (bit0 = ‘1’)

 Disable MIC input mute to ADC (bit1 = ‘0’)

 Select microphone input to ADC (bit2 = ‘1’)

 Disable bypass (bit3 = ‘0’)

 Select DAC for testing purpose (bit4 = ‘1’)

 Enable side tone (bit5 = ‘1’)

 Set side tone attenuation to -15dB (bit[7:6] = ‘11’)

The following table is used in this configuration.

Table 3.3: Analog Audio Path Control [20].

Chapter III: Result and Discussion

1.2 Data Flow

In our work and for testing the configuration

the ADCDAT (ADC Data) is tied to DACDAT

inbuilt ADC of the Wolfson chip

following figure (figure 3.6) demons

the MIC line to the FPGA, and back

Figure

1.3 Master Clock (XCLK

For sampling issue which is very important in time and memory considerations, we have

generated a master clock of 18MHz.

Figure 3.8

The figure above shows the simulation result of the master clock.

two highlighted values gives right the XCK period of 0.00005423

18.4346918 MHz.

Chapter III: Result and Discussion

for testing the configuration, a loop back of audio data is programmed

is tied to DACDAT (DAC Data) in order to make the output of

inbuilt ADC of the Wolfson chip be the input of the inbuilt DAC of the codec chip. The

demonstrates that the audio data follows corre

and back to the line out.

Figure 3.7: Audio Data Flow Simulation.

XCLK) generation

is very important in time and memory considerations, we have

18MHz.

.8: Master Clock (XCK) Generation Simulation.

The figure above shows the simulation result of the master clock. The difference

two highlighted values gives right the XCK period of 0.00005423 ms which is

38

loop back of audio data is programmed. Thus,

to make the output of the

the input of the inbuilt DAC of the codec chip. The

correctly the path from

is very important in time and memory considerations, we have

^

difference between the

which is equivalent to

Chapter III: Result and Discussion

39

2. Hardware Result

2.1 Compilation Report

Using the Quartus CAD software we have compiled the project named speech_recognition

and we have gotten the report result shown in figure 3.9.

Figure 3.9: Compilation Report

As shown in the compilation report we have used about 25% of total logic element and about

21% of total pins of our FPGA device.

2.2 Download the Project to the DE2 Board

Using the programmer tool in the Quartus software, we have downloaded the project to the

FPGA. Then received two messages: the first, indicating that the Megafunctions used will

work for a limited time(1 hour as mentioned in the Altera user manual) as illustrated in figure

3.10, the second, indicating that the system must be connected to the computer for the proper

function, as shown is figure 3.11. To avoid those problems our Quartus software should be

licensed.

Chapter III: Result and Discussion

Figure 3.10

Figure 3.11

2.3 Results

Using NIOS II 9.1 IDE we run the C program in the NIOS soft core. We plugged the head

styled microphone to the DE2 board MIC line.

Our data base contains four words:

 Right

 Left

 Yes

 No

The result of saying the word ‘Right’ is shown in figure 3.

Chapter III: Result and Discussion

Figure 3.10: Hardware Limited Time Message

Figure 3.11: Connecting to Computer Message

we run the C program in the NIOS soft core. We plugged the head

styled microphone to the DE2 board MIC line.

Our data base contains four words:

The result of saying the word ‘Right’ is shown in figure 3.12.

40

we run the C program in the NIOS soft core. We plugged the head

Chapter III: Result and Discussion

41

Figure 3.12: Word Recognized ‘Right’

The result of saying the word ‘Left’ is shown in figure 3.13.

Figure 3.13: Word Recognized ‘Left’

Discussion

We notice that the red LEDs are ON, which means a presence of a speech sound. The green

LEDs are also ON which indicates that a word in a dictionary has been recognized. The word

recognized is displayed on the LCD. ‘Right’ in figure 3.12 and ‘Left’ in figure 3.13.

The result of saying the word ‘Hello’ is shown in figure 3.14.

Chapter III: Result and Discussion

42

Figure 3.14: Word Not Recognized ‘Hello’

Discussion

In figure 3.14 the red LEDs are turned ON which signifies a presence of speech sound.

However, the Green LEDs are OFF meaning that the spoken word is not in the data base.

When there is no speech, i.e., silence, the Red LEDs as well as the LCD are OFF, as

illustrated in the figure 3.15.

Figure 3.15: Speech Not Present

General Conclusion

43

Developing a human machine interaction mean that fits real-time criteria and gives a facility

for both the user and a machine is what motivated our project. Speech recognition systems are

the perfect solution for this interaction. Many software applications perform the recognition.

However, performing the same in hardware will result in better performances: fitting the real-

time criteria and accuracy in speech recognition.

In this report, the design and implementation of an FPGA-based real time speech recognition

is presented. This system is developed using the two aspects of hardware and software

implementations. In the beginning we desired to realize the whole system in hardware, but

implementing the MFCC algorithm in hardware is much difficult and will take a lot of our

reduced time. This is why we used the NIOS-II soft processor to execute a C program

performing this MFCC algorithm. The soft processor is also used in performing the

recognition using the matching approach.

We have successfully designed a real time speech to text engine using FPGA technology,

taking advantage of parallel processing and very high speed resources proposed by the Altera

DE2 board.

A real time isolated word is implemented in this project using a matching approach. As

improvement of this work we suggest to advance this system into a continuous speech

recognition engine, changing the matching technique by the HMM (Hidden Markov Model)

algorithm.

References

XII

[1] Aakash Jain, Krishna Teja Panchagnula, Nitish Paliwal, (2010). Real Time Speech

Recognition Engine, Cornell University.

[2] Altera Corporation, (2015). FFT IP Core User Guide.

[3] Altera Corporation, (2014). Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-

PORT, and ROM: 2-PORT) User Guide.

[4] Altera Corporation, (October 2006). Audio / Video Configuration Core for DE2/DE1

Boards.

[5] Altera Corporation, (May 2011). NIOS II Hardware Development, Tutorial.

[6] Altera Corporation, (2008). Introduction to the Altera SOPC Builder Using VHDL Design.

[7] Altera Corporation, Altera DE2 Board Pin Table.

[8] AnkitaGoel , Hamid Mahmoodi, (spring 2012). Embedded Systems Design Flow Using

Altera’s FPGA Development Board (DE2-115 T-Pad).

[9] Carlos Asmat, David Lopez Sanzo, Kanwen Wu, (June 2007). Speech Recognition Using

FPGA Technology.

[10] José Ignacio, Mateos Albiach, (2006). Interfacing a Processor Core in FPGA to an

Audio System, Master Thesis Performed in Electronics Systems.

[11] HuanFang , Xin Liu. SOPC-based Voice Print Identification System.

[12] Lattice Semiconductor Corp., (2015). I2C Master Controller.

[13] Lindasalwa Muda, Mumtaj Begam, I. Elamvazuthi, (March 2010). Voice Recognition

Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping

(DTW) Techniques.

[14] Haitao Zhou, Xiaojun Han, (August 2009). Design and Implementation of Speech

Recognition System Based on Field Programmable Array, Tianjin Polytechnic

University,China.

[15] M.T. Bala Murugan and M. Balaji, Instructor: Dr. B. Venkataramani, (2006). SOPC-

Based Speech-to-Text Conversion.

[16] Pong P. Chu, Cleveland State University (2008). FPGA Prototyping By VHDL Examples.

[17] Ricardo da Silva, Professor Steve Gunn, (April, 2013). Speech Recognition on Embedded

Hardware.

[18] Shivanker Dev Dhingra, Geeta Nijhawan, Poonam Pandit, (August 2013). ISOLATED

SPEECH RECOGNITION USING MFCC AND DTW.

[19] Vonei A. Pedroni, MIT Press, (2004). Circuit Design with VHDL.

[20] Wolfson Microelectronics, (April 2004). Data sheet, WM8731/WM8731L, Portable

Internet Audio Codec with Headphone Driver and Programmable Sample Rates.

References

XIII

[21] SantoshK.Gaikwad, BhartiW.Gawali, PravinYannawar, (November 2010). A Review on

Speech Recognition Technique.

[22] Young-Uk Chang1, Chang Choo, Il-Young Moon, (September 2015). FPGA-Based

Hardware Accelerator for Feature Extraction in Automatic Speech Recognition.

[23] Enoch Hwang, (April 2008). Implementing an I2C Master Bus Controller in a FPGA.

[24] Altera Corporation, (June 2003). SOPC User Guide.

[25] Noelia Alcaraz Meseguer,(July 2009). Speech Analysis for Automatic Speech

Recognition. Norwegian University of Science and Technology.

