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ABSTRACT

Hidden Markov Models (HMMs) are a popular and ubiquitous tool for modelling

a large range of time series data. It has been applied successfully to various complex

problems, being especially effective with those requiring a huge amount of measured

data, such as pattern recognition in speech, handwriting and even facial recognition.

Since Fault detection and diagnosis is an important problem in process engineering

recent studies are focusing on developing new techniques which are more accurate,

sensitive to small faults, with no time delay and can monitor multi-mode process ef-

fectively. In order to satisfy these requirements, a huge data are needed and a suitable

model to process these data is the HMM. The main objective of this work is to develop

novel HMM-based approach to diagnose various operating modes of a process includ-

ing Bayesian methods for mode selection. The mode in this work refers to process

operational statuses such as normal or abnormal operating conditions.

Keywords: Thesis, Fault Detection, Hidden Markov Model, Operating Mode, Multi-

Mode Process.
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CHAPTER 1

General Introduction

In the process and manufacturing industries, there has been a large push to produce

higher quality products, to reduce product rejection rates, and to satisfy increasingly

critical safety and environmental regulations.

Process operations that were at one time considered acceptable are no longer ade-

quate. To meet the higher standards, modern industrial processes contain a large number

of variables operating under closed-loop control. The standard process controllers (PID

controllers, model predictive controllers, ...etc) are designed to maintain satisfactory

operations by compensating for the effects of disturbances and changes occurring in

the process. While these controllers can compensate for many types of disturbances,

there are changes in the process which the controllers cannot handle adequately. These

changes are called faults [3].

More precisely, a fault in a system is defined as ”an unpermitted deviation of at least

one characteristic property (feature) of the system from acceptable, usual and standard

condition” [4]. Accordingly, faults might end up to a complete failure of the system. In

chemical processes, such process shutdowns will cause product loss. Moreover, it takes

extensive time and effort to return the process back to its normal operation.

A fault diagnosis problem consists of three main parts:

1. Fault Detection: to determine if the process is operating out of its normal condi-

tions and decide on the presence of faults.

2. fault Isolation: to localize the fault and find the component which is the main

cause of the fault.
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3. Fault Identification: to identify the fault in terms of magnitude and other detailed

properties [5].

All process monitoring techniques are based on available on-line observations from

sensor measurements. The core idea is to find some underlying relation between ob-

servations and possible faults. The main task of Fault Detection system is to determine

whether there are faults. In general, any fault detection subsystem cannot detect a va-

riety of faults correctly 100 percent. Therefore, improving the correct fault detection

rate and reduce the missed detection rate (which occurs without the fault is detected)

and false alarm rate (not failure but police) has been the interesting topic in the area

of fault detection and diagnosis [6]. In this procedure, several difficulties might occur.

One example is the complexity to find model for process due to the complicated pro-

cess behavior. Another example is the extraction of the critical information from high

dimensional data sets.

Hidden Markov Models (HMMs) are sophisticated mathematical tools for consid-

ering the temporal information in both process model and history based fault diagnosis.

Incorporating time domain information, HMMs will greatly assist a classifier to reduce

false alarms.

In formulation of HMMs, some sort of prior knowledge of process temporal behav-

ior is considered in the form of transition probability matrix. One obvious advantage of

such knowledge is to diagnose between process modes which have significant overlaps

[7].

In this thesis, our focus is on statistical/ probabilistic classifiers. More specifically,

the main effort is to more precisely consider the temporal information. Our aim is

to develop a robust fault detection system with high precision and less time delay, less

Missed Detection Rate (MDR), and less False Alarms Rate (FAR), while various proba-

bility distributions are considered for observations in different operating modes (healthy

and faulty mode).

Another important target of this research is to apply the developed fault detection

strategies under industrial environments. The developed frameworks are tested on ce-

ment plant industry.
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This thesis is organized as follows:

Chapter 2, the field of Fault Detection and Diagnosis (FDD) is introduced along with

its terminology, available fault diagnosis techniques including process model based and

process history based, each category will be reviewed.

Chapter 3, a review on fundamental mathematical tools of the thesis is provided.

Most of chapters of the thesis are based on two main concepts: HMMs and Principal

Component Analysis (PCA) which is a basic method in the framework of the multivari-

ate analysis techniques. In this study, PCA technique is used for dimension reduction.

Some previous applications of Hidden Markov Model (HMM) for assisting fault diag-

nosis methods are summarized. Next, the proposed model is discussed and tested for a

simulated example, results are shown.

Chapter 4, the proposed Hidden Markov Model based fault detection is applied for

the cement plant rotary kiln of Ain-ElKebira and results are analyzed.
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CHAPTER 2

Review of Literature

2.1 Introduction

After several decades of development, the formation of fault diagnosis technology gen-

erally three types of methods, analytical model-based fault diagnosis method, signal

processing based fault diagnosis method and knowledge-based fault diagnosis method[6].

To address such issues, two major areas have to be introduced:

1. Process model based fault diagnosis

2. Process history based fault diagnosis

The main concerns of model-based fault detection are: first, to find an appropri-

ate mathematical model between process inputs and outputs, and then, generate some

features through analysis of residuals, parameter estimates and state estimates. Compar-

ison between the generated features and normal features will result in some symptoms,

and eventually, fault diagnosis. In order to decide on details of the type of fault, model-

based methods are usually accompanied by further classification and inference layers

[4].

From the previous explanation on model based approaches, it is obvious that some

prior knowledge about process is required. In contrast, in history based methods, only a

large data set of process historical data is needed. The underlying idea of history based

methods is to extract the critical information (features) from large data sets.

The data extraction might be either qualitative or quantitative. Unlike quantitative

methods which try to extract the important quantitative information, qualitative methods
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are usually based on the coding of knowledge and compact representation of trends [8].

Quantitative approaches can be divided into two main subcategories including non-

statistical, e.g., neural networks, and statistical.

In general, in contrast to deterministic systems, in stochastic systems it is not possi-

ble to definitely determine the future state given the current information. Consequently,

it is worth viewing the system in a probabilistic manner. In such approaches, vari-

ous probability distributions are considered for classification of different operating con-

ditions of the process. Some of the well known methods in this area are statistical

classifiers, e.g., Bayes classifier with Gaussian density functions, Principal Component

Analysis (PCA) and Partial Least Square (PLS) [9].

A summary of available fault diagnosis strategies, as stated in previous paragraphs, is

presented in Figure 1.1.

Fig. 2.1 Classification of Diagnostic Algorithms.

From this brief review on available process monitoring techniques, one could ob-

serve that all fault diagnosis techniques are based on the extracted information from

observations. Among the underlying data contained in a signal, temporal informa-

tion which contains the memory of operating mode transitions plays an important role.

Many of the proposed methods are not robust enough to extract the temporal infor-

mation from noisy signals. To deal with such an issue, one might consider feed back

of outputs to the classifier or considering a window of observations. However, such
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approaches will bring a lot of difficulties during the training [7].

2.2 Previous studies

As the treated field from faults and failures through reliability, safety and fault-tolerant

systems is distributed over many different technological areas, the terminology used is

not unique. Various efforts have been made to come to a standardization. Some useful

terminology are stated in Appendix A.

The supervision of technical processes under normal operation or the quality con-

trol of products in manufacturing is usually performed by limit checking or threshold

checking of some few measurable output variables Y (t) like pressures, forces, liquid

levels, temperatures, speeds, and oscillations. This means one checks if the quantities

are within a tolerance zone Ymin < Y (t) < Ymax [4] . If the tolerance zone is exceeded,

an alarm is raised. Hence, the first task in supervision is:

1. Monitoring: Measurable variables are checked with regard to tolerances, and

alarms are generated for the operator. The operator has to take appropriate counter-

actions after an alarm is triggered.

However, if exceeding a threshold implies a dangerous process state, the counter-

action should be generated automatically.

This is a second task of supervision:

2. Automatic protection: In the case of a dangerous process state, the monitoring

function automatically initiates an appropriate counteraction. Usually, the pro-

cess is then commanded to a fail-safe state, which is frequently an emergency

shutdown [4].

These classical methods of monitoring and automatic protection are suitable for the

overall supervision of the processes. However, these methods will detect faults only

after a considerable deviation of observations from expected behavior [10]. Therefore,

more advanced monitoring techniques are developed for early detection of faults.
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Fig. 2.2 A general schematic of model based fault diagnosis [1].

As illustrated in Figure 2.1, available fault diagnosis techniques are divided to three

main categories including process model based and process history based.

2.2.1 Quantitative Model Based Fault Diagnosis

Most of the work on quantitative model-based approaches have been based on general

input-output and state-space models as discussed below.

In this approach, the first step is residual generation which consists in producing a

signal that carries information about the faults with the aid of an analytical mathematical

model of the system. It is important to note that for residual generation no assumptions

about the time functions of the faults have to be made.

The residual generator is a dynamic system driven by the input and the output of the

system of interest. Because an exact mathematical modelling of the system is impossi-

ble in practice, the effects of modelling uncertainties have to be taken into account with

respect to which the residuals must be robust.

The numerous methods of analytical model-based residual generation that have been
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developed during the last two and a half decades can be divided into three groups:

• Parameter estimation approach

• Observer-based approach

• Parity equations approach

There are close relationships among the different approaches, logical because all of

them evaluate the same signals, namely the inputs and the outputs of the actual system

of interest. However, depending on the situation, the one or other method might be

more or less efficient and hence the approaches are often used in combination.

A general schematic of model based fault diagnosis is presented in Figure 2.2. It is

clear that feature generation based on an appropriate process model is the key step in

a model based fault diagnosis. The ultimate goal is to determine the presence of faults

according to process mathematical model as well as inputs and outputs data (Equation

2.1) [10].

Y = f{U,N, θ,X} (2.1)

where in equation 2.1, U and Y are process inputs and outputs respectively, N repre-

sents non-measurable disturbances, θ is process parameters, and X indicates partially

measurable process states.

Fault Detection with Parameter Estimation: The model in Equation 2.1 can be ob-

tained from a first-principle analysis. The parameters of this static or dynamic model

usually correspond to a real physical property, e.g., temperature, density, viscosity, etc.

Therefore, abnormal deviations of such properties will appear in the corresponding pa-

rameters. In cases where direct measurement of physical properties is not possible,

on-line estimation of parameters based on appropriate regression methods such as con-

ventional/ recursive least squares will indirectly provide the information of the desired

property. Based on the deviations of process parameters (∆θ), features and symptoms

will be generated, and process faults will be diagnosed [10].

Fault Detection with Observers: There are cases where operating conditions of a
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process depend on a an internal (non-measurable) state. In such cases designing an ob-

server for such process states can assist in process monitoring. The process model in the

structure of observer can be either static or dynamic. In this approach, first, residuals

are generated. Then, ”some special testing methods” will be applied on the residuals,

and ultimately, faults will be diagnosed [10]. For the case of multiple mode excited

outputs, several methods including bank of observers excited by a single/ all modes are

introduced in literature [11, 12].

Fig. 2.3 Basic configuration of an observer-based residual generator: output observer
of full order

Fault Detection with Parity Equations: The main idea of fault detection based on

parity equations is to compare the actual response of a process with the predicted re-

sponse of the process model, and generate the residuals. This will be followed by a

linear transformation to reach the ultimate goal of fault detection and isolation. Parity

equations can be developed based on both input and output errors [13].

2.2.2 Qualitative Model Based Fault Diagnosis

The model is usually developed based on some fundamental understanding of the physics

of the process. This understanding is expressed in qualitative model functions centered
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Fig. 2.4 Parity space approach in input-output format

around different units in a process. The need for a reasoning tool which can qualita-

tively model a system, capture the causal structure of the system in a more profound

manner than the conventional expert systems and yet be not as rigid in nature as nu-

meric simulation led to development of many methodologies to qualitatively represent

knowledge, and to reason from them. The main developed models are Digraphs based

causal models, Fault trees which are used in analyzing the system reliability and safety,

qualitative physics and Abstraction hierarchy of process knowledge (based on decom-

position in order to be able to draw inferences about the behavior of the overall system

solely from the laws governing the behavior of its subsystems.

2.2.3 Process history Based Fault Diagnosis

The underlying idea of history based methods is to extract the critical information (fea-

tures) from large data sets. The data extraction might be either qualitative or quantita-

tive. Unlike quantitative methods which try to extract the important quantitative infor-

mation, qualitative methods are usually based on the coding of knowledge and compact

representation of trends [8].

In contrast to model based methods, in data based approaches, no prior information

about the process is required. Such approaches are based on the extraction of critical in-

formation from process historical data. According to Figure 2.1, data based approaches

are divided to two main categories including qualitative and quantitative methods.

Qualitative methods are based on either Expert Systems or Qualitative Trend Anal-
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ysis (QTA). An Expert System usually consists of a knowledge base, which is appropri-

ately coded, accompanied by an inference procedure based on input-output interfaces.

The main advantage of an Expert System is the simplicity of development and analysis

[8].

On the other hand, QTA is used for compact representation of significant events

in a trend. Thus, these methods can reveal underlying abnormalities and facilitate the

task of fault diagnosis. Consequently, one can view these methods as efficient data

compression techniques [8].

In the rest of this section, we will focus on history based quantitative methods (Fig-

ure 2.1).

Neural Networks

Neural Network (NN) have been frequently used in chemical engineering applica-

tions [14, 15]. Many researchers have studied various aspects of NN based fault diag-

nosis in terms of network architecture, e.g., sinusoidal or radial basis, and the learning

method (supervised/ unsupervised). In the case of supervised learning, a certain struc-

ture is considered for the network and only the unknown parameters including weights

should be estimated. On the other hand, unsupervised neural networks have a time

varying structure and can adapt according to recent network inputs. Back propagation

neural networks are good examples of supervised learning. To focus on major events

rather than the details, traditionally, neural networks are used in accompany with other

feature extraction techniques [8, 16].

Principal Component Analysis (PCA)

Extracting dominant relations from a set of large highly correlated variables, and

reducing the data set dimension is an important step for monitoring of industrial pro-

cesses. PCA is frequently used in such cases due to the simple structure and decent

performance [17]. The idea of PCA is to map a set of correlated observations to some

latent variables. These latent variables, which are linear combinations of real variables,

are independent of each other, and contain the significant information (variance) of ob-
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servations [18].

In this context, two famous indicators have been introduced to diagnose an abnor-

mal behavior. The first indicator, known as Hotellings T 2, checks variations of the latent

variables. Consequently, it will detect an abnormal event only when variations of latent

variables are greater than usual. The second indicator, which is the Square Prediction

Error (SPE), also known as Q statistic, represents sum of squares of the residuals, and

measures appropriateness of the fitness. In other words, T 2 represents the major vari-

ation in the data and Q represents the random noise [19]. An alarm will be generated

when these indexes pass their standard limits.

Partial Least Square

PLS is similar to PCA in the sense that both methods try to deal with co-linearities

in observation data set. However, in PLS, both input and output data are involved. PLS

tries to find an outer relation between latent variables of input and output data [20].

Eventually, in this structure, variance of the latent variables in principal components

and covariance between input-output latent variables will be maximized simultaneously.

Similar to PCA, T 2 andQ can be defined for PLS, and used for process monitoring pur-

poses [18].

Statistical Classifiers

These classifiers try to approximate various modes of a process using appropriate

density functions. Accordingly, a new observation will be assigned to a certain class

according to its distance from the means of various classes. It is obvious that estimation

of the appropriate density function is the key step in such classifiers [8].

In cases where observations do not follow a well-defined distribution, non-parametric

methods such as kernel density estimation should be used [21]. Otherwise, parametric

distributions such as a mixture of multivariate Gaussian distributions can be applied

[22, 23].

Bayesian Fault Diagnosis
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Unlike statistical methods which try to ”determine” the true operating mode, in

Bayesian approaches, the focus is on finding the ”probability” of current operating

mode given all the available information. Consequently, In these approaches, a Bayesian

hypothesis testing, which considers the prior (background) information of the modes, is

used instead of the likelihood ratio test and other distance based techniques. Such prior

information is assumed to be known from historical data or other sources [5].

2.3 Conclusion

In this chapter, the fundamental theory of fault detection and diagnosis has been pro-

vided. The various methods used to detect faults have been briefly described as they

appear in the literature. And in order to obtain a background in the field of FDD, many

definitions and aspects were explored.

In the next chapter, a detailed study of Hidden Markov Models will be provided

with a simplified example. Also, dimension reduction tools will be introduced to be

used in our proposed method that will be explained later.
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CHAPTER 3

Theoretical part

3.1 Introduction

Modern control systems are becoming increasingly more complex, and issues of avail-

ability, cost efficiency, reliability, operating safety, and environmental protection con-

cerns are gaining and receiving more attention. This requires a fault diagnosis system

that is capable of detecting the occurrence of plant components, actuators and sensors

faults (From the measured or unmeasured variables estimation [24]), identifying and

isolating the faulty components [25].

Hidden Markov Models were originally reputed for their application in speech pro-

cessing which has occurred mainly within the past few years [26]. A modeling is pro-

posed by Xuefeng Jiang (2011) for facial expression recognition, which is based on

combination of Hidden Markov Model (HMM) and K Nearest Neighbor (KNN) clas-

sifiers [27]. Recently, Hyokeun Lee et al. proposed a new initialization of Left-Right

Banded (LRB) HMM to mitigate the confusion rate in hand gesture recognition. The

proposed HMM achieves better robustness to the confusion miss-classification while

maintaining the recognition accuracy [28].

For the application of HMM in fault detection, Sammaknejad (2015) provided ro-

bust approach for process operation mode diagnosis using HMMs with adaptive Tran-

sition Probability Matrix (TPM) in presence of missing observations [29]. Then, he

presented a framework to deal with negative effects of outliers in time varying HMMs

[30]. The proposed techniques have been applied to an Oil Sand Primary Separation

Vessel [31]. They have some problems associated with HMMs [32] which are solved
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using some algorithms as the forward-backward algorithm, the Viterbi algorithm [28],

and the Baum-Welch algorithm [33], using standard techniques of statistical inference

[34]. Stephen Adams et al. (2016) proposed a joint feature selection and parameter

estimation algorithm that is presented for hidden Markov models (HMMs) and hidden

semi-Markov models (HSMMs). New parameters and feature saliences are introduced

to the model and used to select features that distinguish between states [35].

3.2 Hidden Markov Model

A Hidden Markov Model [36] is a tool for representing probability distributions over a

sequence of observations [37]. Let us denote the observation at time t by the variable

Yt. This can be a symbol from a discrete alphabet, a real valued variable, an integer,

or any other objects, as long as we can define a probability distribution over it. We

assume that the observations are sampled at equally-spaced time intervals, so t can be

an integer-valued time index.

3.2.1 Definitions

Definition 1: Suppose thatF{Ct}t∈N is a Markov chain with state spaceC = {1, · · · , r},

initial distribution vc(c ∈ S) and transition matrix P = (pcc̀) c, c̀ ∈ C, and St t∈N is

a stochastic process taking values in S = {1, · · · ,m}. The bivariate stochastic process

Ct, St t∈N is said to be a Hidden Markov Model (HMM) if it is a Markov chain with

transition probabilities [38]:

P (Ct = ct, St = st|Ct−1 = ct−1, St−1 = st−1)

= P (Ct = ct, St = st|Ct−1 = ct−1)

= qct−1,ct · gct,st . (3.1)

Where G = (gcs) c ∈ C, s ∈ S is a stochastic matrix [34].

Note that the conditional probability of the joint state (Ct, St) depends only on Ct−1

and not St−1. A useful device for depicting the dependence structure of such model is
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Fig. 3.1 Conditional independence graph of hidden Markov model.

the conditional independence graph. In such a graph the absence of an edge between

two vertices indicates that the two variables concerned are conditionally independent

given the other variables. Figure 3.1, displays the independence of the observations St

given the states Ct occupied by the Markov chain, as well as the conditional indepen-

dence of Ct−1 and Ct+1 given Ct, i.e. the Markov property.

Definition 2: The hidden Markov model gets its name from the two defining prop-

erties. First it is assumed that the observation at time t was generated by some process

whose state St is hidden from the observer. Second, it assumes that the state of this

hidden process satisfies the Markov property. That is, given the value of St−1, the cur-

rent state St is independent of all the states prior to t − 1. The outputs also satisfy a

Markov property with respect to the states: given St, Yt is independent of the states and

observations at all other time indices [32].

Hidden Markov Model can be characterized by five parameters:

1. N : the number of states in the model. The states are denoted as S = {s1, s2, · · · , sN}.

2. M : the number of distinct observation symbols per state. The observation sym-

bols correspond to the physical output of the system being modelled. The sym-

bols are denoted as

O = {o1, o2, · · · , oM}

3. A = {aij} : the state transition probability distribution, where

aij = P (qt+1 = Sj|qt = Si) , 1 ≤ i, j ≤ N (3.2)
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aij is the probability of going to state Sj at time t + 1 given that at time t, the

state is Si.

4. B = bj(k) : the observation symbol probability distribution in state Sj , where

bj(k) = P (Ok(t)|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M (3.3)

bj(k) is the probability of the kth observation symbol given that the state at time

t is Sj .

5. π = {πi}: the initial state distribution, which is the probability of being in the ith

state at the initial time t = 1. Where

πi = P (q1 = Si), 1 < i < N (3.4)

The three main components of a HMM are the state transition probability matrix

A, the measurement probability distribution matrix B, and the initial state probability

distribution π. For convenience, a compact notation is used to indicate the complete

parameter set of the model:

λ = (A,B, π) (3.5)

According to characteristics of the observation symbols, there are two kinds of

HMMs: Discrete Hidden Markov Model (DHMM) and Continuous Hidden Markov

Model (CHMM) [26][39]. The observation symbols of DHMM are mentioned above,

while, the observation symbols of CHMM are continuous, Gaussian distribution of

which is assumed in each hidden state. In this study, only DHMM will be considered.

3.2.2 An illustrated example

Definition 3 (Discrete Markov Process): Consider a system which may be described

at any time as being in one state from the set of m distinct states S1, S2, · · · , Sm. At

regularly spaced discrete times, the system undergoes a change of state (self transition

is also possible) according to a set of probabilities associated with the state. The time
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Fig. 3.2 Hidden Markov model with N-states and M-observation.

instants associated with the state changes are denoted as t = 1, 2, · · · and the actual

state at time t is St.

In order to explain the concept of Markov models, the weather prediction example is

used here [40]. Consider to have three types of weather, e.g., sunny, rainy and cloudy.

Assuming that each weather lasts for a whole day, the goal is to predict tomorrows

weather based on available historical data, i.e.,

P (qt = Sj|qt−1 = Si, qt−2 = Sk, ..., q1 = S1) (3.6)

where qt indicates the state (weather) at each sampling time (day), and Sl, l ∈ {1,2,3}

corresponds to sunny, cloudy and rainy weather respectively.

According to Equation 3.6, the more past history involved, the more complex will

be the computation. Assuming to use only the past five states, 35 = 243 statistics

are required to do a future prediction. A first-order Markov assumption simplifies this

computation as follows:

P (qt = Sj|qt−1 = Si, qt−2 = Sk, ..., q1 = S1) ≈ P (qt = Sj|qt−1 = Si) (3.7)

Furthermore, assuming stationarity, the right hand side of (3.7) is independent of time
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and thus leads to the state transition probabilities characterized as follows:

A = [ai,j]mm = [P (qt = Sj|qt−1 = Si)]mm (3.8)

with the state transition elements having the properties ai,j ≥ 0 and
m∑
j=1

ai,j = 1 since

they obey standard stochastic constraints.

In this configuration, the closest previous state is considered to contain the historical

information. The second or higher order Markov assumptions can be applied in a similar

manner.

According to the first-order Markov assumption, the joint probability of a sequence

of states can be computed as in Equation 3.9.

p(q1, q2, q3, · · · , qt) =
t∏

K=1

P (qk|qk−1) (3.9)

The proposed weather prediction Markov chain structure is illustrated in Figure 3.2. ai,j

represents the probability of transiting from state i to state j.

Fig. 3.3 A three states Markov chain process (State 1=Sunny, State 2=cloudy and State
3=Rainy ).

This example can be further extended to explain hidden Markov models [41]. Sup-

pose that you are locked in a room and you are asked about outside weather. Your only

information about the outside weather is a person who brings the daily meal, whether

he carries an umbrella or not. The main difference of the current example from the pre-
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vious one is that the actual weather, or ”state”, is hidden from you now. Therefore, you

need to indirectly infer about it. Assuming to have a set of observationsO1, O2, · · · , Ot,

and using the Bayes rule, Equation 3.9 can be written as

P (q1, q2, ..., qt|O1, O2, ..., Ot) =
P (O1, O2, · · · , Ot|q1, q2, · · · , qt)P (q1, q2, · · · , qt)

P (O1, O2, · · · , Ot)

(3.10)

where in this scenario Ol, l∈{1,··· ,t} is either True (carrying an umbrella), or False (not

carrying an umbrella). P (q1, q2, · · · , qt) can be calculated using the same previous

Markov model (Equation 3.9). P (O1, O2, · · · , Ot) is the prior probability of observing

a particular sequence of umbrella events, e.g., {True, False, True, ...}. Assuming that

Oi given qi is independent of all Oj and qj for j 6= i = 1, · · · , t, then

P (O1, O2, · · · , Ot|q1, q2, · · · , qt) =
t∏

K=1

P (Ok|qk−1) (3.11)

3.2.2.1 Basic Settings for HMMs

According to the previous example, fundamental underlying assumptions of HMMs can

be summarized as follows [42]:

1. Discrete state space assumption: States can only accept discrete values, i.e.,

qt ∈ {S1, · · · , SN}.

2. Markov assumptions:

• Given the state in the previous sample time t− 1, current state at time t will

be independent of previous states 1 to t− 2, i.e., qt ⊥ qi|qt−1, ∀i ≤ t− 2.

• Given the state at time t, the corresponding observation Ot is independent

of all other states, i.e., Ot ⊥ qi|qt, ∀i 6= t.

Following the previous example and Markov assumptions, various elements of HMMs

can be summarized as follows [2]:

1. Number of states in the model (N):

As previously mentioned, states at each sampling instant can only take a limited
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number of discrete events, i.e., qt ∈ S = {S1, · · · , SN}. In many applications,

these states correspond to a physical phenomena, e.g., in the weather prediction

example, states correspond to sunny, foggy and rainy events.

2. Number of observation symbols per state (M):

If observations are discrete, they can only take a limited number of symbols,i.e.,

Ot ∈ V = {v1, · · · , vM}. For example, in the weather prediction case study,

observations in each state can only take two possible symbols, i.e., False and

True. Observations can also take continuous values in general.

3. State transition probability matrix (A = {aij}): The state transition probabili-

ties, as illustrated in Figure 2.1, can be defined as follows:

aij = P [qt = Sj|qt−1 = Si], 1 ≤ i, j ≤ N (3.12)

According to this definition, the following property should hold for the state tran-

sition probabilities:
N∑
j=1

ai,j = 1, aij ≥ 0

4. Emission probability matrix (B = {bj(k)}): Probability of observation sym-

bols given various states can be defined using the transition probability matrix as

follows:

bj(k) = p[Ot = vk|qt = Sj], 1 ≤ j ≤ N, 1 ≤ k ≤M (3.13)

According to this definition, the following constraint should be satisfied:

M∑
j=1

bj(k) = 1, bj(k) ≥ 0 (3.14)

5. Initial state distribution (π = πi):

The initial state distribution is specifically defined for the first sample time, i.e.,

πi = p[q1 = Si], 1 ≤ i ≤ N (3.15)
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The following constraint should hold for the initial state distribution:

N∑
j=1

πi = 1, π ≥ 0 (3.16)

Having the above five parameters, a hidden Markov model is defined. For conve-

nience, one might use the compact notation in Equation 3.16 to represent HMMs.

λ = (A,B, π) (3.17)

3.2.2.2 Three Fundamental Problems for HMMs

In literature, three fundamental problems are introduced and addressed for HMMs as

follows [2]:

• Problem 1 :

Having the model λ = (A,B, π), how to compute the probability of an observa-

tion sequence O = O1, O2, · · · , OT given the model , i.e., p(O|λ) =?

- Complicated-Hidden states.

- Useful in sequence classification [43].

• Problem 2 :

Having the model λ = (A,B, π), how to find the optimal state sequence Q =

q1, q2, · · · qT which best explains the observation sequence O = O1, O2, · · ·OT ?

- Optimality criterion.

- Useful in recognition problems [43].

• Problem 3 :

How to find model parameters in λ = (A,B, π) such that P (O|λ) is maximized

?

In the rest of this section, we will address these three problems.

Solution to Problem 1

• Naive solution
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A straight forward approach to address problem 1 is to marginalize P (O|λ) over

all possible state sequences [43], i.e.,

P (O|λ) =
∑
allq

P (O, q|λ) =
∑
q

P (O|q, λ)P (q|λ) (3.18)

Using Markov assumptions, each term in the right hand side of Equation 3.18 can

be written as

P (O|q, λ) =
T∏
t=1

P (ot|qt, λ) = bq1 (o1) bq2 (o2) . . . bqT (oT ) (3.19)

P (q|λ) =
T∏
t=1

P (qt|qt−1, λ) = πq1aq1q2aq2q3 . . . aqT−1qT (3.20)

Having the expression in Equation 3.18 and the above two equations, p(O|λ) can

be computed as

P (O|λ) =
∑
allq

P (O, q|λ) =
∑
q

P (O|q, λ)P (q|λ) (3.21)

=
∑

q1,q2,...,qT

πq1bq1 (o1) aq1q2bq2 (o2) · · · aqT−1qT bqT (oT )

It can be proved that to compute the expression in Equation 3.21, 2T.NT calcula-

tions are required, e.g., having only 5 states, for a sequence of 100 observations,

1072 calculations are required. Therefore, forward and backward procedures have

been introduced to more efficiently compute p(O|λ) [2].

• Efficient solution

Forward algorithm:

In the forward algorithm, the auxiliary forward variable defined as: αt (i) =

P (o1, . . . , ot|qt = Si, λ) [44], represents the probability of observing the partial

sequence O1, O2, · · · , Ot such that state qt is Si. This probability is calculated

inductively as follows:
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1. Initialization

α1 (i) = πibi (o1) , 1 ≤ i ≤ N (3.22)

2. Induction

αt+1 (j) =

[
N∑
i=1

αt (i) aij

]
bj (ot+1) , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (3.23)

3. Termination

P (O|λ) =
N∑
i=1

αT (i) (3.24)

The left side of Figure 3.3 illustrates one sample induction step where State i

at time t can be reached from all the previous states at time t − 1. The final

termination step is to marginalize over all possible states at time T , i.e., qT , which

results in the probability p(O|λ). As the result of such procedure, the computation

complexity will be reduced to N2T (total T observations and N2 computations

between each two consecutive observations) which is significantly lower than

equation 3.21 [40].

Backward algorithm:

One can perform calculations, very similar to Equations 3.22 to 3.24, to find

p(O|λ) backward. To do this, the auxiliary backward probability βt(i) is defined

as βt (i) = P (ot+1, ot+2, .., oT |qt = Si, λ). To find p(O|λ) the following steps are

required:

1. Initialization

βT (j) = 1, 1 ≤ j ≤ N (3.25)

2. Induction

βt (i) =
N∑
j=1

βt+1 (j) aijbj (ot+1) , t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N

(3.26)

3. Termination

p (O|λ) =
N∑
i=1

πibi(o1)β1 (i) (3.27)
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The induction step of the backward algorithm is presented in the right hand side

of Figure 3.4. Unlike the forward algorithm, in backward procedure, states of the

next sample time (t + 2) are used to reach the states in the current sample time

(t + 1). To address Problems 2 and 3, a combination of forward and backward

algorithms (forward-backward algorithm) is required. Figure 3.4 presents how

these two probabilities are connected [40].

Fig. 3.4 Graphical illustration of Forward-Backward algorithm [2]

Solution to Problem 2 ( Decoding )

The next important problem to be addressed is to find the ”optimal” path of states given

an observation sequence [2]. One approach to solve this problem is to choose the states

which are individually more likely. The more general case is to find the optimal state se-

quence Q = (q1, q2, · · · , qT ) for a given observation sequence O = (O1, O2, · · · , OT ).

The problem can be defined as the best state path to maximize p(Q|O, λ) or equivalently

p(Q,O|λ) [40].

• Viterbi algorithm: is a dynamic programming technique, addresses this problem

[2, 40]. This inductive technique keeps the best state sequence at each instance.

Let us define the auxiliary variable δt(i) that represents the highest probability of

a path at time t, which ends in state Si, as follows:

δt (i) = maxqP (q1, q2, .., qt = i, O1, O2, · · · , Ot|λ) (3.28)
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By induction, it is straightforward to show that

δt+1 (j) = maxi (δt (i) aij) · bj (ot+1) (3.29)

The idea of the Viterbi algorithm is to keep the track of the maximized argument

in Equation 3.29 for each t and j through the array ϕt(j). The complete procedure

is as follows:

1. Initialization:

δ1 (i) = πi bi (o1) 1 ≤ i ≤ N (3.30)

ϕ1 (i) = 0 (3.31)

2. Recursion:

δt (i) = max1≤i≤N (δt−1 (i) aij) bi (ot) (3.32)

ϕt (j) = argmax1≤i≤N (δt−1 (i) aij) 2 ≤ t ≤ T, 1 ≤ j ≤ N (3.33)

3. Termination:

P ∗ = max1≤i≤N [δT (i)] (3.34)

q∗T = argmax1≤i≤N [δT (i)] (3.35)

4. Backtracking:

q∗t = ϕt+1

(
q∗t+1

)
t = T − 1, T − 2, · · · , 1 (3.36)

It should be noted that steps of the Viterbi algorithm are very similar to the for-

ward algorithm. However, except the marginalization step in Equation 3.23, a

maximization (recursion step) is performed.

Solution to Problem 3 ( Learning )

• Training HMM to encode observation sequence such that HMM should identify

a similar observation sequence in future.
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• Find λ = (A,B, π), maximising P (O|λ).

• General algorithm [43]:

– Initialise: λo

– Compute new model λ using λ0 and observed sequence O.

– Then λ0 ← λ

– Repeat steps 2 and 3 until:

logP (O|λ)− logP (O|λ0) < d

Step 1 of Baum-Welch algorithm [40, 43]:

• Let ζ(i, j) be a probability of being in state i at time t and at state j at time t+ 1,

given λ and O sequence

ζ (i, j) =
αt (i) aijbj (ot+1) βt+1 (j)

P (O|λ)
(3.37)

=
αt (i) aijbj (ot+1) βt+1 (j)∑N

i=1

∑N
j=1 αt (i) aijbj (ot+1) βt+1 (j)

• Let be a probability of being in state i at time t, given observation O

γt (i) =
N∑
j+1

%t (i, j) (3.38)

•
∑T−1

t=1 γt (i) expected no. of transitions from state i

•
∑T−1

t=1 ζt (i) expected no. of transitions i→ j

Step 2 of Baum-Welch algorithm:

• π̂ = γ1 (i) the expected frequency of state i at time t = 1

• aij =
∑
ζt(i,j)∑
γt(j)

ratio of expected no. of transitions from state i to j over expected

no. of transitions from state i
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• bj =
∑

t,ot=k γt(j)∑
γt(j)

ratio of expected no. of times in state j observing symbol k over

expected no. of times in state j

• Baum-Welch algorithm uses the forward and backward algorithms to calculate

the auxiliary variables α, β

• B-W algorithm is a special case of the EM algorithm:

– E-step: calculation of ζ and γ

– M-step: iterative calculation of π̂, âij, bj(k)

• There are some practical issues concerning this algorithm [43]:

– Can get stuck in local maxima

– Numerical problems log and scaling

3.2.3 HMM Based Fault Diagnosis

As previously stated, HMMs are sophisticated mathematical tools to extract temporal

information from historical data sets. In this section, we will review some of the previ-

ous studies where HMMs have been used to improve classic fault diagnosis methods.

3.2.3.1 Model Based Approaches in Conjunction with HMMs

Detection of faults based on a combination of dynamic process models such as ARX

models and HMMs is a well-known technique for improving model-based detection

of faults. This approach uses deviations of the estimated parameters of the process

model as observations. Unlike traditional methods in which faults are assumed to be

independent in each step, this approach considers faults to be ”persistent” over time.

Consequently, applying HMMs, previous information up to the current time is used as

prior information for recent observations [7, 40].
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3.2.3.2 Qualitative Trend Analysis in Conjunction with HMMs

Qualitative trend analysis is used to extract significant events from process data. There-

fore, analysis of these major events as a time sequence can provide critical information

about process status. To do this, one can first discretize a signal according to its ex-

trema and inflection points. Therefore, the continuous signal will appear as a sequence

of discrete observations. This sequence can then be used as the input of HMMs. After

training the HMMs according to the historical data, they can be used for the purpose

of fault diagnosis in an on-line application. The decision on operating condition of the

process will be made based on the probability of a window of recent observations given

various HMMs [45]. Problem can be extended to the case of multiple observations.

However, another inference layer based on neural networks or other data driven tools

will be required [46].

3.2.3.3 Statistical Classifiers in Conjunction with HMMs

In another recent study, a new approach for fault diagnosis of gear transmission systems

is introduced. In this study, process behavior is modeled using a three state continuous-

time homogeneous Markov process [47]. Different states of the Markov process cor-

respond to various operating modes. Observations are assumed to follow multivariate

Gaussian distributions. The ultimate target is to infer the current operating condition

in an on-line application given the observations. An ”optimal control limit” is defined

to isolate the modes. Parameter estimation is based on the Expectation Maximization

(EM) algorithm [47].

Applications of HMMs in fault diagnosis are not limited to the above studies. One

can refer to many other available articles for more information [48, 49, 50].

3.3 Principal Component Analysis

Principal component analysis (PCA) is a basic method in the framework of the mul-

tivariate analysis techniques. It has been successfully used in numerous areas includ-
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ing data compression, feature extraction, image processing, pattern recognition, signal

analysis, and process monitoring [51].

PCA is recognised as a powerful tool of statistical process monitoring and widely

used in the process industry for fault detection and diagnosis due to its simplicity and

efficiency in processing huge amount of process data [52, 53]. Recent development

in the PCA technique is focused on achieving adaptive process monitoring using, for

instance, recursive implementation of PCA, fast moving window PCA [51, 54, 55] or

kernel PCA [56][57].

In this study, Pca technique is used for dimension reduction [58].

3.3.1 PCA: Mathematical Basis

The mean central idea of PCA is to reduce the dimensionality of a data table consisting

of large number of interrelated variables, and to extract the important information from

a data table which based on defining the direction of the maximum variance containing

the maximum amount of information about the process, and the direction having a

minimum variance along them contains almost no information to retain. To represent

it as a set of new orthogonal variables called principle component (PCs), which are

uncorrelated, and which are ordered so that the first few component contain most of the

information in the original data set. Since a change of basis applied, PCA is clearly

assuming a linear relationship between the original data [59].

The GOALS of PCA is:

1. Extract the most information from the data table.

2. Reduce the size of the data table by keeping only the important information.

3. Simplify the description of the data table.

4. Analyze the structure of the observation and variables [60].

The data table to be analyzed by PCA comprises N of observation (instances) de-

scribed by m variables and it is represented by matrix X ∈ RN×m. A standard PCA
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Fig. 3.5 Illustration of PCA in 2D

approach for fault diagnosis consists of three steps and can be briefly formulated as

follow:

• Collection and normalization: In this step, N samples for each sensor are first

collected and recorded in a data matrix X , X ∈ RN×m, then shifted to zero

mean, and scaled to unit variance. Let the scaled data be

Xn =


xT 1

...

xTN

 , Xn ∈ RN×m (3.39)

with xi ∈ Rm, i = 1, . . . , N denoting a sample vector of the m sensors.

• Computation of singular values, corresponding singular vectors :

– First, the covariance matrix is formed,

cov(X) ≈ 1

N − 1
XTX (3.40)

– Then, by means of, for example, an SVD (singular value decomposition),

the principal components and the associated singular vectors are computed

31



as
1

N − 1
XTX = P TΛP (3.41)

Where P consists of orthonormal covariance matrix eigenvectors and Λ is m by

m diagonal matrix containing the covariance matrix eigenvalues sorted in de-

scending order. Once the number of principal components l is selected, P and Λ

matrices can be decomposed into

Λ =

Λ̂ 0

0 Λ̃

 (3.42)

P =
[
P̂ P̃

]
(3.43)

So,

cov(Xn) = P T (diag[λ1, λ2, · · · , λl|λl+1, λl+2, · · · , λm])P (3.44)

Such that Λ̂ ∈ Rl×l, Λ̃ ∈ R(m−l)×(m−l), P̂ ∈ Rm×l , P̃ ∈ Rm(m−l) , and l is the

retained Principal Components (PCs).

• Computing the scores matrix T : The scores are computed by the following linear

transformation

T = XnP (3.45)

T can be decomposed as

T = (T̂ T̃ ) (3.46)

this leads to

T̂ = XnP̂ (3.47)

In our case, T̂ is used to extract our observables to built our Markov model.
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3.3.2 PCA Model Dimension identification:

The selection of the number of retained component plays a major role in the goodness

of PCA model. Many researches have been carried out in order to determine the optimal

number of principal components. However, the number of retained components that is

guaranteed to peak the best number of PCs still out of reach, even though a consider-

able number of methods are already presented in literature. Some of the widely used

methods are presented in this section.

1. Kaiser Criteria:

The most used method to estimate the number of component in PCA and factor

analysis consists of taking the components corresponding to those eigenvalues

larger than one. Thus any PC with eigenvalue less than one contain less informa-

tion than one of the original variables and so is not worth retaining. The major

problem with Kaiser always retain 1/3, 1/5 or 1/6 of the total components. How-

ever deletion will occur if Kaiser rule is used and if those eigenvalues less than

one. It is therefore advisable to choose cut off lower than one. Jolliffe proposed

a value of 0.7 to deal with this significant problem.

2. Scree plot:

Scree plot is a graphical way to determine the number of retained principal com-

ponents. It was discussed and named by Cattell (1966) [53]. It consist of plotting

the eigenvalues of the covariance/correlation matrix in decreasing order which in-

volve looking a plot of λK (eigenvalues) versus K (the index of the eigenvalues)

and deciding at which value of K the slope of line joining the plotted points are

steep to the left of K, and not steep to the right. This value of K that defines

an elbow in the graph is then considered to be the number of components to be

retained [53],[61]. Rather than λK versus K we can plot log(λK) against K, this

known as the Log Eigen-Values (LEV).

3. Cumulative percent of variance (CPV):
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CPV is one of the most obvious and simplest criteria for choosing the number of

nontrivial [61] components that corresponds to a certain percentage of the total

variance based on the eigenvalues of the covariance/correlation matrix to find the

amount of variance preserved by l-dimension out of total of available measure-

ment as:

CPV (%) =

l∑
i=1

λi

m∑
i=1

λi

× 100 (3.48)

Choosing those l PCs turns out matter of choosing the percentage of total variance

we want to retain. Usually, a percentage between 80 - 85% is used in some context

while some references encourage to use percentage greater than 85%. While we

want to retain few PCs as possible and in same time we would like to account

for as much variance as possible. Then the decision becomes a balance between

the amount of parsimony and comprehensiveness of the model. We must decide

what balance will serve our purpose.

4. Parallel Analysis (PA):

Parallel analysis is a method was proposed by Horn in 1965 [61] as a modifi-

cation of catells scree diagram to alleviate the component indeterminacy prob-

lem. The procedure is based on plotting and comparing the eigenvalues of the

covariance/correlation matrix of the original data set with those of a random un-

correlated data set matrix from normally distributed population. If the associated

eigenvalue is larger than those generated from random sample this principle com-

ponent considered to be significant and retainable. The values above the intersec-

tion between two graphs represent the process information retained components

and those under the intersection are considered to be noise. It is usually required

to repeat the generation of pseudo-eigenvalues for K times for may occur since

the method is based on generating randomly sampled data set [59, 61]. Horn

was proposed solution for this issue by taking the states that a number of correla-

tion matrices with the same size as the data set under study are constructed, their

pseudo-eigenvalues are averaged and compared to the eigenvalue of the real data

34



correlation matrix. The algorithm of PA as stated in [62] is summarized in the

following few lines:

• Calculate the eigenvalues of the covariance matrix: λ = {λ1, λ2, · · · , λm}.

• Generate k − sets of random data with the same size as X(Yi ∈ Rn×m, i =

1, 2, · · · , k).

• Compute the eigenvalues Yi and store them in Ξ ∈ Rk×m (row-wise). With

ξij the jth pseudo-eigenvalue for the ith experiment.

Ξ =


ξ11 · · · ξ1m

... . . . ...

ξk1 · · · ξkm


Do either:

– Compute the average eigenvalue: Ξ̂ = [ξ1, ξ2, · · · , ξm].

– Compute the α− percentile for each column: Ξ̂ = [ξ1α, ξ2α, · · · , ξmα]

With α is usually selected between 0.95 and 0.99 serves to fix the ten-

dency of the method to overestimate the number of components.

• Retain the components for which: λi > Ξ̂i. [59]

5. Variance of the reconstruction error (VRE):

The variance of the reconstruction error (VRE) was first developed by Dunia and

QIn [61]. This techniques used to determine the number of principal components

based on the best reconstruction of the process variable. This approach has an im-

portant characteristic that the VRE index reach a minimum value corresponding

to the best reconstruction. The reconstruction error is a function of the number of

PCs when the PCA model used to reconstruct faulty sensors, the minimum found

in VRE calculation determine the number of PCs. This is because VRE is de-

composed in two subspaces: the Principle Components Subspace (PCS) and the

Residual Subspace (RS) [63][64]. The PCS has a tendency to increase with the

number of PCs, and that in the RS has a tendency to decrease with the number of
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PCs. As result the VRE always has a minimum value that determine the optimal

number of PCs.

Principle of reconstruction: The principle of reconstruction estimate the ith

variable from the remaining variables in measurement vector X ∈ Rn×m. Qin

and Dunia [63] consider that the sensor measurement is corrupted with a fault

along a direction ξi, thus, the actual sensor measurement is

x = x∗ + fξi

With x∗ is the normal sample vector, f is the fault magnitude and ||ξ|| = 1.

Where ξi corresponds to the ith column of an identity matrix. The task of sensor

reconstruction is to find an estimate for x∗ along the direction of upset ξ, i.e to

best correct the effect of the upset in other word we try to find fi such that:

xi = x+ fiξi

Is the most consisting with the PCA model or xi has the minimum model error the

solution can be easily found using least square method. There exist several dif-

ferent approaches of reconstruction that yield exactly the same solution [65][64].

The VRE procedure for selecting the number of PCs can be summarized as fol-

lows:

• Build a PCA model using normal data from all variables.

• Reconstruct each variable using other variables and calculate the VRE.

• Calculate the Total VRE.

• The number of PCs that gives the minimum VRE is selected, which corre-

sponds to the best reconstruction.
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3.4 Proposed Method

In this chapter, a proposed model will be discussed and the explained method will be

used to detect the fault in a process. The procedure will be as follow:

3.4.1 Work Procedure

1. Model construction: The first step in the procedure is to initiate a suitable model

for our diagnosis process, with initial and transition probabilities. In our case the

proposed model is shown in figure 3.6, with two states and ’l’ observables.

Fig. 3.6 Proposed model

Observables are extracted from the training data, using principal component anal-

ysis.

• Data from sensors are collected and recorded in a data matrix called X ,

X ∈ Rn×m.

• Data matrix is normalized (shifted to zero mean, and scaled to unit vari-

ance). Let the normalized data be

Xn =
[
xn1 . . . xnm

]
, Xn ∈ Rn×m (3.49)

with xni ∈ Rn×1, i = 1, · · · ,m denoting a (scaled) sample vector of the m

sensors with n samples.

• Computation of singular values and corresponding singular vectors.
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• Calculation of ’l’ the number of retained PCs using one of the techniques

discussed above .

• Computation of the scores matrix T̂ .

2. Training phase: This step is too important since different information will be

introduced to the constructed model. The more information involved the more

accurate will be the model.

• Using the hist function with a suitable number of bins, we calculate the

joint probabilities of our obsevables as follow:

PT1,T2,...,Tl(t1, t2, ..., tl)

= P (T1 = t1, T2 = t2, ..., Tl = tl) (3.50)

Since observations are independent, equation 3.50 will be

PT1,T2,...,Tl(t1, t2, ..., tl)

= PT1(t1)× PT2(t2)× · · · × PTl(tl) (3.51)

• Now we inject different types of faults in the healthy data and we repeat the

same steps in order to calculate the joint probabilities for faulty data.

3. Testing phase:

• Now, new data are collected from sensors and normalized.

• Observables are extracted, and their corresponding joint probabilities are

computed.

• Calculating

P (Ht+1/Ot+1) =
P (Ot+1/Ht+1)× P (Ht+1)

P (Ot+1)
(3.52)

P (Ft+1/Ot+1) =
P (Ot+1/Ft+1)× P (Ft+1)

P (Ot+1)
(3.53)
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• Checking the maximum between the two calculated probabilities.

• Constructing a fault indicator that satisfies the the condition bellow :

S = 0 if P (Ht+1/Ot+1) > P (Ft+1/Ot+1);

S = 1 , elsewhere.

Fig. 3.7 Procedure’s Flowchart

3.5 A Numerical Example

In this section, a numerical example is used to test the accuracy and effectiveness of the

discussed procedure in detecting different types of faults. The example is expressed as

follows:

x1 ∼ N(1, 0.012);

x2 ∼ N(4, 0.012);

x3 = 2x1 − x2;

x4 = x1 − 3x3 + e1;

x5 = x2 + x4 + x1 + e2;

x6 = x3 + x4 − x1 + e3;
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in which ei ∼ N(0, 0.00012), i = 1,2,3, are white noises. Variable x1 influences variable

x3, x4 and x5. Therefore, failure occurring in variable x1 will affect the quality.

The training data-set is stored in the data matrix

X = [X1 X2 X3 X4 X5 X6] ∈ R6000×6.

The used data sets are described in Table 3.1, and the simulated faults in Table 3.2.

Table 3.1 Data sets used in the simulated example.

Data sets Size description
Training set X0 ∈ R6000×6 Normal operation data, used to

construct FD scheme
Testing set X0 ∈ R4000×6 Normal operation data, used to

test the FD scheme
Simulated faults (6 sets) X0 ∈ R2000×6 Sensor fault simulations

Table 3.2 Simulated faults.

Fault Faulty variables Description of the fault
Fault(1) X1 Single, Abrupt fault (500 - 2000)
Fault(2) X2 Single, Abrupt additive fault, (500 - 1500)
Fault(3) X3 Single, Linear drift (500 - 1500)
Fault(4) X4 Single, Drift fault (500-900), Abrupt change

(100-1400)
Fault(5) X5 Single, Intermittent fault, changing intervals

and amplitudes
Fault(6) X1, X2, X6 Multiple, additive, abrupt change: X1 (800-1100),

X6 (900-1500), Drift fault: X2 (500-700)

3.5.1 Model construction:

For the simulated example, the proposed model consists of 2-states representing healthy

and faulty operating modes. To conclude the number of features (the number of retained

principal components), we do the following:

• Normalization:

The mean and standard deviation values of the generated training data-set are the
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vectors µx ∈ R1×6 and σx ∈ R1×6, respectively

µx = [0.9998 3.9999 − 2.0002 8.0005 14.0004 6.0004]

σx = [0.0100 0.0100 0.0223 0.0581 0.0638 0.0446]

These two vectors are used to shift and scale the data matrix X to zero mean and

unity variance. The new matrix obtained throughout this operation is denoted by

Xn which represents the normalized data matrix.

• Computation of singular values:

The covariance matrix ( 6 × 6 ) of the normalized data can be obtained using

equation 3.40. Then using Singular Value Decomposition (SVD), the eigen values

and their corresponding eigen vectors are computed:

Λ = diag(4.9636 1.03625 0.0001 6.62e− 06 2.40e− 16 7.27e− 17)

• Dimension identification:

Over various methods discussed in the previous section, Kaiser criterion is used

in this example for its simplicity.

The number of retained principal Components is 2, representing a total of vari-

ance of 99.99 %.

• Observables extraction:

The scores matrix T is calculated using equation 3.45. Then T̂ is obtained using

equation 3.47, to be used as observables to built the Markov model.

3.5.2 Model Training:

• Using the hist function with a suitable number of bins , we calculate the joint

probabilities of our obsevables using equation 3.51.

• The same work is repeated in order to calculate the joint probabilities for faulty

data.
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After constructing the Hidden Markov Model with the 2 extracted features, it has

been tested and the performance of the proposed scheme is evaluated: (i) fault Detection

Time Delay (DTD): (time required for indicating the fault after its occurrence).

(ii) False Alarms Rate (FAR):

FAR(%) =
NN.F

NN

× 100 (3.54)

NN.F : is the number of normal samples detected as faults.

NN : is the number of normal samples.

(iii) Missed Detection Rate (MDR):

MDR(%) =
NF.N

NF

× 100 (3.55)

NF.N : is the number of faulty samples detected as normal.

NF : is the number of faulty samples.

The objective of a reliable monitoring scheme is to achieve shortest delays for de-

tection, moreover, lowest FAR and MDR [52].

The FAR for the training and testing sets is represented in Table 3.3.

Table 3.3 False alarms rate for the training and testing sets

Data Training Testing
set set set

False Alarms 1.183 1.225
Rate

3.5.3 Model Testing:

The model is tested using some simulated faults which are presented in Table 3.2.

• Figures 3.8 to 3.13 contain 2 plots:

– The first shows the change in the two retained observables (T1,T2).

– While the second one represents the fault indicator.
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Fig. 3.8 Fault (1) with 10 % amplitude

• The area with the shading shows the region of the occurrence of the fault.

• Fault (1) represented in figures 3.8 to 3.10 with different amplitudes (10%, 15%

and 20%). The fault from (500 - 2000).

Fig. 3.9 Fault (1) with 15 % amplitude

• Figures bellow from 3.11 to 3.13 corresponds to fault (6):

• The Detection Time Delay, False Alarms Rate and Missed Detection Rate are

computed and recorded in Table 3.4. All faults with different amplitudes are

presented in the table bellow:

Table 3.4 DTD, FAR and MDR for the simulated faults

Faults 10% Fault 15% Fault 20% Fault
amplitude DTD(s) FAR(%) MDR(%) DTD(s) FAR(%) MDR(%) DTD(s) FAR(%) MDR(%)
Fault(1) 0 1 3.2967 0 1 0 0 1 0
Fault(2) 0 1.4 0 0 1.4 0.29 0 1.4 0
Fault(3) 215 1.3 97.6074 158 1.3 92.60 18 1.3 82.7173
Fault(4) 82 1.4 81.2968 100 1.4 49.2519 100 1.4 31.6708
Fault(5) 1 1.5 26.3682 0 1.5 14.262 0 1.5 10.9453
Fault(6) 15 1.2 39.6896 7 1.2 13.3038 7 1.2 2.6608
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Fig. 3.10 Fault (1) with 20 % amplitude

Fig. 3.11 Fault (6) with 10 % amplitude

3.5.4 Discussion

From the result shown in figures 3.8 to 3.13, tables 3.3 and 3.4, the false alarm rate is

acceptable however, those values are literally high due to the fact that the used data are

generated randomly.

From Table 3.4, the faults in X1 and X2 are well detected in comparison with other

faults since X1 and X2 are dominant variables so they affect T1 and T2 strongly, as it is

shown in figures 3.8 - 3.10 (the upper plot).

The Single sensor fault of intermittent type (fault(5)) is promptly detected, unlike

fault(3) and fault(4) are detected after a long time and consequently with high missed

detection rate.This is due to their drift type with a small slope.

The delay time detection for the multiple sensors fault is relatively acceptable. In

addition, the missed detection rate was high for fault(6) with 10% of magnitude, than,

it rapidly decreased when the fault amplitude increased.
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Fig. 3.12 Fault (6) with 15 % amplitude

Fig. 3.13 Fault (6) with 20 % amplitude

3.6 Conclusion

In this chapter, A detailed study about HMMs was provided with an illustrated example,

the three main problems with Hidden Markov Models were introduced and solutions are

discussed in detailed.

Reduction of dimensionality and its aim were briefly discussed and how statistical

multivariate monitoring is used in order to extract significant information from data sets.

The proposed monitoring scheme was explained in detail and it has been tested using a

numerical example, results were introduced.

In the next chapter, the application of HMM based fault detection in real industrial

process will be discussed.
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CHAPTER 4

The application of HMM based Fault Detection in Industrial

Process

4.1 Introduction

In this chapter the proposed method is tested in industrial environment. The industrial

case study is the detection of abnormal operating condition (Faulty mode) in a rotary

kiln of a cement plant. A detailed description of the cement plant is provided.

The application is also described in details, by indicating types and sizes of data sets

collected to construct and evaluate the performance of the monitoring scheme.

4.2 Process Description

Cement production plant is composed of five areas, beginning with the quarry where

the limestone rocks are dug out and crushed, comes after the raw meal area where

limestone, clay and iron ore mix are grinded to some fineness. Then the material is

fed to the cook area where material undertakes many physical and chemical operations,

such as drying, dehydration, decomposition of carbonates. Some reactions are solid

others involves the liquid phase (sintering) and third are achieved while cooling.

Almost the physical transformations happen in the preheat tower whereas the main

chemical reactions happen in the rotary kiln under high temperature gradient. The prod-

uct of this area is called clinker. Clinker will be mixed to other additives and undertakes

finish grinding in the subsequent area to produce the cement. The fifth area is dedicated

to packing and expedition.
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Ain El Kebira cement plant in the Algerian east, where the work is conducted, is

a dry process consisting of four cyclone levels in the suspension preheater and short

rotary kiln of 5.4 (m) shell diameter (without brick and coating) and 80 (m) length,

with 3 incline. The kiln is spun up to 2.14 (rpm) using two 560 (kws) asynchronous

motors and producing clinker of density varying from 1300 to 1450 (kg/m3) under

normal conditions. Two natural gas burners are used, the main one in the discharge end

and the secondary in the first level of preheater tower.

The main signals that monitor the kiln system are described in Appendix B. They

were collected from the historian of the plant [52].

4.3 Application of the proposed monitoring scheme

In this section the proposed technique is applied for monitoring the industrial cement

plant. Its different variables are measured to construct a reliable monitoring scheme and

evaluate its detection performance.

This work is based on the real-time data collected by process computers. Even

though the data collected contain noise processing and measurement noise, it is not

necessary for the application to pre-process and filter data, since PCA is a noise decou-

pling method.

A schematic diagram is provided in figure 4.1 to summarize our work:

Table 4.1 Data sets used for this application.

Data sets Size Sampling interval (s) description
Training set X0 ∈ R768×16 20 Normal operation data, used

to construct FD scheme
Testing set X0 ∈ R11000×16 1 Normal operation data, used

to test the FD scheme
Process fault X0 ∈ R2084×16 1 Normal/Faulty operation,

process fault
Sensor faults X0 ∈ R1500×16 1 Sensor fault simulations
(6 sets)

Table 4.1 lists the different data sets used in order to construct and test the proposed

fault detection scheme then evaluate and compare its performance.

Set 1, Training data: This set consists of 16 variables listed in Appendix B. About
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Fig. 4.1 Schematic diagram

770 observation samples (more than 4 h) are collected during healthy operation, with a

sampling rate of 1 sample each 20 s.

This set is used to construct the proposed fault detection scheme:

• Extraction of principal components.

• Computing the joint probabilities of healthy state.

• Building the Hidden Markov Model.

Set 2, Testing data: The testing data set consists of 11 000 samples, collected from

the plant during healthy operation with a sampling interval of 1 s [52]. This data set is

used to test the accuracy and noise rejection of the proposed fault detection scheme by
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calculating the False Alarms Rate.

Set 3, Faulty process data: The faulty data is collected from the Cement plant for

more than half of an hour (2084 s) with a sampling interval of 1 s. We use this data to

check the ability of the proposed detection scheme to detect the fault.

Set 4, Seven simulated sensor/actuator faults: This set contains 7 simulated sen-

sor faults occurring in the rotary kiln process. It includes abrupt, random, intermittent,

and slow drift additive faults that might be single as well as multiple faults. Each simu-

lation covers 1500 s of process operation.

The original data is taken during healthy operation of the rotary kiln, and then faults

are introduced from 500th sample to 1000th sample. Thus each simulation has three

regions (healthy, faulty, healthy). Each region lasts for 500 s. The simulation is done by

adding a fault of magnitude 2 % to the data collected during normal (healthy) operation.

Table 4.2 lists the 7 sensor faults, with type and magnitude of each fault.

Sfault(1) is a random fault of mean 0 and variance 0.05 added to variable 16, which

represents the speed of the induced draft fan installed in top of tower II for drawing gas

from preheater cyclones to filters. This fault simulates a loss of accuracy in the speed

sensor. It can also represent a vibration in the fan resulting in a small oscillation in the

speed without changing its average value.

Sfault(2) is an abrupt bias of 2% in feed of natural gas (variable 16) to the secondary

burner which can happen due to many reasons: (i) a partial blockage in the natural gas

tubes, (ii) leakage of natural gas, or (iii) just a bias error in sensor readings. Therefore,

it has a bad impact on performance and safety of the process.

Sfault(3) is a positive drift in the speed of the first blowing fan located in the cooling

unit (variable 13), where the measured speed increased linearly from 0% to 2% in 500

s.

Sfault(4) is a negative drift in the speed of the third blowing fan similar to Sfault3.

This fault may change the speed of cooling the clinker and result in a bad quality prod-

uct.

Sfault(5) and Sfault6 represent multiple abrupt faults of magnitude 2%, occurring

simultaneously at different sensors in positive and negative directions, respectively.
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Sfault(7) is a positive intermittent fault in the speed of the exhauster fan of tower I,

this actuator/sensor fault has a changing interval (non-periodic) with changing ampli-

tude from 4.5% to 5.5%. These changes in speed can be caused by the actuator due to

malfunctions in the drives semiconductors or vibrations on the fans shaft, they can also

be caused by the speeds sensor (tachometer). This fault is introduced in the intervals:

500-580, 610-660, 700-740, 800-830, 870-900, and 975-1000 with amplitudes 5.5%,

4.5%, 5%, 5.5%, 5%, and 4.5% respectively.

Table 4.2 Simulated sensor faults, introduced at 500-1000 s.

Fault Faulty variables Fault magnitude Description of the fault
SFault(1) 10 (0, 5 % ) Additive random fault, with mean 0,

and variance 0.05
SFault(2) 16 -2% Abrupt additive fault, bias

b = - 0.02
SFault(3) 13 +2 % Additive fault: Linear drift from 0%

to 2%; slope Ks = 4× 10−5

SFault(4) 14 -2% Additive fault: Linear drift from 0%
to 2%; slope = −4× 10−5

SFault(5) 8, 11, 15 [+,-, +]2% Abrupt additive fault 2% (multiple)
SFault(6) 4, 5, 6, 9, 12 [+,+,+,-,-]2% Additive fault: Linear drift from 0%

to ±2% (multiple);
slope = ±4× 10−5

SFault(7) 7 +4.5% -5.5% Additive fault: Intermittent fault,
changing intervals and amplitudes

4.3.1 Model construction

The proposed model consists of 2-states corresponding to 2-operating modes: Healthy

mode and Faulty mode. the 1st set with 768 samples is used to construct our model and

calculate the joint probabilities.

To conclude the number of observables (the number of retained principal compo-

nents), the procedure described in figure 4.1 will be followed.

• Normalization:

The mean and standard deviation values of the healthy data (set 1) are calculated,

( Mean ∈ R1×16 and Std ∈ R1×16 ). These two vectors are used to shift and scale

the data matrix X to zero mean and unity variance.
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The new matrix obtained throughout this operation is denoted by Xn which rep-

resents the normalized data matrix, where its (16 × 16) covariance matrix can

be obtained using equation 3.40. Then using SVD, The singular values and their

corresponding eigen vectors are computed.

• Dimension identification:

Several techniques for determining the relevant number of principal components

have been proposed which help to separate the informative sub-space from the

residual one. The Variance of Reconstructed Error (VRE) is chosen in our work

and applied to select the optimum number of components to keep for building

the HMM. Unlike most other methods reported in the literature, the VRE method

has a guaranteed minimum over the number of scores corresponding to the best

reconstruction [61]. Therefore, it avoids the arbitrariness of other methods with

monotonic indices [63].

• Observables extraction:

using VRE technique where the number of retained PCs is 5 which explain a total

of 66 % of variance, The scores matrix T is calculated using equation 3.45. Then

T̂ is obtained using equation 3.47, to be used in extracting our observables for

built the Markov model.

4.3.2 Model Training:

The joint probabilities of the 5 extracted obsevables are calculated for both healthy data

and faulty data.

After constructing the Hidden Markov Model with the 5 extracted observables, it

has been tested.

The performance of the proposed scheme is evaluated : (i) fault detection time delay,

(ii) False Alarms Rate (FAR), and (ii) Missed Detection Rate (MDR).

The FAR is calculated under healthy operation of a cement plant. It is evaluated for

the training and testing sets. Results are presented in fig. 4.2 - 4.3 and table 4.3.

These false alarms are due to the transient state during a change in the process
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Fig. 4.2 Fault indicator monitoring results of normal (healthy) process operation, Far
for Training data set
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Fig. 4.3 Fault indicator monitoring results of normal (healthy) process operation, FAR
for Testing data set

dynamics, where some set-points are changed by the operators.

4.3.3 Model Testing:

The model is tested using a real process fault and some simulated faults which are

presented in Table 4.2.

4.3.3.1 Real Process Fault Detection
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Fig. 4.4 Some affected variables by the real process fault , Fault indicator monitoring
results of a real involuntary process fault in the cement rotary kiln.

Figure 4.4 contain 2 plots:

• The first shows the deviation of Some affected variables by the real process fault.

• While the second one represents the fault indicator.
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Table 4.3 FAR for the training and testing sets Using the proposed technique

Data set Training set Testing set
False Alarm Rate (%) 0.2604 0.3090

Results

The proposed fault detection scheme indicates the occurrence of the real process fault at

its early stages, before it evolves and spreads to other process and increases its effects.

This fault was detected at a convenient time as shown in fig. 4.4. The figure shows

the change in Some affected variables by the real process fault and the fault indicator

monitoring results of the real involuntary process fault in the cement rotary kiln. The

fault was detected at 475s with Missed Detection Rate of 0.3178 %.

4.3.3.2 Simulated sensor fault detection

In this section, the performance of the fault detection scheme is evaluated in detecting

single as well as multiple sensor faults of abrupt, random, intermittent, and drift types.

Fig. 4.5 Fault indicator monitoring results of single sensor fault of random type

Fig. 4.6 Fault indicator monitoring results of single sensor fault of Drift type

• The area with the shading shows the region of the occurrence of the fault.

• The injection of faults is from (500 - 1000).

• Figures from 4.5 to 4.8 represents fault indicators for some of the simulated faults.
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Fig. 4.7 Fault indicator monitoring results of Multiple sensor fault of Drift type

Fig. 4.8 Fault indicator monitoring results of single sensor fault of Intermittent type

Table 4.4. lists the results of Delay Time Detection, False Alarms Rate and The

missed Detection Rate for the 7 simulated faults described in Table 4.2.

Results

Table 4.4 Detection Time Delay, False Alarm Rate and Miss Detection Rate for the
Simulated Faults.

Faults DTD (s) FAR (%) MDR (%)
Sfault(1) 0 0.5 3.6
Sfault(2) 0 0 6.4
Sfault(3) 348 0 88.4
Sfault(4) 30 0.5 6
Sfault(5) 0 0.2 29
Sfault(6) 48 0.4 12.6
Sfault(7) 0 1.2 0

For random fault (SFault1) ,abrupt fault in single sensor (SFault2) and intermittent

fault (SFault7) or multiple sensors (SFault5), the faults are promptly detected regardless

of their small amplitudes.

However, the detection time of the drift faults in single sensor (SFault3, SFault4) or

multiple sensors (SFault6) was delayed, which means the faults are not detected until

they reach a certain level. Taking into consideration that these faults are simulated

with slope of ±4 × 10−5, the faults are successfully detected by the model after reach

amplitude of 1%. The intermittent fault SFault7 is accurately detected in all faulty

region.
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4.4 Discussion

The industrial process of the cement plant rotary kiln used for our work contains sixteen

(16) variables which represents different sensors (mentioned in Appendix .B). The aim

of the work is to develop a monitoring technique to detect different types of faults in

the process (sensors and actuator faults).

Due to the complexity of the industrial process, it can’t be modeled using mathemat-

ical models, so process history based fault diagnosis is needed. The proposed technique

of fault detection based on Hidden Markov Model is applied to the rotary kiln process.

The Hidden Markov Model consists of states and observations, in this case the states

represents the operating modes while observations are extracted from the data collected

from sensors. To extract those observables, joint probabilities of all variables are cal-

culated, this leads to Nm value, where N is the number of sample used for training the

model and m is the number of variables.

In our case, huge calculations must be done using Set 1 for the training phase, the

joint probabilities will be 76816 and this is unacceptable because this leads to a large

time complexity algorithm that needs a large station to do this work and this is not

available. So, we need a tool to reduce the number of variable while keeping most of

the information and accuracy.

Principal Component Analysis is used in our work to achieve this purpose. PCA

is used to convert the data from the original space to an artificial space organized so

that, some of the components are containing more information (variation) than other

ones, keeping only the principal components will lead to a dimension reduction. The

new dimensions corresponds to the chosen technique used for dimension identification

( techniques introduced in chapter .3, section .2). In our case we needed a minimum

number of PCs in order to be able of training our model and calculating the joint prob-

abilities, this was achieved using The variance of the reconstruction error (VRE) tech-

nique, which gave us a minimum number of PCs that is 5, while other methods like

kaiser gave as a minimum number of retained PCs of 6.

After extracting the scores matrix, the joint probability matrix is computed with

55



suitable number of bins, this latter has a great role in the model training, the larger

number of bins, the smaller is the distance between probabilities, the larger is the joint

probability matrix, this leads to a high precision when computing the conditional prob-

abilities in the testing phase as mentioned in the description of the scheme (chapter .3,

section .3). In our work, the maximum number of bins we could use is 50 due to the

absence of computation station, and this value is too small and can not be considered as

a sufficient one.

This is why drift faults and random faults with small amplitudes can not be well

detected because if the number of bins takes small values, probabilities for faulty data

will be too close to the ones of healthy data or it will be the same, so when the process

checks the nature of a collected data, it may consider it as healthy data while it is a faulty

one those miss-classifications leads to a high values of FAR, while the inverse will lead

to high values of MDR. This will justify the obtained results, why these types of faults

are not detected as expected in comparison with other types. The probabilistic model is

accurate and more precise than other techniques but, it need a huge data computation.

4.5 Conclusion

The developed method have been applied on the cement production plant. The proposed

model uses some historical data collected from cement rotary kiln to build a suitable

model for the on-line fault detection.

The proposed scheme works effectively since it reduces the number of false alarms

and detects the abnormal changes in cement rotary kiln process efficiently and effec-

tively.
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CHAPTER 5

General Conclusion

With the improvement of technology and automation in industry, large-scale, high risk

and multi-variable characteristics are presented in the production process. This makes

it extremely essential for control systems to be more robust to ensure and guarantee the

safety and reliability of production process.

Fault detection role is to determine whether there has been an error. Early detection

can give a valuable alert about the issues that arise, and suitable moves to be taken

can prevent serious damages and reduce accident rate. Over the past few centuries,

data-driven based fault detection approaches have been extensively researched due to

their ease compared to model-based techniques (the non-requirement of a mathematical

model).

We first provided a fundamental theory of fault detection and diagnosis, and we

briefly described various methods used for fault detection and diagnosis exploring many

definitions and aspects in the domain of fault detection.

Then we launched HMM’s as a tool that enables us to accurately and usefully define

the real-life system, Then we addressed three canonical questions concerning HMMs

and we showed how they can be resolved in a tractable manner. This gave rise to

the three well known algorithm that are the Forward-Backward algorithm, the Viterbi

algorithm and the Baum-Welch algorithm. In addition, Principal Component Analysis

was described and it has been used as dimension reduction tool.

The main focus of this thesis is the development of a probabilistic model based on

Hidden Markov Model for the purpose of fault detection and isolation. HMMs, by

their nature, provide an appropriate framework to extract temporal information related
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to process transitions between various modes. The proposed model was used to provide

a monitoring for a cement rotary kiln system. A methodology for process monitoring

was presented in this work with static transition probabilities and tested on a numerical

example and the cement plant rotary kiln process. The application of the proposed

scheme on the industrial process gives some good results, it was able to detect the real

process fault as well as the simulated faults. Some of them was detected with zero time

delay and approximately zero False alarms. Unfortunately, the proposed scheme suffers

in detecting random and drift type faults with small amplitudes.

As a future work, the development of an adaptive Hidden Markov Model with dy-

namic Transition probabilities with large number of modes. Also, we recommend that

the use of the Hidden Markov Model be extended to other industrial process where

other kinds of faults may occur.
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Appendix A

Terminology

The IFAC-Technical Committee SAFE PROCESS has made an effort to come to ac-

cepted definitions:

• Fault: A fault is an unpermitted deviation of at least one characteristic property

(feature) of the system from the acceptable, usual standard condition.

Remarks:

– A fault is a state within the system.

– The unpermitted deviation is the difference between the fault value and the

violated threshold of a tolerance zone for its usual value.

– A fault is an abnormal condition that may cause a reduction in, or loss of

the capability of a functional unit to perform a required function [66].

– There exist many different types of faults, e.g. design fault, manufacturing

fault, assembling fault, normal operation fault (e.g. wear), wrong operation

fault (e.g. overload), maintenance fault, hardware fault, software fault, oper-

ators fault (Some of these faults are also called errors, especially if directly

caused by humans).

– A fault in the system is independent of whether the system is in operation or

not, a fault may not effect the correct functioning of a system (like a small

rent in an axle).

– A fault may initiate a failure or a malfunction.

– Frequently, faults are difficult to detect, especially if they are small or hidden

faults may develop abruptly (step-wise) or incipiently (drift-wise).
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A suitable modelling of faults is important for the right functioning of fault-

detection methods. Also faults that occur in process plant can be classified into

three types:

1. Sensor faults: They represent incorrect reading from the sensors this can be

due to broken wires, lost contact with the surface etc. In which case the read-

ing shown by the sensor is not related to the value of the measured physical

parameter. This can for instance be a gain reduction, a biased measurement

or increased noise. [67, 68].

2. Actuator faults: They represent partial or complete loss of control action.

Total actuator fault can occur for instance, as a result of a breakage cut

or burned wiring short cuts, or the presence of outer body in the actua-

tor. In case of partially failed actuator only part of the normal actuation is

produced, it can be result of hydraulic, pneumatic leakage, reduced input

voltage or increased resistance.

3. Component faults: These faults are those faults that are not able to be con-

sidered as sensor faults or actuator faults. They occur due to structural

damages of the components. The dynamical behavior of the system can

be changed because of these faults [69]. And these are the most frequently

encountered types in fault family to deal with.

There are other types of faults but, these are the most frequently encountered

types in fault family to deal with.

• Failure: A failure is a permanent interruption of a systems ability to perform a

required function under specified operating conditions.

Remarks:

– a failure is the termination of the ability of a functional unit to perform a

required function [66].

– A failure is an event.

– A failure results from one or more faults.
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– Usually a failure arises after the start of the operation or by increasingly

stressing the system.

• Malfunction:

A malfunction is an intermittent irregularity in the fulfillment of a systems desired

function.

Remarks:

– A malfunction is a temporary interruption of a systems function.

– A malfunction is an event.

– A malfunction results from one or more faults.

– Usually a malfunction arises after the start of the operation or by increas-

ingly stressing the system.
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Appendix B

Process variables of the cement plant

Signal Description Units
1 Depression of gases in outlets of cyclone one, tower I mbar
2 Temperature of gases in outlets of cyclone one, tower I ◦C
3 Depression of gases in outlets of cyclone two, tower I mbar
4 Temperature of gases in outlets of cyclone two, tower I ◦C
5 Temperature of gases in outlets of cyclone three, tower I ◦C
6 Temperature of gases in outlets of cyclone three, tower I ◦C
7 Speed of the exhauster fans of tower I r.p.m
8 Temperature of the material entering the kiln from tower I ◦C
9 Temperature of gas in the outlet of the smoke filter: tower I ◦C
10 Speed of the exhauster fans of tower II r.p.m
11 Temperature of gases in outlets of cyclone one tower II ◦C
12 Temperature of gases in outlets of cyclone two tower II ◦C
13 Speed of the cooling fan I r.p.m
14 Speed of the cooling fan III r.p.m
15 Flow of fuel (natural gas) to the main burner m3/h
16 Flow of fuel (natural gas) to the secondary burner m3/h

(pre-calcination level)
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