
Registration Number:…..…../2017

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Power and Control / Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Control / Electronics

Option: Control / Computer Engineering

Title:

Presented by:

- GUIR Dallel (Control)

- SAIGHI Souhila (Computer Engineering)

Supervisor:

 Dr. BOUSHAKI Razika

 Mr. HENTOUT Abdelfeteh

Kinect-based path planning and

execution for autonomous mobile robot

using ROS: Case of RobuTER

Acknowledgement

First and foremost, We are thankful to God almighty, for showing heavenly

blessing upon us, as without that nothing would have been possible.

We would like to express my felt gratitude to our supervisors

Mr. HENTOUT ABDELFETAH from CDTA and Mss. BOUSHAKI

RAZIKA from INELEC for their wisdom, guidance and support.

Also, we would like to thank CDTA for opening their doors to us and

offering their help to make this work happen.

A special thanks to our families and friends for their support and all

INELEC staffs.

Dedication:

I would like to dedicate this work:

To my dear father and my lovely mother

To my brothers and my sister Manel

To all my family especially my Grandfather

To all my dear friends especially my best friend Souhila.

Also to my future husband.

 Dallel

Dedication:

I would like to dedicate this work:

To my dear father and my lovely mother

To my brothers and my sisters.

To all my family especially Maissa.

To all my dear friends especially my best friend Dallel.

 Souhila

 Abstract

 Abstract

This project presents preliminary results of the application of two-Kinect cameras

system on a two wheeled indoor mobile robot for off-line path planning and execution.

In our approach, the robot makes use of depth information delivered by the vision system

to accurately model its surrounding environment through image processing techniques.

In addition, a Rapidly-exploring random tree is implemented to generate a collision-free

path linking an initial configuration of the mobile robot (Source) to a final configuration

(Target). After that, Piecewise Cubic Hermite Interpolating Polynomial is used to smooth

the generated optimal path. Finally, a comparison between RRT and Genetic algorithm

has been done.

 Contents

Front Page …………………………………………………………………………….I

Acknowledgment……………………………………………………………………..II

Dedication ……………………………………………………………………………III

Contents ………………………………………………………………………………IV

List of Figure ……………...……………...…………………………………………...V

List of Tables ………………………………………………...………………………VI

List of Acronym …………………………………………………………………….IIV

General introduction ………………………………………………………………...01

Chapter 1 : Navigation………………………………………………………………..02

1.1 Introduction ……………………………………………………………………..02

1.2Navigation………………………………………………………………………..02

1.1.1 Perception ………………………………………………………………...03

1.1.2 Localization ……………………………………………………………...03

1.1.3 Path planning …………………………………………………………….04

 1.2.3.1 Classical methods…………….………………………………………06

1.2.3.2 HEURISTIC methods………………………………………………..06

1.2.4 Motion control…………………………………………………………….06

 1.3Conclusion……………………………………………………………………….07

Chapter 2 : ……………………………………………………………………………08

2.1 Introduction……………………………………………………………………...08

2.2 Path planning algorithms………………………………………………………...08

2.2.1 Corner Passing method ……………………………………………………..09

2.2.2 Rapidly optimizing mapper ………………………………………………...10

2.2.3 Lattice planner method ……………………………………………………..10

2.2.4 Rapidly exploring random tree………………………………………….......11

 2.3 Advantages and disadvantages of each method ... 12

 2.4 Conclusion ……………………………………………………………………...12

Chapter 3 : ……………………………………………………………………………13

3.1 Introduction……………………………………………………………………...13

3.2 Robot Operating System…………………………………………………………13

3.3 Environment perception…………………………………………………………13

3.3.1 Data Preprocessing………………………………………………………...14

3.2.2 Data Processing and feature extraction………………………………………15

3.4 Visualisation in RVIZ……………………………………………………………16

3.5 Kinematic analysis of the mobile base (odometry localisation)…………………17

3.6 Path planning using the Rapidly-exploring random tree (RRT) algorithm……...19

3.6.1 Adding new node………………………………………………………….20

3.6.2 Checking the step size……………………………………………………..21

3.6.3 Checking the intersection………………………………………………….21

3.7 Implementation of RRT in ROS…………………………………………………22

3.8 Conclusion……………………………………………………………………….26

Chapter 4 : ……………………………………………………………………………27

 4.1 Introduction……………………………………………………………………..27

 4.2 Environment modeling …………………………………………………….…...28

 4-3. Visualization on RVIZ………………………………………………………….29

 4-4. Trajectory planning…...……………………………………………………...…30

4-4-1. Step size=08 pixels ……………………………………………………..30

4-4-2. Step size=35 pixels…………………………………………………...…31

4-4-3. Step size=60 pixels……………………………………………………...32

 4-5. Path smoothing ………………………………………………………………...33

 4-6. Path execution …………………………………………………………………33

 4-6. Comparison………………………………………………………………….….34

 4-7. Conclusion……………………………………………………………………...35

Conclusion ……………………………………………………………………………36

References …………………………………………………………………………….37

Appendix………………………………………………………………………………40

 Appendix A…………………………………………………………………………40

 A.1.Introduction to robot operating system ROS ……………………………..40

 A.2.Understanding the ROS file system level………...……………………….42

 A.3.Understanding the ROS computational Graph level ……………………..44

 Appendix B…………………………………………………………………………46

 B.1. Installing ROS indigo ……………………………………………………46

 B.1.1.Configure your Ubuntu repositories ……………………………46

 B.1.2. Setup your sources.list …………………………………………46

 B.1.3.Setup your keys ………………………………………………...46

 B.1.4.Installation ……………………………………………………...46

 B.1.5.Initialize rosdep…………………………………………………46

 B.1.6.Environment setup ……………………………………………...46

 B.1.7.Getting rosinstall ………………………………………………..47

 B.2.Steps to install the kinect in ROS …………………………………………47

 Appendix C…………………………………………………………………………49

 C.1.General description of RobuTER …………………………………………49

 C.1.Software Architecture ……………………………………………………..50

 List of figures

List of figures

Chapter 1: Introduction to mobile robot and navigation

Fig 1-1. Autonomous navigation problem

Fig 1-2. Functional decomposition of mobile robot control system

Fig. 1-3: General schematic for mobile robot localization

Chapter 2: Path planning approches

Fig 2-1. Classification of existing methods on path planning

Fig 2-2. Functioning of corner passing method

Fig 2-3. Lattice planner for on-road driving

Fig 2-4. Incremental build of a rapidly exploring random tree (RRT)

Chapter 3: Implementation

Fig 3-1. Acquired RGB color and depth images

Fig 3-2. Example of background subtraction

Fig 3-3. Interfacing ROS with OpenCV

Fig 3-4. Safe map representing the three areas.

Fig 3-5. Visualization on RVIZ.

Fig 3-6. (a) The global reference frame. (b) The robot wheels Kinematics.

Fig 3-7. Extend phase of an RRT.

Fig 3-8. Adding new vertex.

Fig 3-9 Checking the distance between q_near and q_rand

Fig 3-10. Checking the intersection between q_near and q_rand.

…………………………….........................3

……...……..…….3

………….…………………5

…………………………9

……………………………..............9

………………………….....................11

………………11

…………………………….............14

……………………………...................15

……………………………...........................15

……………………………...............16

…………………………….......................................16

……...........17

……………………………......................................20

……………………………..21

………………………...21

……………………22

 List of figures

Fig 3-11. Flowchart describing the env_node

Fig 3-12. Flowchart describing the rrt_node

Fig 3-13. Execution of the nodes and visualization on RVIZ

Chapter 04: Experimental validation

Fig 4-1. Experimental robotic testbed

Fig 4-2. RGB and depth images acquired by the first Kinect

Fig 4-3. RGB and depth images acquired by the second Kinect

Fig 4-4. Binary map of the overall environment

Fig 4-5. Binary safe map of the overall environment

Fig 4-6. Visualization of the environment on RVIZ

Fig 4-7. RRT planning with a step size of 8 pixels

Fig 4-8. RRT planning with a step size of 35 pixels

Fig 4-9. RRT planning with a step size of 60 pixels

Fig 4-10. RRT generated path and its PCHIP smoothed path

Fig 4-11. Variation of the robot right wheel and left wheel velocities for path

 execution

Appendix

Fig A-1. The ROS file system level

Fig A-2. Structure of typical package

Fig A-2. ROS computational Graph level

Fig B-1. The kinect test in the Rviz simulator

Fig C-1. The architecture of the experimental robotic system

...……………………………..........................27

..……………………...28

..…………………..29

..…………………………...............29

………………………….........30

…………………………...........30

…………………………..............31

…………………………...........32

…………………………...........32

………………..............33

……………………………...…………………………...34

………………………...41

………………………......................................42

…………………………………..............43

……………………............................46

…………………….....47

…………….……………………...23

………….……………………25

………………………….26

 List of tables

List of Tables

Chapter 02:

Table 2-1. Advantages and disadvantages of the studied path planning approaches….12

Chapter 04:

Table 4-1. Kinect characteristics. ……..…………………………………….…….......28

Table 4.2. Summary of executions……..………………………………………….......33

Table 4.3 Summary of comparative analysis………………..…………………….......34

Table 4.4 Summary of the average calculation time of 10 different runs with different

Source-Goal positions……..……………………………………………………….......35

 List of Acronym

List of acronym

IR : Infrared.

ICC : Instantaneous Center of Curve.

MPRT : Mobile Robot Programming Toolkit

ROS : Robot Operating System.

RVIZ : Robot Visualisation.

RGB : Red, Green, Blue.

OpenCV : Open Source Computer Vision.

OpenNI : Open Natural System.

STAIR : Simple Two-Dimensional Robot Simulator.

YARP : Yet Another Robot Platform.

 General Introduction

1

Introduction

Path generation and execution is one of the most important tasks for autonomous

mobile robots. Indeed, the robot has to perform certain interrelated activities [27]

including (i) task planning (generation of operations plans), (ii) environment modeling

and multi-sensory fusion, (iii) path planning, (iv) localization of the robot inside its

environment, and (v) path execution and tracking.

Mobile robot may operate in different modes; one of these modes is the

autonomous mode including intelligent systems those have a capacity to acquire and

apply knowledge in an “intelligent” manner and have the capabilities of perception,

reasoning, learning, and making inferences (or decisions) to complete a given task. Hence

making smarter robots is a problem that has faced the scientific community for several

years, now, to reach a goal position starting from a known initial point with some desired

criteria is a complicated task. So the problem has been solved with soft computing

methods.

For a mobile robot to perceive its environment and localizes itself within it, vision

has become a standard sensory tool. Especially with the advancement of image

processing techniques, which facilitates the extraction of the useful information from

images captured by cameras.

The objective of our project is to deal with the development of a strategy to

tackling the collision-free trajectory planning problem for mobile robots evolving in

indoor environment with obstacles, using ROS; where the generated feasible path

connect an initial location to an imposed final location. The robot makes use of kinect

cameras to model its environment by applying soft computing techniques and image

processing tools for perceiving the environment and map building.

Rapidly-exploring random trees used to generate a feasible path joining the initial

and final position. Finally, a comparative summary between RRTs and genetic algorithm

has been done.

Chapter 1 Introduction to mobile robot and navigation

2

1.1. Introduction

Mobile robots are the objects which move around in their environment and are

not fixed to one physical location. They can be controlled by Bluetooth, wireless

network of PC, a wireless remote control microcontroller.

Robot navigation means the robot ability to determine its own position in its

reference frame and then to plan a path toward some goal location. In order to navigate

in its environment, the robot requires representation, i.e. a map of the environment and

the ability to interpret that representation [1].

Navigation can be defined as the combination of the three fundamental

competences [5]:

 Self-localization.

 Path planning.

 Map-building and map-interpretation (map use).

The range of potential applications for mobile robots is enormous. It includes

[3]:

 Medical services: Service robots.

 Automatic cleaning of (large) areas.

 Agricultural: Fruit and vegetable picking, fertilization, planting…

 Forests: Cleaning, fire preventing, tree cutting…

 Hazard environments.

 Construction and demolishing.

 Military.

1.2. Navigation

Leonard and Durrant-Whyte [2] summarized the general problem of mobile

robot navigation by three questions:

 Where am I?

 Where am I going?

 How do I get there?

Chapter 1 Introduction to mobile robot and navigation

3

In order to tackle these questions, the robot has to:

 Handle a map of its environment.

 Self-localize itself in the environment.

 Plan a path from its location to a desired location.

Therefore, the robot has to have a model of the environment, be able to

perceive, estimate its relative state and finally plan and execute its movement.

An autonomous robot navigation system has traditionally been hierarchical; it

consists of a dynamical control loop with four main elements (Figure 1) [4]:

 Perception as obtaining and interpreting sensory information.

 Mapping/localization involving the construction of a spatial representation by

using the information perceived from its sensors and estimating the robot

position within the spatial map.

 Cognition the strategy to find a path toward a goal location.

 Motor control where motor actions are determined and adapted to

environmental changes.

Fig. 1-1. Autonomous navigation problem

The classical control paradigm (Horizontal/Functional decomposition) is based

on the sequence Sense Think Act [2] as shown by Figure 1-2.

Fig. 1-2. Functional decomposition of mobile robot control system [5]

Chapter 1 Introduction to mobile robot and navigation

4

1.2.1. Perception

The first action in the control loop is perception of the robot itself and its

environment, which is done through proprioceptive and exteroceptive sensors.

Proprioceptive sensors capture information about the self-state of the robot; whereas,

exteroceptive sensors capture information about the environment.

The types of sensors being used on mobile robots shows a big variety. The most

relevant ones can be briefly listed as encoders, gyroscopes, accelerometers, sonars,

laser range finders, beacon-based sensors and vision sensors.

In theory, navigation can be realized using only proprioceptive sensors

(odometry). It is basically calculating the robot position based on the rotation of wheels

and/or calculating orientations using gyroscopes/accelerometers. But in real world

settings, odometry performs poorly over time due to unbounded growth of integration

errors caused by uncertainties. It is also possible to navigate using only exteroceptive

sensors. One such realization of this approach is the Global Positioning System (GPS)

which is being successfully used in vehicle navigation systems [2].

1.2.2. Localization

The goal for an autonomous robot is to be able to construct (or use) a map or

floor plan and to localize itself in it.

The problem of robot localization consists of answering the question: Where am

I?. From the robot’s point of view, this means that the robot has to find out its location

relative to the environment. And, this poses difficult challenges because of the

inaccuracy and incompleteness of the sensors and actuators. The robot must also have a

representation of its belief regarding its position on the map. Where the design

questions for belief representation are: Does the robot identify a single unique position

as its current position?, or Does the robot describe its position in terms of a set of

possible positions? If multiple possible positions are expressed in a single belief, How

are those multiple positions ranked? [2].

Markov localization addresses the global localization problem, the position

tracking problem, and the kidnapped robot problem. Where it tracks the robot’s belief

state using an arbitrary probability density function to represent the robot’s position.

https://en.wikipedia.org/wiki/Autonomous_robot
https://en.wikipedia.org/wiki/Floor_plan

Chapter 1 Introduction to mobile robot and navigation

5

Kalman filter localization tracks the robot’s belief state typically as a single

hypothesis with normal distribution. It addresses the position tracking problem. The

Kalman filters are designed to operate efficiently on Gaussian distributions which are

defined by the mean plus a standard deviation parameter 𝜎 [2].

Other localization methods include the use of passive objects in the environment

such as landmark-based navigation, positioning beacon systems, and route-based

localization strategies [2].

Fig. 1-3: General schematic for mobile robot localization [2]

1.2.3. Path planning

Path planning can be defined as searching a suitable path in a map from one

place to another, without colliding with any obstacles. The Robot motion planning can

be basically divided into two main categories: (i) local path planning and (ii) global

path planning:

 In global path planning, the environment is known in advance and the terrain is

static or the obstacles are known in advance. Hence, the path planning algorithm

is able to make a complete map of the environment form the start point to the

goal even before the robot starts motion.

 On the other hand, in local path planning, the environment is completely

unknown to the mobile robot; i.e. the environment is dynamic and unstructured

or the obstacles are not known in advance. In such a situation, the robot needs to

gather information about the environment in real time and update its control

laws so as to achieve this [6].

Chapter 1 Introduction to mobile robot and navigation

6

Various techniques have been exercised in path planning; they are classified into

two categories: (i) classical and (ii) heuristic methods.

1.2.3.1. Classical methods

In classical methods, either a solution would be found or it would be proven that

such a solution does not exist. The main disadvantage of such methods is their

computationally intensiveness and their inability to cope with uncertainty. Such

disadvantages make their usage brittle in real-world applications. This is due to the

natural characteristics of such applications which are being unpredictable and uncertain

[7]. Some examples are as follows:

 Cell decomposition.

 Roadmap.

 Potential field.

1.2.3.2. Heuristic methods

The abovementioned classical approaches suffer from many drawbacks, such as

high time complexity in high dimensions, and trapping in local minima, which makes

them inefficient in practice. In order to improve the efficiency of classical methods,

many algorithms have been developed to solve the various encountered problems

including:

 Probabilistic Roadmaps (PRM).

 Genetic algorithm.

 Rapidly exploring random tree (RRT).

 Particle Swarm Optimization (PSO).

The major advantage of heuristic methods is the high-speed in the

implementation [8].

1.2.4. Motion control

A mobile robot needs locomotion mechanisms that enable it to move unbounded

throughout its environment. But, there are a large variety of possible ways to move; so,

the selection of a robot’s approach to locomotion is an important aspect of mobile robot

Chapter 1 Introduction to mobile robot and navigation

7

design. In locomotion, the environment is fixed and the robot moves by imparting force

to the environment.

Locomotion and manipulation thus share the same core issues of stability,

contact characteristics and environmental type [2]:

 Stability: number and geometry of contact points, center of gravity,

static/dynamic stability, inclination of terrain.

 Characteristics of contact: contact point/path size and shape, angle of contact,

friction.

 Type of environment: structure, medium (e.g. water, air, soft or hard ground).

In mobile robotics, we need to understand the mechanical behavior of the robot

both in order to design appropriate mobile robots for tasks and to understand how to

create control software for an instance of mobile robot hardware. Kinematics is the

most basic study of how mechanical systems behave. In addition, the process of

understanding the motions of a robot begins with the process of describing the

contribution each wheel provides for motion.

1.3. Conclusion

This chapter provides a brief description to autonomous mobile robots and

navigation. All the necessary terms used throughout this work, including the different

block diagrams required for successful autonomous navigation starting from perception

and map building, followed by the localization problem, then different path planning

techniques.

Chapter 2 Path planning approaches

8

2.1. Introduction

Path planning is one of the fundamental problems in mobile robotics. As

mentioned by Latombe [9], the capability of effectively planning its motions is

“eminently necessary since, by definition, a robot accomplishes tasks by moving in the

real world”. Especially in the context of autonomous mobile robots, path planning

techniques have to simultaneously solve two complementary tasks. On one hand, their

task is to minimize the length of the trajectory from the starting position to the target

location; on the other hand, they should maximize the distance to obstacles in order to

minimize the risk of colliding with an object.

Various approaches have been introduced to implement path planning for

 a mobile robot [10]. The approaches are according to environment, type of sensors,

robot capabilities, etc. In this chapter, we will introduce some path planning algorithms

and discuss their advantages and limits.

2.2. Path planning algorithms

Existing methods on path planning can be classified into off-line and on-line

planning approaches [11] [12]. Off-line planning approaches generate the entire path to

the Target before motion begins; These approaches use complete information about the

workspace, where an optimization criterion can be used for searching the optimal

collision-free trajectory. They are most useful for repeatable tasks in static

environments where optimality is essential (industrial applications, etc.). Whereas in

on-line planning approaches, the trajectory to the Target is calculated incrementally

during motion. These methods use incomplete information of the environment and

build the trajectory step by step. Thus, this type enables fast collision detection and

trajectory planning [13]. These approaches are required in applications where obstacles

are detected during motion, the computation time required for a global solution delays

the task execution, or simply as an alternative to a computationally expensive off-line

search [14]. The following diagram represents the classification of the methods:

Chapter 2 Path planning approaches

9

Fig 2-1. Classification of existing methods on path planning

In what follows, we only present some off-line and on-line path planning

approaches for mobile robots.

2.2.1. Corner passing method

Corner passing method is based on binary image, which is created from

obstacles. First, a line is drawn from the starting point toward the target; if there is an

obstacle in the path, two paths from the starting point would be considered to the

outermost corner of the object and the same process for each path should be repeated

until reaching the destination without any collisions with obstacles. The distance of

each path would be computed and the path which has the shortest distance is the

optimal one. This method requires a lot of computing because at each stage the

outermost corners of the object should be calculated, but it gives the most optimal path

[15].

Fig 2-2. Functioning of corner passing method: (a) image of obstacles, (b) binary shape

of obstacles, (c) planned path using the method (the red path is the optimal one) [15]

Path planning
approaches

Off-line
approaches

Rapidly-exploring
random tree

(RRT)

Rapidly
optimizing

mapper (ROM)

Corner
passing

On-line
approaches

Rapidly-exploring
random tree

(RRT)

Lattice
planner

...

Chapter 2 Path planning approaches

10

2.2.2. Rapidly optimizing mapper (ROM)

Rapidly optimizing mapper (ROM) is a solution for a holonomic off-line point

robot in a static environment. ROM is able to plan a collision free route from the

starting point to the goal configuration using series of different methods and parameters

to analyze the workspace and compute the shortest collision-free trajectory.

The strategy of ROM focuses on fewer numbers of obstacles (roadblock

obstacles) instead of all available obstacles in the environment in order to achieve a

better performance and construct an optimal trajectory [16].

The Rapidly optimizing mapper path planner [17] consists of four different and

distinct phases as follows:

 Initial phase: computing sets of primitive variables related to the SD (standoff

distance), DOT (Degree of Traverse), and DOST (Degree of surface traversal).

 Workspace analyzer: analyzing the workspace to determine roadblock obstacles,

and roadblock obstacle surface scanning.

 Graph (Roadmap) builder.

 Shortest path computation unit: analyzing the graph constructed and using the

Dijkstra shortest path algorithm.

2.2.3. Lattice planner method

Lattice planner consists of a set of states, connected by edges. To construct the

set of states, each dimension in the planning domain is discretized into cells of finite

size [18] [19]. Typically, metric dimensions are divided into small grids; it is

represented as a series of connected states in a lattice-based graph constructed using

motion primitives and efficient search algorithms.

A lattice-based graph is a graph constructed using short motion primitives as

edges that end up at the center of cells. Motion primitives are short, kinematically

feasible motions which form the basis of movements that can be performed by the robot

platform [20].

Chapter 2 Path planning approaches

11

Fig 2-3. Lattice planner for on-road driving

2.2.4. Rapidly-exploring random tree

A Rapidly-exploring Random Tree (RRT) is a data structure and algorithm that

is designed for efficiently searching non-convex high-dimensional spaces [21]. RRTs

are constructed incrementally in a way that quickly reduces the expected distance of a

randomly-chosen point to the tree. RRTs are particularly suited for path planning

problems that involve obstacles and differential constraints (non-holonomic or kino-

dynamic). RRTs can be considered as a technique for generating open-loop trajectories

for non-linear systems with state constraints [22].

RRT constructs a tree using random sampling in search space. The tree starts

from an initial state and expands to find a path toward the goal state. The tree gradually

expands as the iteration continues. During each iteration, a random state is selected

from configuration space (Figure 2-4) [23].

Fig 2-4. Incremental build of a rapidly exploring random tree (RRT)

Chapter 2 Path planning approaches

12

2.3. Advantages and disadvantages of each method

The main advantages and drawbacks of the approaches we studied in this

chapter can be outlined as follows:

Methods Advantages Disadvantages

Rapidly-

exploring

random trees

-Quick search of free space.

-Advanced decision techniques are

applied for collision checking.

-Optimality in the path is guaranteed

in newer implementations such as

RRT*.

-Real-time feasibility.

-Each node of the tree

needs to be checked for

collisions while the tree is

expanding.

Rapidly

optimizing

mapper (ROM)

-Optimality.

-Use few numbers of obstacles.

-Very close to obstacles.

Corner passing

method

-Easy algorithm.

-Optimality in the path guaranteed.

-Requires a lot of

computing.

-Computation complexity.

-Pure off-line method.

Lattice planner

-Low computational power needed.

-Smoothness and optimality of the

path are guaranteed.

-Time inefficiency with

the calculation of a path.

-May lead to exhaustive

sampling or oscillations.

Table 2-1. Advantages and disadvantages of the studied path planning approaches

2.4. Conclusion

In this chapter, we have discussed different path planning algorithms for

autonomous mobile robot; furthermore, we described their advantages and drawbacks.

This allowed us to select the best algorithm to work with in this project. At the end, we

adopted the Rapidly-exploring random trees for the implementation of our path planner.

 Chapter 3 Implementation

13

3.1. Introduction

Mobile robots navigation includes different interrelated activities described

previously in the first chapter. The perception has been done using the data acquired by

two Kinect cameras, which is then preprocessed to get an environment model. The

mobile robot position is estimated using the data obtained from the encoders.

The path planning is performed by the fastest and usable method Rapidly-

exploring Random Tree algorithm which is implemented using Robot Operating

System.

3.2. Robot Operating System

The Robot Operating System (ROS) is a flexible framework for writing robot

software. It is a collection of tools, libraries, and conventions that aim to simplify the

task of creating complex and robust robot behavior across a wide variety of robotic

platforms [24]. ROS was built from the ground up to encourage collaborative robotics

software development. It was designed specifically to collaborate and build upon each

other work. Software in the ROS Ecosystem [25] can be separated into three groups:

 Language- and platform-independent tools used for building and distributing

ROS-based software.

 ROS client library implementations such as roscpp, rospy, and roslisp.

 Packages containing application-related code which uses one or more ROS

client libraries.

3.3. Environment perception

The Kinect has two sensors, a color sensor and a depth sensor. To enable

independent acquisition from each of these devices, they are treated as two independent

devices in the image acquisition. Those devices return four data streams:

 The image stream contains color data in RGB format with resolution of

640x480, frame rate of 30 frames per second.

 The depth stream returns depth information in pixels, with resolution of

640x480, frame rate of 30 frames per second with a valid range of 50cm to

400cm.

http://wiki.ros.org/Client%20Libraries

 Chapter 3 Implementation

14

The skeletal stream is returned by the depth sensor and returns data about the

skeletons. There is also an audio stream, but those are unused in our work.

The management of the Kinect camera and its functionality is ensured by the

package openni-launch, which contains launch files and nodes for using OpenNI-

compliant devices (Open Natural Interaction)1.

Fig 3-1. Acquired RGB color and depth images (Depth in mm).

3.3.1. Data preprocessing

The objective of this phase is to obtain a binary safe map where the robot can

evolve without colliding possible obstacles inside its environment.

In order to perform this phase, we need to use the Open Source Computer

Vision (OpenCV) which is a library used for image processing. It is mainly used to do

all the operations related to images.

The technique that we have used for generating a binary image by using static

cameras is Background Subtraction (BS). Background Subtraction calculates the

foreground mask performing a subtraction between the current frame and a background

model, containing the static part of the scene.

The background modeling consists of two main steps: (i) Background

Initialization and (ii) Background Update. In the first step, an initial model of the

background has computed; while in the second step that model has updated in order to

1 OpenNI is an open-source framework for “natural interaction” - using your hands and

body to interact.

 Chapter 3 Implementation

15

adapt to possible changes in the scene. The following function has been used to

implement this data processing:

cv::BackgroundSubtractorMOG

Fig 3-2. Example of background subtraction

However, before using OpenCV we need to interface it with ROS using

CVBridge and image_transport package. The first package is used to convert between

ROS Image messages and OpenCV images; while the second one provides transparent

support for transporting images in low-bandwith compressed format.

cv_bridge::CvImageConstPtr image;

image=cv_bridge::toCvCopy(msg ,sensor_msgs::image_encodings::TYPE)

Fig 3-3. Interfacing ROS with OpenCV

Using distributed threshold, an environment model is obtained in the form of a

binary (logical) map that could be used by the robot; it represents the obstacles and the

free space environment.

3.3.2. Data processing and feature extraction

For the mobile robot to navigate successfully without collisions, and due to the

uncertainties of its sensors, a safe region could be added to the binary map using a disk

 Chapter 3 Implementation

16

mask. Thus, we obtain a safe map representing three areas: (i) forbidden area

(obstacles), (ii) dangerous area (near the obstacles), and (iii) safe area.

Fig 3-4. Safe map representing the three areas.

3.4. Visualization in RVIZ

RVIZ is a 3D visualizer for displaying sensor data and state information from

ROS. Using rviz, we can visualize the current configuration on a virtual model of the

robot, etc. We can also display live representations of sensor values coming over ROS

topics including camera data, laser distance measurements, etc.

In order to visualize our binary safe map on RVIZ (Figure 3-5), we follow the

two steps described below:

 Find each non-zero pixel coordinate (x, y) using findNonZero function described

in the line code:

cv::Mat nonZeroCoordinates;

cv::findNonZero(image, nonZeroCoordinate);

 Display the coordinates found using visualization_msgs/Marker2.

Fig 3-5. Visualization on RVIZ.

2 The marker message is used to send visualization “markers” such as boxes, spheres,

arrows, lines, point, etc. to a visualization environment such as rviz.

http://library.isr.ist.utl.pt/docs/roswiki/doc/api/visualization_msgs/html/msg/Marker.html
http://www.ros.org/wiki/rviz

 Chapter 3 Implementation

17

3.5. Kinematic analysis of the mobile base (odometry localization)

The kinematic analysis of the mobile robot needs to focus on the following main

reference frames:

 𝑅𝐴 = (𝑂𝐴, 𝑥𝐴⃗⃗⃗⃗ , 𝑦𝐴⃗⃗⃗⃗ , 𝑧𝐴⃗⃗ ⃗) : Absolute reference frame.

 𝑅𝐵 = (𝑂𝐵, 𝑥𝐵⃗⃗ ⃗⃗ , 𝑦𝐵⃗⃗ ⃗⃗ , 𝑧𝐵⃗⃗⃗⃗) : Mobile base reference frame.

During its motion, the mobile robot odometry is calculated in real time. Indeed,

a relationship between the absolute reference frame of the plane and the local reference

frame of the robot is established in order to specify its position and orientation angle on

the plane.

The axes Xi and Yi in figure 3.6(a) define an arbitrary inertial basis on the plane

as the global reference frame from some origin O:{Xi, Yi}. To specify the position of

the robot, choose a point P on the robot chassis as its position reference point. The basis

{XR, YR} defines two axes relative to P on the robot chassis and is thus the robot’s local

reference frame. The position of P in the global reference frame is specified by

coordinates x and y, and the angular difference between the global and local reference

frames is given by θ. The position of the robot can be described as a vector with these

three elements. Note the use of the subscript I to clarify the basis of this position as the

global reference frame (eq. 3.1)

ξ𝐼 = [

x
y
θ
] (3.1)

Fig 3-6. (a) The global reference frame. (b) The robot wheels Kinematics.

To describe robot motion in terms of component motions, we map motion along

the axes of the global reference frame to motion along the axes of the robot’s local

Y

R

P

XI

Y

I

X

R 𝜃

(a)

XI

r/2
Vr

L

(x,y

)

R

VL

ICC

YI

𝜃

(b)

 ICC

 Chapter 3 Implementation

18

reference frame. The mapping is a function of the current pose of the robot. This

mapping is accomplished using the rotation matrix:

𝑅(𝜃) = [
cos (Ɵ) sin (Ɵ) 0

−sin (Ɵ) cos (Ɵ) 0
0 0 1

], 𝑅−1(𝜃) = [
cos (Ɵ) −sin (Ɵ) 0

sin (Ɵ) cos (Ɵ) 0
0 0 1

] (3.2)

The differential mobile robot has two wheels, each with diameter r. P is

centered between the two drive wheels; each wheel is at a distance l from P. Given r, l,

P, and the speed of each wheel, �̇�r and �̇�l, a forward kinematic model would predict the

robot’s overall speed in the global frame.

The Instantaneous Center of Curvature,

𝐼𝐶𝐶 = [𝑥 − 𝑅 sin 𝜃 , 𝑦 + 𝑅 cos 𝜃] (3.3)

Noting that the right velocity 𝑉𝑟 = 𝜔(𝑅 + 𝑙), and left velocity 𝑉𝑙 = 𝜔(𝑅 − 𝑙) where:

𝑅 = 𝑙
𝑉𝑟 + 𝑉𝑙

𝑉𝑟 − 𝑉𝑙

𝜔(𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) =
𝑉𝑟 − 𝑉𝑙

2 𝑙

𝑉(𝐿𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅𝜔 =
𝑉𝑟+𝑉𝑙

2
 (3.4)

Thus, the component motions are given by:

[
𝑋İ

𝑌�̇�
�̇�

] = [
 𝑉 cos 𝜃
𝑉 sin 𝜃

𝜔
] =

[

𝑉𝑟+𝑉𝑙

2
cos 𝜃

𝑉𝑟+𝑉𝑙

2
sin 𝜃

𝑉𝑟−𝑉𝑙

2𝑙]

 (3.5)

Approximating XI
̇ (𝑡) ≈

∆𝑋

∆𝑇
, and all the other derivatives, while ∆𝑇 is very

small, the curve between two positions is approximated by a line-segment with constant

angle 𝜃 +
∆𝜃

2
. ∆𝑆𝑟 and ∆𝑆𝑙 are the traveled distances for the right and left wheels,

respectively.

[
∆𝑋𝐼

∆𝑌𝐼

∆𝜃

] = [

∆𝑆 cos(𝜃 + ∆𝜃/2)
∆𝑆 sin(𝜃 + ∆𝜃/2)

(∆𝑆𝑟− ∆𝑆𝑙)/2𝑙
] =

[

∆𝑆𝑟+ ∆𝑆𝑙

2
 cos(𝜃 + ∆𝜃/2)

∆𝑆𝑟+ ∆𝑆𝑙

2
sin(𝜃 + ∆𝜃/2)

∆𝑆𝑟− ∆𝑆𝑙

2𝑙]

 Chapter 3 Implementation

19

𝜉𝐼(𝑘 + 1) = 𝜉𝐼(𝑘) + ∆𝜉𝐼 = [
𝑋𝐼

𝑌𝐼

𝜃

] +

[

∆𝑆𝑟+ ∆𝑆𝑙

2
 cos(𝜃 + ∆𝜃/2)

∆𝑆𝑟+ ∆𝑆𝑙

2
sin(𝜃 + ∆𝜃/2)

∆𝑆𝑟− ∆𝑆𝑙

2𝑙]

 (3.6)

3.6. Path planning using the Rapidly-exploring Random Tree (RRT)

algorithm:

RRTs [26] were proposed as both a sampling algorithm and a data structure

designed to allow fast searches in high-dimensional spaces in motion planning. RRTs

are progressively built toward unexplored regions of the workspace from an initial

configuration. The basic RRT construction algorithms are described below:

 Algorithm 1: BUILD(): Construct an RRT that eventually creates a path

between qinit and qgoal.

Input: Initial configuration qinit, goal configuration qgoal, number of

nodes Imax incremental distance ε; Output: Path qinit…qgoal⊆RRT tree τ{

τ.INIT(qinit);

for i=1 to Imax{

 qrand←BASED_RANDOM_CONFIG();

 if (EXTEND(τ, qrand, ε)=Solved) {

// Return found solution

return τ.Path(qinit, qgoal);

}

}

// No solution found within Imax nodes max

return No Solution;

}

 Algorithm 2: EXTEND(): Extend τ towards qrand with distance ε and check

Input: random node qrand, goal node qgoal, RRT tree τ, incremental

distance ε; Output: Status{

 qnear←NEAREST_NEIGBOUR(qrand ,τ);

 qnew←NEW _CONFIG(qnear, qrand, ε);

 if (qnew!=NULL){

τ.ADD_NODE(qnew);

τ.ADD_EDGE(qnear, qnew);

if (CHECK_FINISHED(qnew, qgoal)){

//qnew connects to qgoal, so we have a complete path

τ.ADD_EDGE(qnew, qgoal);

return Solved;

}

 else{

if (qnew=qrand){

qrand reached

}

 Chapter 3 Implementation

20

else{
extended towards qrand

}

}

}

At every step, a random q_rand configuration is chosen and for that

configuration the nearest configuration already belonging to the tree q_near is found.

For this, a definition of distance is required (in motion planning, the Euclidean distance

is usually chosen as the distance measure). When the nearest configuration is found, a

local planner tries to join q_near with q_rand with a limit distance. If q_rand was

reached, it is added to the tree and connected with an edge to q_near. Otherwise, the

configuration q_new obtained at the end of the local search is added to the tree in the

same way as long as there was no collision with an obstacle during the search. This

operation is called the Extend step, illustrated in Figure 3-7. This process is repeated

until some criteria is met, like a limit on the size of the tree.

Fig 3-7. Extend phase of an RRT.

Once the RRT has been built, multiples queries can be issued. For each query,

the nearest configurations belonging to the tree to both the initial and the goal

configuration are found. Then, the initial and final configurations are joined to the tree

to those nearest configurations using the local planner and a path is retrieved by tracing

back in the tree structure.

3.6.1. Adding new node

In the beginning, the graph is empty. We have only the starting and goal

positions. The aim is to create random tree from the starting position to the goal

position. First, we should create a random node and add it to the graph. A simple

iteration in performed; each step attempts to extend the RRT by adding a new vertex

that is biased by a randomly-selected state. The algorithm selects the nearest vertex

already in the RRT to the given state by calculating the Euclidean distance.

 Chapter 3 Implementation

21

Fig 3-8. Adding new vertex.

3.6.2. Checking the step size

Another important process is checking the distance between new vertex and the

vertex that is the closest one in RRT; this is done because the distance of the new vertex

might be larger than the step size that is given. The lines between nodes cannot be

larger than the step size value. If the distance is not larger than the step size, we can go

forward to the next step. Otherwise, we should create a new vertex which is step size

away from the closest vertex; then, go the next step.

Fig 3-9 Checking the distance between q_near and q_rand

3.6.3. Checking the intersection

During the creation of the tree, the obstacles must be avoided by checking

whether a given state lies inside the obstacle or not. Furthermore, each edge of the RRT

will correspond to a path that lies entirely in free region (Figure 3-10).

(a) Outside the obstacle, there is not an intersection

 Chapter 3 Implementation

22

(b) Outside the obstacle (c) Inside the obstacle, but there is an intersection

Fig 3-10. Checking the intersection between q_near and q_rand.

3.7. Implementation of RRT in ROS

In the previous section, we have seen how to get the image of our environment

from a Kinect. Now, in this part we will see how to implement the algorithm of RRT

described previously using ROS.

First, we need to create a workspace where a new package will be build. Once

we get the package, two nodes will be created: (i) the first for the visualization of the

environment and (ii) the second for the creation and visualization of the tree. Each node

has been written in C++ code.

The visualization is done in RVIZ with the following parameters:

 Frame_id=”/path_planner”

 marker_topic=”path_planner_rrt”

Before starting the creation of the two nodes we have to construct two header

files obstacles.h and rrt.h. These two files will contain the definitions of functions,

global structure and variables, which will be imported or used into C++ program by

using the pre-processor.

 obstacles.h contains one function getObstacleArray() and one variable.

 rrt.h comprises the structure of rrtNode and eleven different functions needed

for the construction of the tree.

After the creation of the header files, we will start the implementation of the

nodes:

 env_node: this node will include only one cpp file; the following flowchart

describe its code (Figure 3-11):

 Chapter 3 Implementation

23

Fig. 3-11. Flowchart describing the env_node

 rrt_node: this node will include four cpp file:

 obstacle.cpp contains the position of the obstacles.

 rrt.cpp.

 rrt_node: the following flowchart describes its code (Figure 3-12).

#include <ros/ros.h>
#include <visualization_msgs/Marker.h>
#include <path_planning/rrt.h>
#include <geometry_msgs/Point.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/image_encodings.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/opencv.hpp>

//initializing ROS

 ros::init(argc,argv,"env_node"); ros::NodeHandle n;
//defining Publisher

ros::Publisher env_publisher =n.advertise <visualization_msgs::Marker>("path_planner_rrt",1);

//defining markers

visualization_msgs::Marker boundary;
visualization_msgs::Marker points;

//initialize the markers

initializeMarkers(boundary, points);
//read the image

Mat im = imread("/home/saighi/Pictures/s5.png", CV_8UC1
// get the non zero coordinates

findNonZero(im, nonZeroCoordinates);

int i=0;

 geometry_msgs::Point p;

p.x = nonZeroCoordinates.at<Point>(i).x;
p.y = nonZeroCoordinates.at<Point>(i).y;
p.z = 0;
points.points.push_back(p);

i<nonZeroCoordinates.total()YES

env_publisher.publish(boundary);
env_publisher.publish(points);

NO

ros::ok()

env_publisher.publish(boundary);
env_publisher.publish(points);
ros::spinOnce();
ros::Duration(1).sleep();

YES

NO

i++;

 Chapter 3 Implementation

24

#include <ros/ros.h>

#include #include<visualization_msgs/Marker.h>

#include <geometry_msgs/Point.h>

#include <path_planning/rrt.h>

#include <path_planning/obstacles.h>

#define success false

#define running true

 //initializing ROS

 ros::init(argc,argv,"env_node"); ros::NodeHandle n;

 //defining Publisher

 ros::Publisher env_publisher =n.advertise<visualization_msgs::Marker>("path_planner_rrt",1);

bool status = running;

//defining markers visualization_msgs::Marker sourcePoint;

 visualization_msgs::Marker goalPoint;

 visualization_msgs::Marker randomPoint;

 visualization_msgs::Marker rrtTreeMarker;

 visualization_msgs::Marker finalPath;

//initializing rrtTree

 RRT myRRT(83,565);

 int goalX, goalY;

 goalX =1105;

 goalY = 174;

 int rrtStepSize = 60;

 int rrtPathLimit = 1;

 int shortestPath = -1;

 vector< vector<int> > rrtPaths;

 vector<int> path;

 RRT::rrtNode tempNode;

 RRT::rrtNode checkPoint;

 vector<geometry_msgs::Point> obstacleList

 bool addNodeResult = fals ;

 bool nodeToGoal = false;

//initialization of markers

initializeMarkers(sourcePoint, goalPoint, randomPoint, rrtTreeMarker, finalPath);

//initialization of obstacles

obstacleList = getObstacles();

rrtPaths.size() < rrtPathLimit

NO

generateTempPoint(tempNode);

addNodeResult = addNewPointtoRRT(myRRT,tempNode,rrtStepSize,obstacleList);

YES

addNodeResult=true

addBranchtoRRTTree(rrtTreeMarker,tempNode,myRRT);

nodeToGoal = checkNodetoGoal(goalX, goalY,tempNode);

YES

NO

ros::ok() && status

YES

nodeToGoal=true

 path = myRRT.getRootToEndPath(tempNode.nodeID);

 rrtPaths.push_back(path);

YES

status=success

NO

int i=0;

rrtPaths[i].size()<shortestPath

shortestPath = i;

shortestPathLength = rrtPaths[i].size();

YES

i<rrtPaths.size()

NO

YES

i++;

NO

 setFinalPathData(rrtPaths, myRRT, shortestPath, finalPath, goalX, goalY);

rrt_publisher.publish(sourcePoint);

rrt_publisher.publish(goalPoint);

rrt_publisher.publish(rrtTreeMarker);

rrt_publisher.publish(finalPath);

NO

 Chapter 3 Implementation

25

Fig. 3-12. Flowchart describing the rrt_node

Now, we have written our nodes, we need to build them. We open up the

CMakeLists.txt file and add the following lines to the bottom of the file (where

path_planning is the name of the package):

add_executable(talker src/talker.cpp)

target_link_libraries(env_node ${catkin_LIBRARIES})

add_dependencies(env_node path_planning_cpp)

add_executable(rrt_node src/listener.cpp)

target_link_libraries(rrt_node ${catkin_LIBRARIES})

add_dependencies(rrt_node path_planning _cpp)

Next, we save the file and build the package using Catkin_make line. Finally,

we run the two nodes created with RVIZ (Figure 3-13):

 $ rosrun rviz rviz

 $ rosrun path_planning env_node

 $ rosrun path_planning rrt_node

#include <ros/ros.h>

#include #include<visualization_msgs/Marker.h>

#include <geometry_msgs/Point.h>

#include <path_planning/rrt.h>

#include <path_planning/obstacles.h>

#define success false

#define running true

 //initializing ROS

 ros::init(argc,argv,"env_node"); ros::NodeHandle n;

 //defining Publisher

 ros::Publisher env_publisher =n.advertise<visualization_msgs::Marker>("path_planner_rrt",1);

bool status = running;

//defining markers visualization_msgs::Marker sourcePoint;

 visualization_msgs::Marker goalPoint;

 visualization_msgs::Marker randomPoint;

 visualization_msgs::Marker rrtTreeMarker;

 visualization_msgs::Marker finalPath;

//initializing rrtTree

 RRT myRRT(83,565);

 int goalX, goalY;

 goalX =1105;

 goalY = 174;

 int rrtStepSize = 60;

 int rrtPathLimit = 1;

 int shortestPath = -1;

 vector< vector<int> > rrtPaths;

 vector<int> path;

 RRT::rrtNode tempNode;

 RRT::rrtNode checkPoint;

 vector<geometry_msgs::Point> obstacleList

 bool addNodeResult = fals ;

 bool nodeToGoal = false;

//initialization of markers

initializeMarkers(sourcePoint, goalPoint, randomPoint, rrtTreeMarker, finalPath);

//initialization of obstacles

obstacleList = getObstacles();

rrtPaths.size() < rrtPathLimit

NO

generateTempPoint(tempNode);

addNodeResult = addNewPointtoRRT(myRRT,tempNode,rrtStepSize,obstacleList);

YES

addNodeResult=true

addBranchtoRRTTree(rrtTreeMarker,tempNode,myRRT);

nodeToGoal = checkNodetoGoal(goalX, goalY,tempNode);

YES

NO

ros::ok() && status

YES

nodeToGoal=true

 path = myRRT.getRootToEndPath(tempNode.nodeID);

 rrtPaths.push_back(path);

YES

status=success

NO

int i=0;

rrtPaths[i].size()<shortestPath

shortestPath = i;

shortestPathLength = rrtPaths[i].size();

YES

i<rrtPaths.size()

NO

YES

i++;

NO

 setFinalPathData(rrtPaths, myRRT, shortestPath, finalPath, goalX, goalY);

rrt_publisher.publish(sourcePoint);

rrt_publisher.publish(goalPoint);

rrt_publisher.publish(rrtTreeMarker);

rrt_publisher.publish(finalPath);

NO

 Chapter 3 Implementation

26

Fig 3-13. Execution of the nodes and visualization on RVIZ

3.8. Conclusion

Image acquisition and image processing is mainly used to implement real-time

perception and localization; unfortunately, we could not apply it on localization because

of a technical problem found on the RobuTER. The Rapidly-exploring Random Tree

algorithm is implemented to generate a fast safe path.

Chapter 4 Experimental validation

27

4.1 Introduction

The techniques and strategies described in the previous chapters are applied on

the differential drive industrial mobile robot RobuTER described in appendix C. It is

available at the Division of Computer-Integrated Manufacturing and Robotics (DPR)

where we did our implementations.

As shown in Fig 4-1, two Kinect cameras are fixed on the roof of the

experimental workroom; each Kinect is placed at a height of 3500mm. They are placed

in such a manner with the same axis to visualize both the environment (ground,

obstacles, etc.) and the mobile robot (RobuTER). The Kinect cameras are connected to

a host PC in order to acquire and process images of the scene.

Fig 4-1. Experimental robotic testbed.

In order to compare the results of our work and what it was done previously, we

have chosen the same environment with the same conditions as in [27].

Chapter 4 Experimental validation

28

4-2. Environment modeling

The visual perception of the robot environment is carried out using two

Microsoft Kinect cameras system Version 1. The Kinect cameras have the following

parameters:

Sensitivity 1

Linearity linear

Measurement range [500 mm, 4000 mm] 3500 mm

Error 1 mm

Noise Modeled (8 pixels); Non-modeled

Resolution 640x480 and 30 frames per second

Type of output uint<640x480x3> for RGB

uint<640x480> for depth

Table 4-1. Kinect characteristics.

The pictures taken from the first Kinect camera (RGB and depth images) are

shown below:

Fig 4-2. RGB and depth images acquired by the first Kinect.

Chapter 4 Experimental validation

29

The images delivered by the second Kinect camera (RGB and its depth images)

are shown as follows:

Fig 4-3. RGB and depth images acquired by the second Kinect.

The Kinect sensor acquisition and the perception techniques give an exact

binary map model for the environment with a sufficient resolution of 960x640.

Fig 4-4. Binary map of the overall environment.

Chapter 4 Experimental validation

30

And here is the binary safe map:

Fig 4-5. Binary safe map of the overall environment

4-3. Visualization on RVIZ

The environment has been visualized on Rviz using nonzero function to apply

the algorithm on it and find the feasible paths. After executing the environment node on

ROS and adding the marker, we got (Fig. 4-6):

$ rosrun path_planning env_node

Fig 4-6. Visualization of the environment on RVIZ

Chapter 4 Experimental validation

31

4-4. Trajectory planning

The obtained binary map gives an almost continuous description of the

environment; this is well suited to be used by the rapidly-exploring random trees.

The mobile robot RobuTER, with dimensions of 1200mm×680mm, has to move

from Source(x, y)init=(74mm, 1953mm) toward Target(x, y)fin=(5501mm, 1308mm) with

a maximum linear speed of 150mm/s.

RRT chooses the first feasible path and creates its nodes randomly.

Consequently, we have to execute the algorithm many times with different step sizes;

finally, we have to choose the best one referring to the execution time, smoothing and

optimality.

We have selected three main step sizes: 8 pixel, 35 pixels, and 60 pixels which

correspond to 50.72mm, 221.9mm and 380.4mm, respectively.

4-4-1. Step size=08 pixels

The obtained path after executing the algorithm with step size of 8 pixels is

shown by Figure 4-7. The RRT path consists of 144 segments. The path is generated in

around 15sec; its total length is l=7303.68mm.

Fig 4-7. RRT planning with a step size of 8 pixels

Chapter 4 Experimental validation

32

4-4-2. Step size=35 pixels

After execution with 35 pixels, we got the path shown in Figure 4.8. The path

consists of 33 segments. It is generated in 2.16 sec; its total length l=7100.8mm.

Fig 4-8. RRT planning with a step size of 35 pixels

4-4-3. Step size=60 pixels

The resulted path is given by Figure 4-9. Using a step size of 60 pixels, the RRT

path consists of 18 segments. The path is generated in less than 2sec; its total length

l=6847.2mm.

Fig 4-9. RRT planning with a step size of 60 pixels

Chapter 4 Experimental validation

33

The following table presents the summary of the obtained results:

Step size 8 pixels 35 pixels 60 pixels

Length 7303.68 7100.8 6847.2

N° of segments 144 33 18

Run time 15 2.4 1.9

Table 4.2. Summary of executions

We can clearly see that executing the RRT with a step size=60 pixels gives the

shortest path comparing with 8 and 35 pixels. In addition, it is much faster and gives

less number of segments. Consequently, we opted for this step size in what follows.

4-5. Path smoothing

We can see that the generated paths are zigzag lines; so, to get more efficient

results we have used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) in

order to smooth our path as shown below in Figure 4-10:

Figure 4-10. RRT generated path and its PCHIP smoothed path

4-6. Path execution

The obtained path in the previous section must be carried out by the differential

mobile robot; thus, V(t) and ω(t) are evaluated resulting in unique Vr(t) and Vl(t) from

equation (3.4) stated in chapter 3.

Chapter 4 Experimental validation

34

The required Vr(t) and Vl(t) are sent from the computer (acting as a client) to the

mobile robot periodically using one socket; the embedded PC of the mobile robot on

the other side is acting as a server, where the data is received, decoded, and then

executed.

The graphs of variation of the right wheel, left wheel and linear velocities sent

to the mobile robot are shown below in Figure 4-11:

Figure 4-11. Variation of the robot right wheel and left wheel velocities for path

execution

4-7. Comparison

We have mentioned before that the same work has been done using another

algorithm in the same environment and same conditions [27]. In this part, we will do a

comparison between the results of the two algorithms.

Table 4.3 shows the results of executing the RRT and GA algorithms on the

same environment.

Parameter RRT GA [1]

Run time (s) 2 7

Path length (mm) 6847.2 6020

Number of segments 18 18

Table 4.3 Summary of comparative analysis

From Table 4.3, we noted firstly that RRT takes longer distance from initial

point to the goal comparing with genetic algorithm. Secondly, to generate the path

connecting the two initial and goal position, RRT is three times faster that the GA

algorithm. Finally, both algorithms generate paths with the same number of segments.

t (s)

V (mm/s)

Chapter 4 Experimental validation

35

Another comparison is done regarding the calculation times for different

workspaces with different dimensions and number of obstacles. For each case, we

considered different numbers of Kinect cameras with various Source-Goal positions.

Table 4.4 summarizes the average for 10 different runs of RRT and GA algorithms.

Resolution (accuracy, area

size)

Number of

obstacles

Time generations(s) of feasible path

GA [1] RRT

640×480 (01 Kinect

camera)

05 5.09 0.80

10 5.59 1.04

15 6.46 1.25

640×960 (02 Kinect

cameras)

10 6.33 1.54

15 8.03 1.78

20 8.47 2.11

640×1280 (04 Kinect

cameras)

15 9.62 3.03

20 10.6 3.2

25 10.96 3.51

Table 4.4 Summary of the average calculation time of 10 different runs with different

Source-Goal positions

From Table 4.4, it is clear that RRT is better and more efficient algorithm

compared to GA proposed in [27]. The run time of RRT in the different environments

is around three times faster than GA.

4-8. Conclusion

This chapter is a combination of implementations of the techniques described in

chapters two and three. In addition, a general description of the implementation is

given, and some path planning results have been shown with their development steps.

At the end a comparative summary between RRT and GA has been done.

By using RRT and especially with the fast perception technique used in this

work, we can pass from off-line planning to on-line planning.

 General conclusion

36

Conclusion

The aim of this project was to implement a kinect-based path planning and execution

for autonomous mobile robot, so the robot should be able to achieve several tasks by itself

including the perception of its surrounding environment and finding and executing its path.

At the beginning we have stated some generalities about autonomous navigation for

mobile robot and the different techniques performed for path planning strategy. Robot operating

system is used as framework to write the mobile robot software because of its simplicity and

the packages on it, C++ is integrated with ROS ensuring fast and reliable data transferring,

while RVIZ is used for visualizing and showing the work.

Initially, some image acquisition and processing techniques were implemented,

allowing the mobile robot to model its environment by constructing the binary map through

image processing techniques, the rapidly-exploring random trees has implemented to generate

the suitable path starting from an initial position going to the end position with less execution

time possible, ensuring that the robot will go safely and rapidly. This is accompanied by

showing illustrative examples. The result of this algorithm has shown that it is fast, reliable and

safe.

After comparing this work with what it has been done previously with genetic algorithm

we found that RRT is three times rapid then the other algorithm.

As a further work, we would develop our work to be evaluated on dynamic rapidly

changing environment, RRTstar and RRTstar-smart can be used to implement a more intelligent

robot that has the ability of recognition of people and objects, reasoning, learning, and making

inferences.

 Appendices

40

Appendix -A-

 A.1. Introduction to Robot Operating System ROS

Robot Operating System (ROS) is a trending robot application development platform

that provides various features such as message passing, distributed computing, code reusing,

and so on.

The ROS project was started in 2007 with the name Switchyard by Morgan Quigley as part of

the Stanford STAIR robot project. The main development of ROS happened at Willow Garage.

Here are some of the reasons why people choose ROS over other robotic platforms such as

Player,YARP, Orocos, MRPT, and so on :

 High-end capabilities: ROS comes with ready to use capabilities, for example, SLAM

(Simultaneous Localization and Mapping) and AMCL (Adaptive Monte Carlo

Localization) packages in ROS can be used for performing autonomous navigation in

mobile robots and the MoveIt package for motion planning of robot manipulators.

 Tons of tools: ROS is packed with tons of tools for debugging, visualizing, and

performing simulation. The tools such as rqt_gui, RViz and Gazebo are some of the

strong open source tools for debugging, visualization, and simulation. The software

framework that has these many tools is very rare.

 Support high-end sensors and actuators: ROS is packed with device drivers and

interface packages of various sensors and actuators in robotics. The high-end sensors

include Velodyne-LIDAR, Laser scanners, Kinect, and so on and actuators such as

Dynamixel servos. We can interface these components to ROS without any hassle.

 Inter-platform operability: the ROS message-passing middleware allows

communicating between different nodes. These nodes can be programmed in any

language that has ROS client libraries. We can write high performance nodes in C++ or

C and other nodes in Python or Java. This kind of flexibility is not available in other

frameworks.

 Modularity: One of the issues that can occur in most of the standalone robotic

applications are, if any of the threads of main code crash, the entire robot application

can stop. In ROS, the situation is different, we are writing different nodes for each

process and if one node crashes, the system can still work. Also, ROS provides robust

methods to resume operation even if any sensors or motors are

 Appendices

41

 Concurrent resource handling: Handling a hardware resource by more than two

processes is always a headache. Imagine, we want to process an image from a camera

for face detection and motion detection, we can either write the code as a single entity

that can do both, or we can write a single threaded code for concurrency. If we want to

add more than two features in threads, the application behavior will get complex and

will be difficult to debug. But in ROS, we can access the devices using ROS topics from

the ROS drivers. Any number of ROS nodes can subscribe to the image message from

the ROS camera driver and each node can perform different functionalities. It reduce

the complexity in computation and also increase the debug-ability of the entire system.

 Active community: When we choose a library or software framework, especially from

an open source community, one of the main factors that needs to be checked before

using it is its software support and developer community. There is no guarantee of

support from an open source tool. Some tools provide good support and some tools

don't. In ROS, the support community is active. The ROS community has a steady

growth in developers worldwide.

A.2. Understanding the ROS file system level

 Similar to an operating system, ROS files are also organized on the hard disk in a particular

fashion. In this level, we can see how these files are organized on the disk. The following graph

shows how ROS files and folder are organized on the disk:

Fig A-1. The ROS file system level

Similar to an operating system, an ROS program is divided into folders, and these

 Packages: Packages form the atomic level of ROS. A package has the minimum

structure and content to create a program within ROS. It may have ROS

 Appendices

42

runtimeprocess (nodes), configuration files; and so on.

 Manifests: Manifests provide information about a package, license information,

dependencies, compiler flags, and so on. Manifest are managed with a file called

manifests.xml.

 Stacks: When you gather several packages with some functionality, you will obtain a

stack. In ROS, there exists a lot of these stacks with different uses, for example, the

navigation

 Stack manifests: Stack manifests (stack.xml) provide data about a stack, including its

license information and its dependencies on other stacks.

 Message (msg) types: A message is the information that a process sends to other

processes. ROS has a lot of standard types of messages. Message descriptions are

stored in my_package/msg/MyMessageType.msg.

 Service (srv) types: Service descriptions, stored in my_package/srv/MyServiceType.srv,

define the request and response data structures for services in ROS.

Fig A-2. Structure of typical package

 Appendices

43

A.3. Understanding the ROS computational Graph level

ROS creates a network where all the processes are connected. Any node in the system

can access this network, interact with other nodes, see the information that they are sending,

and transmit data to the network.

Fig A-2. ROS computational Graph level

 Nodes: ROS nodes are a process that perform computation using ROS client

libraries such as roscpp and rospy. One node can communicate with other

nodes using ROS Topics, Services, and Parameters.

 Topic: Chanel between two or more nodes, nodes communicate by publishing

and/or subscribing to the appropriate topics

 Services: ROS uses a simplified service description language for describing

ROS service types. This builds directly upon the ROS msg format to enable

request/response communication between nodes. Service descriptions are

stored in .srv file in the srv/ subdirectory of a package.

 Parameters: The Parameter Server gives us the possibility to have data stored

using keys in a central location. With this parameter, it is possible to configure

a nodes while it’s running or to change the working of the nodes.

 Appendices

44

Appendix -B-

B.1. Installing ROS Indigo:

In this section, you will see the steps to install ROS Electric on your computer.

We assume that Ubuntu repository was successfully installed.

B.1.1. Configure your Ubuntu repositories

First, you must check that your Ubuntu accepts restricted, universal, and multiversal

repositories

B.1.2. Setup your sources.list

Setup your computer to accept software from packages.ros.org.

$sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/s

ources.list.d/ros-latest.list'

B.1.3. Set up your keys

. It is important to add the key because with it we can be sure that we are downloading the

code from the right place and no body modified it.

$sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9F

F1F717815A3895523BAEEB01FA116

B.1.4. Installation:

Before doing something, it is necessary to update all the programs used by ROS. We do it to

avoid incompatibility problems. Type the following command in a shell and wait:

$sudo apt-get update

There are many different libraries and tools in ROS; the one installed and used in this worf is

desktop- full duplex

$sudo apt-get install ros-indigo-desktop-full

 B.1.5. Initialize rosdep

 rosdep enables you to easily install system dependencies for source you want to compile

and is required to run some core components in ROS.

$sudo rosdep init

$rosdep update

 Appendices

45

B.1.6. Environment setup

$echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

$source ~/.bashrc

B.1.7. Getting rosinstall

$sudo apt-get install python-rosinstall

B.2. Steps to install the Kinect in ROS:

In the following we will take a look on the process of installing and running the Kinect.

Firstly, we will install OpenNI and Kinect driver.

Installing dependencies:

$sudo apt-get install g++ python libusb-1.0-0-dev freeglut3-dev

$ sudo apt-get install doxygen graphviz mono-complete

$ sudo apt-get install openjdk-7-jdk

Intalling OpenNI:

$ git clone https://github.com/OpenNI/OpenNI.git

$ cd OpenNI

$ git checkout Unstable-1.5.4.0

$ cd Platform/Linux/CreateRedist

$ sudo chmod +x RedistMaker

$./RedistMaker

$ cd ../Redist/OpenNI-Bin-Dev-Linux-[xxx]

$ sudo ./install.sh

Installing Kinect driver

$ git clone git://github.com/ph4m/SensorKinect.git

$ cd SensorKinect/Platform/Linux/CreateRedist

$ sudo chmod +x RedistMaker

$./RedistMaker

$ cd ../Redist/Sensor-Bin-Linux-x64-v*

$ sudo ./install.sh

 Appendices

46

Now, we install openni_launch which includes launch files to open an OpenNI device

and load all nodelets to convert raw depth/RGB/IR streams to depth images, disparity images,

and (registered) point clouds.

$ sudo apt-get install ros-indigo-openni-camera ros-indigo-openni-launch

To run Kinect on ROS:

$ roslaunch openni_launch openni.launch

To visualise Kinect data

$ rosrun rviz rviz

Fig B-1. The kinect test in the Rviz simulator

http://wiki.ros.org/openni_launch

 Appendices

47

Appendix -C-

C.1. General description of RobuTER

RobuTER is a robotic mobile platform that is available in the Center of Development of

Advanced Technologies (CDTA) of Algiers. It is a rectangular non-holonomic robotic mobile

platform, developed by the French company Robosoft.

The robot base consists of a platform with two wheels and a load capacity of 15 kg. The

wheels are 250 mm in diameter, and have a torque of 22 Nm nominal per wheel. They are driven

by DC electric motors and enable it to reach a nominal speed of 2.6 m/s. The direction of

RobuTER is given by the differential speed of the two wheels. The two wheels are placed at the

front of the platform to provide stability.

Fig C-1. The architecture of the experimental robotic system

(1)- Camera.

(2)- Efforts sensor.

(3)- Wireless Video

Transmission.

(4)-Ultrasonic sensor.

(5)-LMS.

(6)-Manipulator Arm.

(7)-Embedded PC.

(8)- Joystick.

(10)- Mobil base.

 Appendices

48

C-2. Software Architecture

RobuTER's embedded PC runs Linux RedHat 9.0 Operating System, which has the advantages

of being free, open sourced, licensed under the GPL – General Public License, and being very

well documented and featuring all necessary tools for development onboard of the RobuTER

itself.

The development of applications for RobuTER is based on the Robosoft Development

Toolchain. This development is based on the SynDEx CAD environment.

 References

37

References

[1] “Robot path planning using interval analysis” Student: Hadi Jaber IASE 2012

Supervisor: Dr. Luc Jaulin ENSTA Bretagne/OSM

[2] “Mobile Robots Navigation” Edited by Alejandra Barrera

[3] “Mobile Robots: towards New Application”s Edited by Aleksandar Lazinica,

ISBN 978-3-86611-314-5, 600 pages, Publisher: I-Tech Education and

Publishing, Chapters published December 01, 2006

[4] “Technical Report on Autonomous Mobile Robot Navigation” Ali Gürcan Özkil

Marts 2009

[5] “An Investigation of Hybrid Maps for Mobile Robots” P. Buschka, , Örebro:

Örebro universitetsbibliotek, 2005.

[6] ”A survey on path planning techniques for autonomous mobile robots” by

Leena.N , K.K.Saju, Cochin University of Science and Technology, India

[7] “Review of classical and heuristic-based navigation and path planning

approaches” Adham Atyabi, David M.W. Powers

[8] ”Classic and Heuristic Approaches in Robot Motion Planning – A Chronological

Review” by Ellips Masehian, and Davoud Sedighizadeh

[9] “Robot Motion Planning” J.C. Latombe. Kluwer Academic Publishers, Boston,

MA, 1991. ISBN 0-7923-9206-X.

[10] INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING

& DEVELOPMENT Issue 2, Volume 5, 2011, Buniyamin N., Wan Ngah W.A.J.,

Sariff N., Mohamad Z.

[11] “Off-Line and On-Line Trajectory” PlanningZ. Shiller (B) Department of

Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel

Springer International Publishing Switzerland 2015

[12] “Industrial robot navigation and obstacle avoidance employing fuzzy logic”, P.G.

 References

38

Zavlangas, S.G. Tzafestas, J. Intell. Robot. Syst. 27 (1–2) (2000) 85–97.

[13] “A trajectory planning of redundant manipulators based on bilevel optimization”

R. Menasri, A. Nakib, B. Daachi, H. Oulhadj, P. Siarry, Appl. Math. Comput. 250

(2015) 934–947.

[14] “On computing the global time optimal motions of robotic manipulators in the

presence of obstacles “ Shiller Z, Dubowsky S (1991) IEEE Trans Robot Autom

7(6):785–797

[15] Research Journal of Recent Sciences Vol. 3(5), 110-115, May (2014) Mohsen

AhmadiMousavi 1 , BehzadMoshiri 2 , Mohammad Dehghani 3 and HabibYajam

Tehran, IRAN.

[16] “An Analysis for a Novel Path Planning Method“ Kamkarian P, Hexmoor H

(2015) Adv Robot Autom 4: 130

[17] https://www.omicsgroup.org/journals/a-robotic-path-planner-contender-2168-

9695-1000131.php?aid=60230&view=mobile

[18] http://library.isr.ist.utl.pt/docs/roswiki/Events(2f)CoTeSys(2d)ROS(2d)School

(2f)SBPL_Lab.html

[19] State Lattice with Controllers: Augmenting Lattice-Based Path Planning with

Controller-Based Motion Primitives.

[20] http://sbpl.net/node/53.

[21] https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree

[22] “A Performance Comparison of Rapidly-exploring Random Tree and Dijkstra’s

Algorithm for Holonomic Robot Path Planning”; S. M. LaValle, Planning

algorithms, New York: Cambridge University Press, 2006.

[23] IJCSNS International Journal of Computer Science and Network Security ,

VOL.16 No.10,October2016

[24] http://www.ros.org/about-ros/

https://www.omicsgroup.org/journals/a-robotic-path-planner-contender-2168-9695-1000131.php?aid=60230&view=mobile
https://www.omicsgroup.org/journals/a-robotic-path-planner-contender-2168-9695-1000131.php?aid=60230&view=mobile
https://www.omicsgroup.org/journals/a-robotic-path-planner-contender-2168-9695-1000131.php?aid=60230&view=mobile
https://www.omicsgroup.org/journals/a-robotic-path-planner-contender-2168-9695-1000131.php?aid=60230&view=mobile
http://sbpl.net/node/53
https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
http://www.ros.org/about-ros/

 References

39

[25] "Browsing packages for indigo". ROS.org. ROS. Retrieved 21 February 2016.

[26] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In

International Conference on Robotics and Automation, pages 473–479, 1999.

[27] Optimal path planning and execution for mobile robots using genetic

algorithm and adaptive fuzzy-logic control. A. Bakdi et al. / Robotics and

Autonomous Systems 89 (2017) 95–109

http://www.ros.org/browse/list.php

