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                                                         Abstract  

 

This project presents preliminary results of the application of two-Kinect cameras 

system on a two wheeled indoor mobile robot for off-line path planning and execution. 

In our approach, the robot makes use of depth information delivered by the vision system 

to accurately model its surrounding environment through image processing techniques. 

In addition, a Rapidly-exploring random tree is implemented to generate a collision-free 

path linking an initial configuration of the mobile robot (Source) to a final configuration 

(Target). After that, Piecewise Cubic Hermite Interpolating Polynomial is used to smooth 

the generated optimal path. Finally, a comparison between RRT and Genetic algorithm 

has been done. 
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Introduction 

Path generation and execution is one of the most important tasks for autonomous 

mobile robots. Indeed, the robot has to perform certain interrelated activities [27] 

including (i) task planning (generation of operations plans), (ii) environment modeling 

and multi-sensory fusion, (iii) path planning, (iv) localization of the robot inside its 

environment, and (v) path execution and tracking. 

Mobile robot may operate in different modes; one of these modes is the 

autonomous mode including intelligent systems those have a capacity to acquire and 

apply knowledge in an “intelligent” manner and have the capabilities of perception, 

reasoning, learning, and making inferences (or decisions) to complete a given task. Hence 

making smarter robots is a problem that has faced the scientific community for several 

years, now, to reach a goal position starting from a known initial point with some desired 

criteria is a complicated task. So the problem has been solved with soft computing 

methods. 

For a mobile robot to perceive its environment and localizes itself within it, vision 

has become a standard sensory tool. Especially with the advancement of image 

processing techniques, which facilitates the extraction of the useful information from 

images captured by cameras. 

The objective of our project is to deal with the development of a strategy to 

tackling the collision-free trajectory planning problem for mobile robots evolving in 

indoor environment with obstacles, using ROS; where the generated feasible path 

connect an initial location to an imposed final location. The robot makes use of kinect 

cameras to model its environment by applying soft computing techniques and image 

processing tools for perceiving the environment and map building. 

Rapidly-exploring random trees used to generate a feasible path joining the initial 

and final position. Finally, a comparative summary between RRTs and genetic algorithm 

has been done. 
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1.1. Introduction 

Mobile robots are the objects which move around in their environment and are 

not fixed to one physical location. They can be controlled by Bluetooth, wireless 

network of PC, a wireless remote control microcontroller. 

Robot navigation means the robot ability to determine its own position in its 

reference frame and then to plan a path toward some goal location. In order to navigate 

in its environment, the robot requires representation, i.e. a map of the environment and 

the ability to interpret that representation [1]. 

Navigation can be defined as the combination of the three fundamental 

competences [5]: 

 Self-localization. 

 Path planning. 

 Map-building and map-interpretation (map use). 

The range of potential applications for mobile robots is enormous. It includes 

[3]: 

 Medical services: Service robots. 

 Automatic cleaning of (large) areas. 

 Agricultural: Fruit and vegetable picking, fertilization, planting… 

 Forests: Cleaning, fire preventing, tree cutting… 

 Hazard environments. 

 Construction and demolishing. 

 Military. 

1.2. Navigation 

Leonard and Durrant-Whyte [2] summarized the general problem of mobile 

robot navigation by three questions: 

 Where am I? 

 Where am I going? 

 How do I get there? 
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In order to tackle these questions, the robot has to: 

 Handle a map of its environment. 

 Self-localize itself in the environment. 

 Plan a path from its location to a desired location. 

Therefore, the robot has to have a model of the environment, be able to 

perceive, estimate its relative state and finally plan and execute its movement. 

An autonomous robot navigation system has traditionally been hierarchical; it 

consists of a dynamical control loop with four main elements (Figure 1) [4]: 

 Perception as obtaining and interpreting sensory information. 

 Mapping/localization involving the construction of a spatial representation by 

using the information perceived from its sensors and estimating the robot 

position within the spatial map. 

 Cognition the strategy to find a path toward a goal location. 

 Motor control where motor actions are determined and adapted to 

environmental changes. 

 

Fig. 1-1. Autonomous navigation problem 

The classical control paradigm (Horizontal/Functional decomposition) is based 

on the sequence Sense  Think  Act [2] as shown by Figure 1-2. 

 

Fig. 1-2. Functional decomposition of mobile robot control system [5] 
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1.2.1. Perception 

The first action in the control loop is perception of the robot itself and its 

environment, which is done through proprioceptive and exteroceptive sensors. 

Proprioceptive sensors capture information about the self-state of the robot; whereas, 

exteroceptive sensors capture information about the environment. 

The types of sensors being used on mobile robots shows a big variety. The most 

relevant ones can be briefly listed as encoders, gyroscopes, accelerometers, sonars, 

laser range finders, beacon-based sensors and vision sensors. 

In theory, navigation can be realized using only proprioceptive sensors 

(odometry). It is basically calculating the robot position based on the rotation of wheels 

and/or calculating orientations using gyroscopes/accelerometers. But in real world 

settings, odometry performs poorly over time due to unbounded growth of integration 

errors caused by uncertainties. It is also possible to navigate using only exteroceptive 

sensors. One such realization of this approach is the Global Positioning System (GPS) 

which is being successfully used in vehicle navigation systems [2]. 

1.2.2. Localization 

The goal for an autonomous robot is to be able to construct (or use) a map or 

floor plan and to localize itself in it. 

The problem of robot localization consists of answering the question: Where am 

I?. From the robot’s point of view, this means that the robot has to find out its location 

relative to the environment. And, this poses difficult challenges because of the 

inaccuracy and incompleteness of the sensors and actuators. The robot must also have a 

representation of its belief regarding its position on the map. Where the design 

questions for belief representation are: Does the robot identify a single unique position 

as its current position?, or Does the robot describe its position in terms of a set of 

possible positions? If multiple possible positions are expressed in a single belief, How 

are those multiple positions ranked? [2]. 

Markov localization addresses the global localization problem, the position 

tracking problem, and the kidnapped robot problem. Where it tracks the robot’s belief 

state using an arbitrary probability density function to represent the robot’s position. 

https://en.wikipedia.org/wiki/Autonomous_robot
https://en.wikipedia.org/wiki/Floor_plan
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Kalman filter localization tracks the robot’s belief state typically as a single 

hypothesis with normal distribution. It addresses the position tracking problem. The 

Kalman filters are designed to operate efficiently on Gaussian distributions which are 

defined by the mean plus a standard deviation parameter 𝜎 [2]. 

Other localization methods include the use of passive objects in the environment 

such as landmark-based navigation, positioning beacon systems, and route-based 

localization strategies [2]. 

 

Fig. 1-3: General schematic for mobile robot localization [2] 

1.2.3. Path planning 

Path planning can be defined as searching a suitable path in a map from one 

place to another, without colliding with any obstacles. The Robot motion planning can 

be basically divided into two main categories: (i) local path planning and (ii) global 

path planning: 

 In global path planning, the environment is known in advance and the terrain is 

static or the obstacles are known in advance. Hence, the path planning algorithm 

is able to make a complete map of the environment form the start point to the 

goal even before the robot starts motion. 

 On the other hand, in local path planning, the environment is completely 

unknown to the mobile robot; i.e. the environment is dynamic and unstructured 

or the obstacles are not known in advance. In such a situation, the robot needs to 

gather information about the environment in real time and update its control 

laws so as to achieve this [6]. 
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Various techniques have been exercised in path planning; they are classified into 

two categories: (i) classical and (ii) heuristic methods. 

 

1.2.3.1. Classical methods 

In classical methods, either a solution would be found or it would be proven that 

such a solution does not exist. The main disadvantage of such methods is their 

computationally intensiveness and their inability to cope with uncertainty. Such 

disadvantages make their usage brittle in real-world applications. This is due to the 

natural characteristics of such applications which are being unpredictable and uncertain 

[7]. Some examples are as follows: 

 Cell decomposition. 

 Roadmap. 

 Potential field. 

 

1.2.3.2. Heuristic methods 

The abovementioned classical approaches suffer from many drawbacks, such as 

high time complexity in high dimensions, and trapping in local minima, which makes 

them inefficient in practice. In order to improve the efficiency of classical methods, 

many algorithms have been developed to solve the various encountered problems 

including: 

 Probabilistic Roadmaps (PRM). 

 Genetic algorithm. 

 Rapidly exploring random tree (RRT). 

 Particle Swarm Optimization (PSO). 

The major advantage of heuristic methods is the high-speed in the 

implementation [8]. 

1.2.4. Motion control 

A mobile robot needs locomotion mechanisms that enable it to move unbounded 

throughout its environment. But, there are a large variety of possible ways to move; so, 

the selection of a robot’s approach to locomotion is an important aspect of mobile robot 
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design. In locomotion, the environment is fixed and the robot moves by imparting force 

to the environment. 

Locomotion and manipulation thus share the same core issues of stability, 

contact characteristics and environmental type [2]: 

 Stability: number and geometry of contact points, center of gravity, 

static/dynamic stability, inclination of terrain. 

 Characteristics of contact: contact point/path size and shape, angle of contact, 

friction. 

 Type of environment: structure, medium (e.g. water, air, soft or hard ground). 

In mobile robotics, we need to understand the mechanical behavior of the robot 

both in order to design appropriate mobile robots for tasks and to understand how to 

create control software for an instance of mobile robot hardware. Kinematics is the 

most basic study of how mechanical systems behave. In addition, the process of 

understanding the motions of a robot begins with the process of describing the 

contribution each wheel provides for motion. 

1.3. Conclusion 

This chapter provides a brief description to autonomous mobile robots and 

navigation. All the necessary terms used throughout this work, including the different 

block diagrams required for successful autonomous navigation starting from perception 

and map building, followed by the localization problem, then different path planning 

techniques. 
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2.1. Introduction 

Path planning is one of the fundamental problems in mobile robotics. As 

mentioned by Latombe [9], the capability of effectively planning its motions is 

“eminently necessary since, by definition, a robot accomplishes tasks by moving in the 

real world”. Especially in the context of autonomous mobile robots, path planning 

techniques have to simultaneously solve two complementary tasks. On one hand, their 

task is to minimize the length of the trajectory from the starting position to the target 

location; on the other hand, they should maximize the distance to obstacles in order to 

minimize the risk of colliding with an object. 

Various approaches have been introduced to implement path planning for 

 a mobile robot [10]. The approaches are according to environment, type of sensors, 

robot capabilities, etc. In this chapter, we will introduce some path planning algorithms 

and discuss their advantages and limits. 

 

2.2. Path planning algorithms 

Existing methods on path planning can be classified into off-line and on-line 

planning approaches [11] [12]. Off-line planning approaches generate the entire path to 

the Target before motion begins; These approaches use complete information about the 

workspace, where an optimization criterion can be used for searching the optimal 

collision-free trajectory. They are most useful for repeatable tasks in static 

environments where optimality is essential (industrial applications, etc.). Whereas in 

on-line planning approaches, the trajectory to the Target is calculated incrementally 

during motion. These methods use incomplete information of the environment and 

build the trajectory step by step. Thus, this type enables fast collision detection and 

trajectory planning [13]. These approaches are required in applications where obstacles 

are detected during motion, the computation time required for a global solution delays 

the task execution, or simply as an alternative to a computationally expensive off-line 

search [14]. The following diagram represents the classification of the methods:  
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Fig 2-1. Classification of existing methods on path planning 

In what follows, we only present some off-line and on-line path planning 

approaches for mobile robots. 

2.2.1. Corner passing method 

Corner passing method is based on binary image, which is created from 

obstacles. First, a line is drawn from the starting point toward the target; if there is an 

obstacle in the path, two paths from the starting point would be considered to the 

outermost corner of the object and the same process for each path should be repeated 

until reaching the destination without any collisions with obstacles. The distance of 

each path would be computed and the path which has the shortest distance is the 

optimal one. This method requires a lot of computing because at each stage the 

outermost corners of the object should be calculated, but it gives the most optimal path 

[15]. 

 

Fig 2-2. Functioning of corner passing method: (a) image of obstacles, (b) binary shape 

of obstacles, (c) planned path using the method (the red path is the optimal one) [15] 
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2.2.2. Rapidly optimizing mapper (ROM) 

Rapidly optimizing mapper (ROM) is a solution for a holonomic off-line point 

robot in a static environment. ROM is able to plan a collision free route from the 

starting point to the goal configuration using series of different methods and parameters 

to analyze the workspace and compute the shortest collision-free trajectory. 

The strategy of ROM focuses on fewer numbers of obstacles (roadblock 

obstacles) instead of all available obstacles in the environment in order to achieve a 

better performance and construct an optimal trajectory [16]. 

The Rapidly optimizing mapper path planner [17] consists of four different and 

distinct phases as follows: 

 Initial phase: computing sets of primitive variables related to the SD (standoff 

distance), DOT (Degree of Traverse), and DOST (Degree of surface traversal). 

 Workspace analyzer: analyzing the workspace to determine roadblock obstacles, 

and roadblock obstacle surface scanning. 

 Graph (Roadmap) builder.  

 Shortest path computation unit: analyzing the graph constructed and using the 

Dijkstra shortest path algorithm. 

2.2.3. Lattice planner method 

Lattice planner consists of a set of states, connected by edges. To construct the 

set of states, each dimension in the planning domain is discretized into cells of finite 

size [18] [19]. Typically, metric dimensions are divided into small grids; it is 

represented as a series of connected states in a lattice-based graph constructed using 

motion primitives and efficient search algorithms. 

A lattice-based graph is a graph constructed using short motion primitives as 

edges that end up at the center of cells. Motion primitives are short, kinematically 

feasible motions which form the basis of movements that can be performed by the robot 

platform [20]. 
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Fig 2-3. Lattice planner for on-road driving 

 

2.2.4. Rapidly-exploring random tree 

A Rapidly-exploring Random Tree (RRT) is a data structure and algorithm that 

is designed for efficiently searching non-convex high-dimensional spaces [21]. RRTs 

are constructed incrementally in a way that quickly reduces the expected distance of a 

randomly-chosen point to the tree. RRTs are particularly suited for path planning 

problems that involve obstacles and differential constraints (non-holonomic or kino-

dynamic). RRTs can be considered as a technique for generating open-loop trajectories 

for non-linear systems with state constraints [22]. 

RRT constructs a tree using random sampling in search space. The tree starts 

from an initial state and expands to find a path toward the goal state. The tree gradually 

expands as the iteration continues. During each iteration, a random state is selected 

from configuration space (Figure 2-4) [23]. 

 

 

Fig 2-4. Incremental build of a rapidly exploring random tree (RRT) 
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2.3.  Advantages and disadvantages of each method 

The main advantages and drawbacks of the approaches we studied in this 

chapter can be outlined as follows: 

Methods Advantages Disadvantages 

Rapidly-

exploring 

random trees 

-Quick search of free space. 

-Advanced decision techniques are 

applied for collision checking. 

-Optimality in the path is guaranteed 

in newer implementations such as 

RRT*. 

-Real-time feasibility. 

-Each node of the tree 

needs to be checked for 

collisions while the tree is 

expanding. 

Rapidly 

optimizing 

mapper (ROM) 

-Optimality. 

-Use few numbers of obstacles. 

-Very close to obstacles. 

Corner passing 

method 

-Easy algorithm. 

-Optimality in the path guaranteed. 

-Requires a lot of 

computing. 

-Computation complexity. 

-Pure off-line method. 

Lattice planner 

-Low computational power needed. 

-Smoothness and optimality of the 

path are guaranteed. 

-Time inefficiency with 

the calculation of a path. 

-May lead to exhaustive 

sampling or oscillations. 

Table 2-1. Advantages and disadvantages of the studied path planning approaches 

 

2.4. Conclusion 

In this chapter, we have discussed different path planning algorithms for 

autonomous mobile robot; furthermore, we described their advantages and drawbacks. 

This allowed us to select the best algorithm to work with in this project. At the end, we 

adopted the Rapidly-exploring random trees for the implementation of our path planner. 
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3.1. Introduction 

Mobile robots navigation includes different interrelated activities described 

previously in the first chapter. The perception has been done using the data acquired by 

two Kinect cameras, which is then preprocessed to get an environment model. The 

mobile robot position is estimated using the data obtained from the encoders. 

The path planning is performed by the fastest and usable method Rapidly-

exploring Random Tree algorithm which is implemented using Robot Operating 

System. 

3.2. Robot Operating System 

The Robot Operating System (ROS) is a flexible framework for writing robot 

software. It is a collection of tools, libraries, and conventions that aim to simplify the 

task of creating complex and robust robot behavior across a wide variety of robotic 

platforms [24]. ROS was built from the ground up to encourage collaborative robotics 

software development. It was designed specifically to collaborate and build upon each 

other work. Software in the ROS Ecosystem [25] can be separated into three groups: 

 Language- and platform-independent tools used for building and distributing 

ROS-based software. 

 ROS client library implementations such as roscpp, rospy, and roslisp. 

 Packages containing application-related code which uses one or more ROS 

client libraries. 

3.3. Environment perception 

The Kinect has two sensors, a color sensor and a depth sensor. To enable 

independent acquisition from each of these devices, they are treated as two independent 

devices in the image acquisition. Those devices return four data streams: 

 The image stream contains color data in RGB format with resolution of 

640x480, frame rate of 30 frames per second. 

 The depth stream returns depth information in pixels, with resolution of 

640x480, frame rate of 30 frames per second with a valid range of 50cm to 

400cm. 

http://wiki.ros.org/Client%20Libraries
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The skeletal stream is returned by the depth sensor and returns data about the 

skeletons. There is also an audio stream, but those are unused in our work. 

The management of the Kinect camera and its functionality is ensured by the 

package openni-launch, which contains launch files and nodes for using OpenNI-

compliant devices (Open Natural Interaction)1. 

   

Fig 3-1. Acquired RGB color and depth images (Depth in mm). 

3.3.1. Data preprocessing 

The objective of this phase is to obtain a binary safe map where the robot can 

evolve without colliding possible obstacles inside its environment. 

In order to perform this phase, we need to use the Open Source Computer 

Vision (OpenCV) which is a library used for image processing. It is mainly used to do 

all the operations related to images. 

The technique that we have used for generating a binary image by using static 

cameras is Background Subtraction (BS). Background Subtraction calculates the 

foreground mask performing a subtraction between the current frame and a background 

model, containing the static part of the scene. 

The background modeling consists of two main steps: (i) Background 

Initialization and (ii) Background Update. In the first step, an initial model of the 

background has computed; while in the second step that model has updated in order to 

                                                 
1 OpenNI is an open-source framework for “natural interaction” - using your hands and 

body to interact. 
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adapt to possible changes in the scene. The following function has been used to 

implement this data processing: 

cv::BackgroundSubtractorMOG 

 

Fig 3-2. Example of background subtraction 

However, before using OpenCV we need to interface it with ROS using 

CVBridge and image_transport package. The first package is used to convert between 

ROS Image messages and OpenCV images; while the second one provides transparent 

support for transporting images in low-bandwith compressed format. 

cv_bridge::CvImageConstPtr image; 

image=cv_bridge::toCvCopy(msg ,sensor_msgs::image_encodings::TYPE) 

 

Fig 3-3. Interfacing ROS with OpenCV 

Using distributed threshold, an environment model is obtained in the form of a 

binary (logical) map that could be used by the robot; it represents the obstacles and the 

free space environment. 

3.3.2. Data processing and feature extraction 

For the mobile robot to navigate successfully without collisions, and due to the 

uncertainties of its sensors, a safe region could be added to the binary map using a disk 
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mask. Thus, we obtain a safe map representing three areas: (i) forbidden area 

(obstacles), (ii) dangerous area (near the obstacles), and (iii) safe area. 

 

Fig 3-4. Safe map representing the three areas. 

3.4. Visualization in RVIZ 

RVIZ is a 3D visualizer for displaying sensor data and state information from 

ROS. Using rviz, we can visualize the current configuration on a virtual model of the 

robot, etc. We can also display live representations of sensor values coming over ROS 

topics including camera data, laser distance measurements, etc. 

In order to visualize our binary safe map on RVIZ (Figure 3-5), we follow the 

two steps described below: 

 Find each non-zero pixel coordinate (x, y) using findNonZero function described 

in the line code: 

cv::Mat nonZeroCoordinates; 

cv::findNonZero(image, nonZeroCoordinate); 

 Display the coordinates found using visualization_msgs/Marker2. 

 

Fig 3-5. Visualization on RVIZ. 

                                                 
2 The marker message is used to send visualization “markers” such as boxes, spheres, 

arrows, lines, point, etc. to a visualization environment such as rviz. 

http://library.isr.ist.utl.pt/docs/roswiki/doc/api/visualization_msgs/html/msg/Marker.html
http://www.ros.org/wiki/rviz
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3.5. Kinematic analysis of the mobile base (odometry localization) 

The kinematic analysis of the mobile robot needs to focus on the following main 

reference frames: 

 𝑅𝐴 = (𝑂𝐴, 𝑥𝐴⃗⃗⃗⃗  , 𝑦𝐴⃗⃗⃗⃗ , 𝑧𝐴⃗⃗  ⃗) : Absolute reference frame. 

 𝑅𝐵 = (𝑂𝐵, 𝑥𝐵⃗⃗ ⃗⃗  , 𝑦𝐵⃗⃗ ⃗⃗ , 𝑧𝐵⃗⃗⃗⃗ ) : Mobile base reference frame. 

During its motion, the mobile robot odometry is calculated in real time. Indeed, 

a relationship between the absolute reference frame of the plane and the local reference 

frame of the robot is established in order to specify its position and orientation angle on 

the plane. 

The axes Xi and Yi in figure 3.6(a) define an arbitrary inertial basis on the plane 

as the global reference frame from some origin O:{Xi, Yi}. To specify the position of 

the robot, choose a point P on the robot chassis as its position reference point. The basis 

{XR, YR} defines two axes relative to P on the robot chassis and is thus the robot’s local 

reference frame. The position of P in the global reference frame is specified by 

coordinates x and y, and the angular difference between the global and local reference 

frames is given by θ. The position of the robot can be described as a vector with these 

three elements. Note the use of the subscript I to clarify the basis of this position as the 

global reference frame (eq. 3.1) 

ξ𝐼 = [

x
y
θ
]                                                                                       (3.1) 

 

Fig 3-6. (a) The global reference frame. (b) The robot wheels Kinematics. 

To describe robot motion in terms of component motions, we map motion along 

the axes of the global reference frame to motion along the axes of the robot’s local 
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reference frame. The mapping is a function of the current pose of the robot. This 

mapping is accomplished using the rotation matrix: 

𝑅(𝜃) = [
cos (Ɵ) sin (Ɵ) 0

−sin (Ɵ) cos (Ɵ) 0
0 0 1

], 𝑅−1(𝜃) = [
cos (Ɵ) −sin (Ɵ) 0

sin (Ɵ) cos (Ɵ) 0
0 0 1

]      (3.2) 

The differential mobile robot has two wheels, each with diameter r. P is 

centered between the two drive wheels; each wheel is at a distance l from P. Given r, l, 

P, and the speed of each wheel, �̇�r and �̇�l, a forward kinematic model would predict the 

robot’s overall speed in the global frame. 

The Instantaneous Center of Curvature,  

𝐼𝐶𝐶 = [𝑥 − 𝑅 sin 𝜃 , 𝑦 + 𝑅 cos 𝜃]                          (3.3) 

Noting that the right velocity 𝑉𝑟 = 𝜔(𝑅 + 𝑙), and left velocity 𝑉𝑙 = 𝜔(𝑅 − 𝑙) where: 

𝑅 = 𝑙 
𝑉𝑟 + 𝑉𝑙

𝑉𝑟 − 𝑉𝑙

 

𝜔(𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) =  
𝑉𝑟 − 𝑉𝑙

2 𝑙
 

𝑉(𝐿𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅𝜔 =
𝑉𝑟+𝑉𝑙

2
     (3.4) 

Thus, the component motions are given by: 

[
𝑋İ

𝑌�̇�
�̇�

] =  [
 𝑉 cos 𝜃
𝑉 sin 𝜃

𝜔
] =  

[
 
 
 
   

𝑉𝑟+𝑉𝑙

2
cos 𝜃

 
𝑉𝑟+𝑉𝑙

2
sin 𝜃

𝑉𝑟−𝑉𝑙

2𝑙 ]
 
 
 
 

     (3.5) 

Approximating XI
̇ (𝑡) ≈  

∆𝑋

∆𝑇
, and all the other derivatives, while ∆𝑇 is very 

small, the curve between two positions is approximated by a line-segment with constant 

angle 𝜃 +
∆𝜃

2
. ∆𝑆𝑟 and ∆𝑆𝑙 are the traveled distances for the right and left wheels, 

respectively. 

[
∆𝑋𝐼

∆𝑌𝐼

∆𝜃

] = [

∆𝑆 cos(𝜃 + ∆𝜃/2)
∆𝑆 sin(𝜃 + ∆𝜃/2)

(∆𝑆𝑟−  ∆𝑆𝑙)/2𝑙
] =

[
 
 
 
 
 
∆𝑆𝑟+ ∆𝑆𝑙

2
 cos(𝜃 + ∆𝜃/2)

∆𝑆𝑟+ ∆𝑆𝑙

2
sin(𝜃 + ∆𝜃/2)

∆𝑆𝑟− ∆𝑆𝑙

2𝑙 ]
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𝜉𝐼(𝑘 + 1) =  𝜉𝐼(𝑘) + ∆𝜉𝐼 = [
𝑋𝐼

𝑌𝐼

𝜃

] + 

[
 
 
 
 
∆𝑆𝑟+ ∆𝑆𝑙

2
 cos(𝜃 + ∆𝜃/2)

∆𝑆𝑟+ ∆𝑆𝑙

2
sin(𝜃 + ∆𝜃/2)

∆𝑆𝑟− ∆𝑆𝑙

2𝑙 ]
 
 
 
 

  (3.6) 

3.6. Path planning using the Rapidly-exploring Random Tree (RRT) 

algorithm: 

RRTs [26] were proposed as both a sampling algorithm and a data structure 

designed to allow fast searches in high-dimensional spaces in motion planning. RRTs 

are progressively built toward unexplored regions of the workspace from an initial 

configuration. The basic RRT construction algorithms are described below: 

 Algorithm 1: BUILD(): Construct an RRT that eventually creates a path 

between qinit and qgoal. 

Input: Initial configuration qinit, goal configuration qgoal, number of 

nodes Imax incremental distance ε; Output: Path qinit…qgoal⊆RRT tree τ{ 

τ.INIT(qinit); 

for i=1 to Imax{ 

  qrand←BASED_RANDOM_CONFIG(); 

  if (EXTEND(τ, qrand, ε)=Solved) { 

// Return found solution  

return τ.Path(qinit, qgoal); 

} 

} 

// No solution found within Imax nodes max 

return No Solution; 

} 

 Algorithm 2: EXTEND(): Extend τ towards qrand with distance ε and check 

Input: random node qrand, goal node qgoal, RRT tree τ, incremental 

distance ε; Output: Status{ 

   qnear←NEAREST_NEIGBOUR(qrand ,τ); 

   qnew←NEW _CONFIG(qnear, qrand, ε); 

   if (qnew!=NULL){ 

τ.ADD_NODE(qnew); 

τ.ADD_EDGE(qnear, qnew); 

if (CHECK_FINISHED(qnew, qgoal)){  

//qnew connects to qgoal, so we have a complete path 

τ.ADD_EDGE(qnew, qgoal); 

return Solved;  

} 

   else{ 

if (qnew=qrand){ 

qrand  reached  

} 
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else{ 
extended towards qrand 

} 

} 

} 

At every step, a random q_rand configuration is chosen and for that 

configuration the nearest configuration already belonging to the tree q_near is found. 

For this, a definition of distance is required (in motion planning, the Euclidean distance 

is usually chosen as the distance measure). When the nearest configuration is found, a 

local planner tries to join q_near with q_rand with a limit distance. If q_rand was 

reached, it is added to the tree and connected with an edge to q_near. Otherwise, the 

configuration q_new obtained at the end of the local search is added to the tree in the 

same way as long as there was no collision with an obstacle during the search. This 

operation is called the Extend step, illustrated in Figure 3-7. This process is repeated 

until some criteria is met, like a limit on the size of the tree. 

 
Fig 3-7. Extend phase of an RRT. 

Once the RRT has been built, multiples queries can be issued. For each query, 

the nearest configurations belonging to the tree to both the initial and the goal 

configuration are found. Then, the initial and final configurations are joined to the tree 

to those nearest configurations using the local planner and a path is retrieved by tracing 

back in the tree structure. 

3.6.1. Adding new node 

In the beginning, the graph is empty. We have only the starting and goal 

positions. The aim is to create random tree from the starting position to the goal 

position. First, we should create a random node and add it to the graph. A simple 

iteration in performed; each step attempts to extend the RRT by adding a new vertex 

that is biased by a randomly-selected state. The algorithm selects the nearest vertex 

already in the RRT to the given state by calculating the Euclidean distance. 
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Fig 3-8. Adding new vertex. 

3.6.2. Checking the step size 

Another important process is checking the distance between new vertex and the 

vertex that is the closest one in RRT; this is done because the distance of the new vertex 

might be larger than the step size that is given. The lines between nodes cannot be 

larger than the step size value. If the distance is not larger than the step size, we can go 

forward to the next step. Otherwise, we should create a new vertex which is step size 

away from the closest vertex; then, go the next step. 

 

Fig 3-9 Checking the distance between q_near and q_rand 

3.6.3. Checking the intersection 

During the creation of the tree, the obstacles must be avoided by checking 

whether a given state lies inside the obstacle or not. Furthermore, each edge of the RRT 

will correspond to a path that lies entirely in free region (Figure 3-10). 

 

(a) Outside the obstacle, there is not an intersection  
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(b) Outside the obstacle   (c) Inside the obstacle, but there is an intersection 

Fig 3-10. Checking the intersection between q_near and q_rand. 

3.7. Implementation of RRT in ROS 

In the previous section, we have seen how to get the image of our environment 

from a Kinect. Now, in this part we will see how to implement the algorithm of RRT 

described previously using ROS. 

First, we need to create a workspace where a new package will be build. Once 

we get the package, two nodes will be created: (i) the first for the visualization of the 

environment and (ii) the second for the creation and visualization of the tree. Each node 

has been written in C++ code. 

The visualization is done in RVIZ with the following parameters: 

 Frame_id=”/path_planner” 

 marker_topic=”path_planner_rrt” 

Before starting the creation of the two nodes we have to construct two header 

files obstacles.h and rrt.h. These two files will contain the definitions of functions, 

global structure and variables, which will be imported or used into C++ program by 

using the pre-processor. 

 obstacles.h contains one function getObstacleArray() and one variable. 

 rrt.h comprises the structure of rrtNode and eleven different functions needed 

for the construction of the tree. 

After the creation of the header files, we will start the implementation of the 

nodes: 

 env_node: this node will include only one cpp file; the following flowchart  

describe its code (Figure 3-11): 
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Fig. 3-11. Flowchart describing the env_node 

 rrt_node: this node will include four cpp file: 

 obstacle.cpp contains the position of the obstacles. 

 rrt.cpp. 

 rrt_node: the following flowchart describes its code (Figure 3-12). 

#include <ros/ros.h>
#include <visualization_msgs/Marker.h>
#include <path_planning/rrt.h>
#include <geometry_msgs/Point.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/image_encodings.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/opencv.hpp>

//initializing ROS

 ros::init(argc,argv,"env_node"); ros::NodeHandle n;
//defining Publisher

ros::Publisher env_publisher =n.advertise <visualization_msgs::Marker>("path_planner_rrt",1);

//defining markers

visualization_msgs::Marker boundary;
visualization_msgs::Marker points;

//initialize the markers

initializeMarkers(boundary, points);
//read the image

Mat im = imread( "/home/saighi/Pictures/s5.png", CV_8UC1
// get the non zero coordinates

findNonZero(im, nonZeroCoordinates);

int i=0;

    geometry_msgs::Point p;

p.x = nonZeroCoordinates.at<Point>(i).x;
p.y = nonZeroCoordinates.at<Point>(i).y;
p.z = 0;      
points.points.push_back(p);

i<nonZeroCoordinates.total()YES

env_publisher.publish(boundary);
env_publisher.publish(points);

NO

ros::ok()

env_publisher.publish(boundary);    
env_publisher.publish(points);
ros::spinOnce();
ros::Duration(1).sleep();

YES

NO

i++;
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#include <ros/ros.h>

#include #include<visualization_msgs/Marker.h>

#include <geometry_msgs/Point.h>

#include <path_planning/rrt.h>

#include <path_planning/obstacles.h>

#define success false

#define running true

    //initializing ROS

    ros::init(argc,argv,"env_node"); ros::NodeHandle n;

    //defining Publisher

    ros::Publisher env_publisher =n.advertise<visualization_msgs::Marker>("path_planner_rrt",1);

bool status = running;

//defining markers visualization_msgs::Marker sourcePoint;

    visualization_msgs::Marker goalPoint;

    visualization_msgs::Marker randomPoint;

    visualization_msgs::Marker rrtTreeMarker;

    visualization_msgs::Marker finalPath;

//initializing rrtTree

    RRT myRRT(83,565);

    int goalX, goalY;

    goalX =1105;

    goalY = 174;

    int rrtStepSize = 60;

    int rrtPathLimit = 1;    

    int shortestPath = -1;

    vector< vector<int> > rrtPaths;

    vector<int> path;

    RRT::rrtNode tempNode;

    RRT::rrtNode checkPoint;

    vector<geometry_msgs::Point>  obstacleList

    bool addNodeResult = fals ;

    bool nodeToGoal = false;

//initialization of markers

initializeMarkers(sourcePoint, goalPoint, randomPoint, rrtTreeMarker, finalPath);

//initialization of obstacles

obstacleList = getObstacles();

rrtPaths.size() < rrtPathLimit

NO

generateTempPoint(tempNode);

addNodeResult = addNewPointtoRRT(myRRT,tempNode,rrtStepSize,obstacleList);

YES

addNodeResult=true

addBranchtoRRTTree(rrtTreeMarker,tempNode,myRRT);

nodeToGoal = checkNodetoGoal(goalX, goalY,tempNode);

YES

NO

ros::ok() && status

YES

nodeToGoal=true

 path = myRRT.getRootToEndPath(tempNode.nodeID);

 rrtPaths.push_back(path);

YES

status=success

NO

int i=0;

rrtPaths[i].size()<shortestPath

shortestPath = i;

shortestPathLength = rrtPaths[i].size();

YES

i<rrtPaths.size()

NO

YES

i++;

NO

 setFinalPathData(rrtPaths, myRRT, shortestPath, finalPath, goalX, goalY);

rrt_publisher.publish(sourcePoint);

rrt_publisher.publish(goalPoint);

rrt_publisher.publish(rrtTreeMarker);

rrt_publisher.publish(finalPath);

NO
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Fig. 3-12. Flowchart describing the rrt_node 

 

Now, we have written our nodes, we need to build them. We open up the 

CMakeLists.txt file and add the following lines to the bottom of the file (where 

path_planning is the name of the package): 

add_executable(talker src/talker.cpp) 

target_link_libraries(env_node ${catkin_LIBRARIES}) 

add_dependencies(env_node path_planning_cpp) 

add_executable(rrt_node src/listener.cpp) 

target_link_libraries(rrt_node ${catkin_LIBRARIES}) 

add_dependencies(rrt_node path_planning _cpp) 

 

Next, we save the file and build the package using Catkin_make line. Finally, 

we run the two nodes created with RVIZ (Figure 3-13): 

 $ rosrun rviz rviz 

 $ rosrun path_planning env_node 

 $ rosrun path_planning rrt_node 

#include <ros/ros.h>

#include #include<visualization_msgs/Marker.h>

#include <geometry_msgs/Point.h>

#include <path_planning/rrt.h>

#include <path_planning/obstacles.h>

#define success false

#define running true

    //initializing ROS

    ros::init(argc,argv,"env_node"); ros::NodeHandle n;

    //defining Publisher

    ros::Publisher env_publisher =n.advertise<visualization_msgs::Marker>("path_planner_rrt",1);

bool status = running;

//defining markers visualization_msgs::Marker sourcePoint;

    visualization_msgs::Marker goalPoint;

    visualization_msgs::Marker randomPoint;

    visualization_msgs::Marker rrtTreeMarker;

    visualization_msgs::Marker finalPath;

//initializing rrtTree

    RRT myRRT(83,565);

    int goalX, goalY;

    goalX =1105;

    goalY = 174;

    int rrtStepSize = 60;

    int rrtPathLimit = 1;    

    int shortestPath = -1;

    vector< vector<int> > rrtPaths;

    vector<int> path;

    RRT::rrtNode tempNode;

    RRT::rrtNode checkPoint;

    vector<geometry_msgs::Point>  obstacleList

    bool addNodeResult = fals ;

    bool nodeToGoal = false;

//initialization of markers

initializeMarkers(sourcePoint, goalPoint, randomPoint, rrtTreeMarker, finalPath);

//initialization of obstacles

obstacleList = getObstacles();

rrtPaths.size() < rrtPathLimit

NO

generateTempPoint(tempNode);

addNodeResult = addNewPointtoRRT(myRRT,tempNode,rrtStepSize,obstacleList);

YES

addNodeResult=true

addBranchtoRRTTree(rrtTreeMarker,tempNode,myRRT);

nodeToGoal = checkNodetoGoal(goalX, goalY,tempNode);

YES

NO

ros::ok() && status

YES

nodeToGoal=true

 path = myRRT.getRootToEndPath(tempNode.nodeID);

 rrtPaths.push_back(path);

YES

status=success

NO

int i=0;

rrtPaths[i].size()<shortestPath

shortestPath = i;

shortestPathLength = rrtPaths[i].size();

YES

i<rrtPaths.size()

NO

YES

i++;

NO

 setFinalPathData(rrtPaths, myRRT, shortestPath, finalPath, goalX, goalY);

rrt_publisher.publish(sourcePoint);

rrt_publisher.publish(goalPoint);

rrt_publisher.publish(rrtTreeMarker);

rrt_publisher.publish(finalPath);

NO
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Fig 3-13. Execution of the nodes and visualization on RVIZ 

 

 

3.8. Conclusion 

Image acquisition and image processing is mainly used to implement real-time 

perception and localization; unfortunately, we could not apply it on localization because 

of a technical problem found on the RobuTER. The Rapidly-exploring Random Tree 

algorithm is implemented to generate a fast safe path. 
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4.1 Introduction 

The techniques and strategies described in the previous chapters are applied on 

the differential drive industrial mobile robot RobuTER described in appendix C. It is 

available at the Division of Computer-Integrated Manufacturing and Robotics (DPR) 

where we did our implementations. 

As shown in Fig 4-1, two Kinect cameras are fixed on the roof of the 

experimental workroom; each Kinect is placed at a height of 3500mm. They are placed 

in such a manner with the same axis to visualize both the environment (ground, 

obstacles, etc.) and the mobile robot (RobuTER). The Kinect cameras are connected to 

a host PC in order to acquire and process images of the scene. 

 

Fig 4-1. Experimental robotic testbed. 

In order to compare the results of our work and what it was done previously, we 

have chosen the same environment with the same conditions as in [27]. 
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4-2. Environment modeling 

The visual perception of the robot environment is carried out using two 

Microsoft Kinect cameras system Version 1. The Kinect cameras have the following 

parameters: 

Sensitivity 1 

Linearity linear 

Measurement range [500 mm, 4000 mm] 3500 mm 

Error 1 mm 

Noise Modeled (8 pixels); Non-modeled 

Resolution 640x480 and 30 frames per second 

Type of output uint<640x480x3> for RGB 

uint<640x480> for depth 

Table 4-1. Kinect characteristics. 

The pictures taken from the first Kinect camera (RGB and depth images) are 

shown below: 

  

Fig 4-2. RGB and depth images acquired by the first Kinect. 
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The images delivered by the second Kinect camera (RGB and its depth images) 

are shown as follows: 

  

Fig 4-3. RGB and depth images acquired by the second Kinect. 

The Kinect sensor acquisition and the perception techniques give an exact 

binary map model for the environment with a sufficient resolution of 960x640. 

 

Fig 4-4. Binary map of the overall environment. 
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And here is the binary safe map: 

 

Fig 4-5. Binary safe map of the overall environment 

4-3. Visualization on RVIZ 

The environment has been visualized on Rviz using nonzero function to apply 

the algorithm on it and find the feasible paths. After executing the environment node on 

ROS and adding the marker, we got (Fig. 4-6): 

$ rosrun path_planning env_node 

 

Fig 4-6. Visualization of the environment on RVIZ 
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4-4. Trajectory planning 

The obtained binary map gives an almost continuous description of the 

environment; this is well suited to be used by the rapidly-exploring random trees. 

The mobile robot RobuTER, with dimensions of 1200mm×680mm, has to move 

from Source(x, y)init=(74mm, 1953mm) toward Target(x, y)fin=(5501mm, 1308mm) with 

a maximum linear speed of 150mm/s. 

RRT chooses the first feasible path and creates its nodes randomly. 

Consequently, we have to execute the algorithm many times with different step sizes; 

finally, we have to choose the best one referring to the execution time, smoothing and 

optimality. 

We have selected three main step sizes: 8 pixel, 35 pixels, and 60 pixels which 

correspond to 50.72mm, 221.9mm and 380.4mm, respectively. 

4-4-1. Step size=08 pixels 

The obtained path after executing the algorithm with step size of 8 pixels is 

shown by Figure 4-7. The RRT path consists of 144 segments. The path is generated in 

around 15sec; its total length is l=7303.68mm. 

 

Fig 4-7. RRT planning with a step size of 8 pixels 
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4-4-2. Step size=35 pixels 

After execution with 35 pixels, we got the path shown in Figure 4.8. The path 

consists of 33 segments. It is generated in 2.16 sec; its total length l=7100.8mm. 

 

Fig 4-8. RRT planning with a step size of 35 pixels 

4-4-3. Step size=60 pixels 

The resulted path is given by Figure 4-9. Using a step size of 60 pixels, the RRT 

path consists of 18 segments. The path is generated in less than 2sec; its total length 

l=6847.2mm. 

 

Fig 4-9. RRT planning with a step size of 60 pixels 
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The following table presents the summary of the obtained results: 

Step size 8 pixels 35 pixels 60 pixels 

Length 7303.68 7100.8 6847.2 

N° of segments 144 33 18 

Run time 15 2.4 1.9 

Table 4.2. Summary of executions 

We can clearly see that executing the RRT with a step size=60 pixels gives the 

shortest path comparing with 8 and 35 pixels. In addition, it is much faster and gives 

less number of segments. Consequently, we opted for this step size in what follows. 

4-5. Path smoothing 

We can see that the generated paths are zigzag lines; so, to get more efficient 

results we have used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) in 

order to smooth our path as shown below in Figure 4-10: 

 

Figure 4-10. RRT generated path and its PCHIP smoothed path  

4-6. Path execution 

The obtained path in the previous section must be carried out by the differential 

mobile robot; thus, V(t) and ω(t) are evaluated resulting in unique Vr(t) and Vl(t) from 

equation (3.4) stated in chapter 3. 
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The required Vr(t) and Vl(t) are sent from the computer (acting as a client) to the 

mobile robot periodically using one socket; the embedded PC of the mobile robot on 

the other side is acting as a server, where the data is received, decoded, and then 

executed. 

The graphs of variation of the right wheel, left wheel and linear velocities sent 

to the mobile robot are shown below in Figure 4-11: 

 

Figure 4-11. Variation of the robot right wheel and left wheel velocities for path 

execution 

4-7. Comparison 

We have mentioned before that the same work has been done using another 

algorithm in the same environment and same conditions [27]. In this part, we will do a 

comparison between the results of the two algorithms. 

Table 4.3 shows the results of executing the RRT and GA algorithms on the 

same environment. 

Parameter RRT GA [1] 

Run time (s) 2 7 

Path length (mm) 6847.2 6020 

Number of segments 18 18 

Table 4.3 Summary of comparative analysis 

From Table 4.3, we noted firstly that RRT takes longer distance from initial 

point to the goal comparing with genetic algorithm. Secondly, to generate the path 

connecting the two initial and goal position, RRT is three times faster that the GA 

algorithm. Finally, both algorithms generate paths with the same number of segments. 

t (s) 

V (mm/s) 
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Another comparison is done regarding the calculation times for different 

workspaces with different dimensions and number of obstacles. For each case, we 

considered different numbers of Kinect cameras with various Source-Goal positions. 

Table 4.4 summarizes the average for 10 different runs of RRT and GA algorithms. 

Resolution (accuracy, area 

size) 

Number of 

obstacles 

Time generations(s) of feasible path 

GA [1] RRT 

640×480 (01 Kinect 

camera) 

05 5.09 0.80 

10 5.59 1.04 

15 6.46 1.25 

640×960 (02 Kinect 

cameras) 

10 6.33 1.54 

15 8.03 1.78 

20 8.47 2.11 

640×1280 (04 Kinect 

cameras) 

15 9.62 3.03 

20 10.6 3.2 

25 10.96 3.51 

Table 4.4 Summary of the average calculation time of 10 different runs with different 

Source-Goal positions 

 

From Table 4.4, it is clear that RRT is better and more efficient algorithm 

compared to GA proposed in [27]. The run time of RRT in the different environments 

is around three times faster than GA. 

 

 

4-8. Conclusion 

This chapter is a combination of implementations of the techniques described in 

chapters two and three. In addition, a general description of the implementation is 

given, and some path planning results have been shown with their development steps. 

At the end a comparative summary between RRT and GA has been done. 

By using RRT and especially with the fast perception technique used in this 

work, we can pass from off-line planning to on-line planning. 
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Conclusion 

The aim of this project was to implement a kinect-based path planning and execution 

for autonomous mobile robot, so the robot should be able to achieve several tasks by itself 

including the perception of its surrounding environment and finding and executing its path. 

At the beginning we have stated some generalities about autonomous navigation for 

mobile robot and the different techniques performed for path planning strategy. Robot operating 

system is used as framework to write the mobile robot software because of its simplicity and 

the packages on it, C++ is integrated with ROS ensuring fast and reliable data transferring, 

while RVIZ is used for visualizing and showing the work. 

Initially, some image acquisition and processing techniques were implemented, 

allowing the mobile robot to model its environment by constructing the binary map through 

image processing techniques, the rapidly-exploring random trees has implemented to generate 

the suitable path starting from an initial position going to the end position with less execution 

time possible, ensuring that the robot will go safely and rapidly. This is accompanied by 

showing illustrative examples. The result of this algorithm has shown that it is fast, reliable and 

safe. 

After comparing this work with what it has been done previously with genetic algorithm 

we found that RRT is three times rapid then the other algorithm. 

As a further work, we would develop our work to be evaluated on dynamic rapidly 

changing environment, RRTstar and RRTstar-smart can be used to implement a more intelligent 

robot that has the ability of recognition of people and objects, reasoning, learning, and making 

inferences. 
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Appendix -A- 

 
 

 A.1. Introduction to Robot Operating System ROS   

Robot Operating System (ROS) is a trending robot application development platform 

that provides various features such as message passing, distributed computing, code reusing, 

and so on.      

The ROS project was started in 2007 with the name Switchyard by Morgan Quigley as part of 

the Stanford STAIR robot project. The main development of ROS happened at Willow Garage.       

Here are some of the reasons why people choose ROS over other robotic platforms such as 

Player,YARP, Orocos, MRPT, and so on : 

 

 High-end capabilities:  ROS comes with ready to use capabilities, for example, SLAM 

(Simultaneous Localization and Mapping) and AMCL (Adaptive Monte Carlo 

Localization) packages in ROS can be used for performing autonomous navigation in 

mobile robots and the MoveIt package for motion planning of robot manipulators. 

  Tons of tools: ROS is packed with tons of tools for debugging, visualizing, and 

performing simulation. The tools such as rqt_gui, RViz and Gazebo are some of the 

strong open source tools for debugging, visualization, and simulation. The software 

framework that has these many tools is very rare. 

 Support high-end sensors and actuators: ROS is packed with device drivers and 

interface packages of various sensors and actuators in robotics. The high-end sensors 

include Velodyne-LIDAR, Laser scanners, Kinect, and so on and actuators such as 

Dynamixel servos. We can interface these components to ROS without any hassle. 

 Inter-platform operability: the ROS message-passing middleware allows   

communicating between different nodes. These nodes can be programmed in any 

language that has ROS client libraries. We can write high performance nodes in C++ or 

C and other nodes in Python or Java. This kind of flexibility is not available in other 

frameworks.  

 Modularity: One of the issues that can occur in most of the standalone robotic 

applications are, if any of the threads of main code crash, the entire robot application 

can stop. In ROS, the situation is different, we are writing different nodes for each 

process and if one node crashes, the system can still  work. Also, ROS provides robust 

methods to resume operation even if any sensors or motors are  
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 Concurrent resource handling: Handling a hardware resource by more than two 

processes is always a headache. Imagine, we want to process an image from a camera 

for face detection and motion detection, we can either write the code as a single entity 

that can do both, or we can write a single threaded code for concurrency. If we want to 

add more than two features in threads, the application behavior will get complex and 

will be difficult to debug. But in ROS, we can access the devices using ROS topics from 

the ROS drivers. Any number of ROS nodes can subscribe to the image message from 

the ROS camera driver and each node can perform different functionalities. It reduce  

the complexity in computation and also increase the debug-ability of the entire system.  

  Active community: When we choose a library or software framework, especially from 

an open source community, one of the main factors that needs to be checked before 

using it is its software support and developer community. There is no guarantee of 

support from an open source tool. Some tools provide good support and some tools 

don't. In ROS, the support community is active. The ROS community has a steady 

growth in developers worldwide. 

 

A.2. Understanding the ROS file system level    

   Similar to an operating system, ROS files are also organized on the hard disk in a particular 

fashion. In this level, we can see how these files are organized on the disk. The following graph 

shows how ROS files and folder are organized on the disk: 

 

Fig A-1. The ROS file system level 

Similar to an operating system, an ROS program is divided into folders, and these                                                                 

 

 

 Packages: Packages form the atomic level of ROS. A package has the minimum 

structure and content to create a program within ROS. It may have ROS 
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runtimeprocess (nodes), configuration files; and so on.                                                                                                                                    

 Manifests: Manifests provide information about a package, license information, 

dependencies, compiler flags, and so on. Manifest are managed with a file called                                                                  

manifests.xml.     

 Stacks: When you gather several packages with some functionality,  you will obtain a 

stack. In ROS, there exists a lot of these stacks with  different uses, for example, the 

navigation  

 Stack manifests: Stack manifests (stack.xml) provide data about a stack, including its 

license information and its dependencies on other stacks.    

  Message (msg) types: A message is the information that a process sends to other 

processes. ROS has a lot of standard types of messages. Message descriptions are 

stored in my_package/msg/MyMessageType.msg. 

 Service (srv) types: Service descriptions, stored in my_package/srv/MyServiceType.srv, 

define the request and response data structures for services in ROS. 

 

Fig A-2. Structure of typical package 
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A.3. Understanding the ROS computational Graph level 

ROS creates a network where all the processes are connected. Any node in the system 

can access this network, interact with other nodes, see the information that they are sending, 

and transmit data to the network. 

 

 

Fig A-2. ROS computational Graph level 

 

 

 Nodes: ROS nodes are a process that perform computation using ROS client 

libraries such as roscpp and rospy. One node can communicate with other 

nodes using ROS Topics, Services, and Parameters. 

 Topic: Chanel between two or more nodes, nodes communicate by publishing  

and/or subscribing to the appropriate topics 

 Services: ROS uses a simplified service description language for describing 

ROS service types. This builds directly upon the ROS msg format to enable 

request/response communication between nodes. Service descriptions are 

stored in .srv   file in the srv/ subdirectory of a package. 

 Parameters: The Parameter Server gives us the possibility to have data stored 

using keys in a central location. With this parameter, it is possible to configure 

a nodes while it’s running or to change the working of the nodes.                                                               

 

  



 

 

                                                                                                                              Appendices 

44 

Appendix -B- 

 
B.1. Installing ROS Indigo: 

In this section, you will see the steps to install ROS Electric on your computer. 

We assume that Ubuntu repository was successfully installed. 

B.1.1. Configure your Ubuntu repositories 

First, you must check that your Ubuntu accepts restricted, universal, and multiversal 

repositories 

B.1.2. Setup your sources.list 

Setup your computer to accept software from packages.ros.org. 

$sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/s

ources.list.d/ros-latest.list' 

B.1.3. Set up your keys 

. It is important to add the key because with it we can be sure that we are downloading the 

code from the right place and no body modified it. 

$sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9F

F1F717815A3895523BAEEB01FA116 

B.1.4. Installation: 

Before doing something, it is necessary to update all the programs used by ROS. We do it to 

avoid incompatibility problems. Type the following command in a shell and wait: 

$sudo apt-get update 

There are many different libraries and tools in ROS; the one installed and used in this worf is 

desktop- full duplex 

$sudo apt-get install ros-indigo-desktop-full 

  B.1.5. Initialize rosdep 

 rosdep enables you to easily install system dependencies for source you want to compile 

and is required to run some core components in ROS. 

$sudo rosdep init 

$rosdep update 
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B.1.6. Environment setup 

$echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc 

$source ~/.bashrc 

B.1.7. Getting rosinstall 

$sudo apt-get install python-rosinstall 

            

B.2. Steps to install the Kinect in ROS: 

In the following we will take a look on the process of installing and running the Kinect. 

Firstly, we will install OpenNI and Kinect driver. 

Installing dependencies: 

$sudo apt-get install g++ python libusb-1.0-0-dev freeglut3-dev 

$ sudo apt-get install doxygen graphviz mono-complete 

$ sudo apt-get install openjdk-7-jdk 

Intalling OpenNI: 

$ git clone https://github.com/OpenNI/OpenNI.git 

$ cd OpenNI 

$ git checkout Unstable-1.5.4.0 

$ cd Platform/Linux/CreateRedist 

$ sudo chmod +x RedistMaker 

$ ./RedistMaker 

$ cd ../Redist/OpenNI-Bin-Dev-Linux-[xxx] 

$ sudo ./install.sh 

Installing Kinect driver 

$ git clone git://github.com/ph4m/SensorKinect.git 

$ cd SensorKinect/Platform/Linux/CreateRedist 

$ sudo chmod +x RedistMaker 

$ ./RedistMaker 

$ cd ../Redist/Sensor-Bin-Linux-x64-v* 

$ sudo ./install.sh 
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Now, we install openni_launch which includes launch files to open an OpenNI device 

and load all nodelets to convert raw depth/RGB/IR streams to depth images, disparity images, 

and (registered) point clouds. 

$ sudo apt-get install ros-indigo-openni-camera ros-indigo-openni-launch 

To run Kinect on ROS: 

$ roslaunch openni_launch openni.launch                                                            

To visualise Kinect data 

$ rosrun rviz rviz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig B-1. The kinect test in the Rviz simulator 

 

 

  

http://wiki.ros.org/openni_launch
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Appendix -C- 
 

C.1. General description of RobuTER 

 

RobuTER is a robotic mobile platform that is available in the Center of Development of 

Advanced Technologies (CDTA) of Algiers. It is a rectangular non-holonomic robotic mobile   

platform, developed by the French company Robosoft.  

 

The robot base consists of a platform with two wheels and a load capacity of 15 kg. The 

wheels are 250 mm in diameter, and have a torque of 22 Nm nominal per wheel. They are driven 

by DC electric motors and enable it to reach a nominal speed of 2.6 m/s. The direction of 

RobuTER is given by the differential speed of the two wheels. The two wheels are placed at the 

front of the platform to provide stability.  

 

 

Fig C-1. The architecture of the experimental robotic system 

 

 

 

 

(1)- Camera. 

(2)- Efforts sensor. 

(3)- Wireless Video 

Transmission.  

(4)-Ultrasonic sensor. 

(5)-LMS. 

(6)-Manipulator Arm. 

(7)-Embedded PC. 

(8)- Joystick. 

(10)- Mobil base. 
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C-2. Software Architecture 

RobuTER's embedded PC runs Linux RedHat 9.0 Operating System, which has the advantages 

of being free, open sourced, licensed under the GPL – General Public License, and being very 

well documented and featuring all necessary tools for development onboard of   the RobuTER 

itself. 

The development of applications for RobuTER is based on the Robosoft Development 

Toolchain. This development is based on the SynDEx CAD environment. 
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