
i

ii

Dedication

iii

Acknowledgment

iv

Abstract

The aim of this project is the design and implementation of an autonomous

hexapod robot with obstacle avoidance and object finding/tracking. The robot has

eighteen DOF1 with each leg having three DOF (degrees of freedom) and the frame

is radially symmetric. The mechanical structure is made of an acrylic or Forex frame,

steel rods and nineteen servo motors. For the electronic part, it’s based on an

arduino-mega, placed on the top of the hexapod to manage the six legs in a very easy

and efficient manner, and a camera with some sensors used for the robot walking,

obstacle avoidance and object finding/tracking. An efficient inverse kinematics

engine should be developed to help the robot walk in different ways with obstacle

avoidance at variable speeds.

1 Degrees of freedom

v

Table of content

Contents
Title Page ... i

Dedication ... ii

Acknowledgment ... iii

Abstract .. iv

Table of content .. v

List of figures ... viii

List of tables .. x

Introduction ... 1

Report Organization .. 1

Chapter 1 : Theoretical background .. 2

1.1 Legged Robots: Overview and Classification: ... 2

1.1.1 The one leg hopper (1983-1984)... 2

1.1.2 Bipeds (two legged robots or Humanoids) ... 2

1.1.3 Tripeds (three legged robots) .. 3

1.1.4 Tetrapods (Four legged) ... 3

1.1.5 Pentapods (five legged robots)... 3

1.1.6 Hexapods (six legged robots).. 3

1.1.7 Eight legged robots ... 4

1.2 Why did we chose the Hexapod? ... 4

1.3 Areas of applications .. 4

1.4 Kinematics of the model .. 5

1.5 Forward kinematics .. 5

1.6 Inverse kinematics .. 7

1.7 Gait generation: .. 9

1.7.1 The wave gait: .. 11

1.7.2 Tripod gait:... 11

Chapter 2 : Hardware System Design ... 12

2.1 The Robot Frame: ... 12

2.1.1 Assembling the Frame ... 15

2.1.1.1 Leg assembling ... 15

2.1.1.2 Body assembly .. 16

2.2 Electrical components ... 16

2.2.1 Micro servos: ... 17

vi

2.2.2 Arduino Mega .. 18

2.2.3Ultrasonic Sensor (HC-SR04)... 18

2.2.4 10000µF capacitors .. 19

2.2.5 Wi-Fi Camera (SJ7000) ... 19

2.2.6 Power Supply ... 19

2.2.7 Rechargeable NiMh AA batteries .. 19

2.2.7 Gamepad .. 21

2.3 The overall System ... 21

Chapter 3 : Software System Design .. 24

3.1 Arduino Side ... 24

3.1.1 Class Point: .. 24

3.1.1.1Derivation of the new coordinates after rotation ... 25

3.1.2 Class Servo... 25

3.1.3 Class Newping (Ultrasonic Sensor) ... 26

3.1.4 Class Serial... 26

3.1.5 Class Leg .. 27

3.1.6 Class Rusty... 27

3.1.7 UML Class Diagram .. 28

3.2 Computer Side .. 29

3.3 Description of the system.. 29

3.3.1 System Start-up .. 30

3.3.2 Use of the system ... 28

3.3.3 UML Activity diagrams ... 29

3.4 Image processing .. 35

3.4.1Activity Diagram .. 36

Chapter 4 Results and Analysis .. 37

4.1 Body Translations ... 38

4.1.1 Translation along z ... 38

4.1.2 Translation along x and y axes... 39

4.2 Gaits .. 40

4.2.1 Speed .. 41

4.2.1.1 Linear speed .. 41

4.2.1.2 Rotational speed .. 41

4.3 Free roaming algorithm tests .. 42

4.3.1 without Camera .. 42

4.3.2 with camera .. 43

vii

Conclusion .. 45

Future perspectives ... 45

References ... 47

viii

List of figures
Figure 1.1: Phony Pony... 2

Figure 1.2: One Leg Hopper ... 2

Figure 1.3: Adaptive Suspension Vehicle ... 3

Figure 1.4: Hexapod logging .. 4

Figure 1.5 .. 5

Figure 1.6 .. 5

Figure 1.7 .. 5

Figure 1.8 .. 5

Figure 1.9 .. 6

Figure 1.10 .. 6

Figure 1.11 .. 7

Figure 1.12 .. 7

Figure 1.13 .. 8

Figure 1.14 .. 8

Figure 1.15 .. 9

Figure 1.16 .. 9

Figure 1.17 .. 9

Figure 1.18 .. 10

Figure 2.1: Mounted Robot ... 13

Figure 2.2: Frame Parts ... 14

Figure 2.3: Coxa Assembled ... 15

Figure 2.4: Leg Assembly ... 15

Figure 2.5: Servo Layer .. 16

Figure 2.6: Space holders .. 16

Figure 2.7: Micro Servo .. 17

Figure 2.8: ... 17

Figure 2.9: Arduino Mega... 18

Figure 2.10: HC-SR04 .. 19

Figure 2.11: 10000uF capacitor .. 19

Figure 2.12: SJ7000 .. 19

Figure 2.13: Gamepad numbering .. 20

Figure 2.14: Gamepad map ... 20

Figure 2.15: connections ... 21

Figure 2.16: Internal Circuit ... 22

Figure 2.17: Electronic Circuit ... 23

Figure 3.1 Derivation of coordinates .. 25

Figure 3.2: setPosition function .. 27

Figure 3.3: UML Class Diagram .. 28

Figure 3.4: Start menu... 31

Figure 3.5: Body Translations ... 32

Figure 3.6: Free movement ... 33

Figure 3.7: Computer Side .. 34

Figure 3.8: Free roaming algorithm .. 35

Figure 3.9: Object tracking ... 37

Figure 4.1: System Overview ... 38

Figure 4.2: Serial link up .. 38

Figure 4.3: Start Position .. 39

file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587677
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587678
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587679
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587680
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587681
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587682
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587683
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587684
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587685
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587686
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587687
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587688
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587689
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587690
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587690
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587690
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587690
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587690
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587691
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587692
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587693
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587694
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587695
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587696
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587696
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587696
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587696
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587696
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587696
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587697
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587699
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587698
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587700
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587701
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587701
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587702
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587704
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587704

ix

Figure 4.4: Maximum z translation ... 39

Figure 4.5: Minimum z translation ... 40

Figure 4.6: Reset Position ... 40

Figure 4.7: Translation along y ... 41

Figure 4.8: Translation along -y.. 41

Figure 4.9: translation along -x axis ... 41

Figure 4.10: translation along x axis ... 41

Figure 4.11: Speed levels .. 42

Figure 4.12: Rotational speed (deg/s) ... 43

Figure 4.13: Run example without Camera .. 44

Figure 4.14: Saturation window .. 44

Figure 4.15: Hue window ... 44

Figure 4.16: Value window... 45

Figure 4.17: closing window... 45

Figure 4.18: Near object ... 45

Figure 4.19: Far object .. 45

Figure 4.20: Object found ... 45

file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587716
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587717
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587718
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587719
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587720
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721
file:///C:/Users/Moon/Desktop/The/intro+chp1+Ch2+ch3.docx%23_Toc451587721

x

List of tables
Table 1-1: Wave gait sequence ... 11

Table 1-2: Tripod gait sequence ... 11

Table 2-1: Servo specefications .. 17

Table 2-2: Arduino mega specifications ... 18

Table 2-3: Arduino pins assignment ... 21

Table 3-1 pins constraints ... 26

Table 4-1: z translation ... 40

Table 4-2: x,y translations... 41

Table 4-3: Speed levels ... 42

Table 4-4: Rotational speed .. 43

1

Introduction

A good scientist is a good mimic. Nature offers an abundant source of knowledge. A fine eye for

details and patience is all it takes to unravel its mysteries. There are about one million insect

species worldwide. They also probably have the largest biomass of the terrestrial animals with 10

quintillion individual insects alive [1]. In spite of their small size compared to other living

creatures and their challenging environment, they proved to be very successful which gives a

strong incent to study and mimic them on how they navigate their environment.

Nature doesn’t approve of wheels. There are countless creatures that rely on legs for locomotion,

ranging from biped (two legs) creatures like us to many-legs creatures (millipedes being the

extreme case with leg count between 200 and 750 legs). There are also no natural roads for

wheeled vehicles. Despite this fact we rely on wheels for our modern locomotion.

In this work we’ll shed some light on the benefits of legged locomotion by designing a six legged

robot that is inspired from insects and spiders. The robot is autonomous. It provides two modes of

control: user controlled and automated control. The robot can generate a walking gait

autonomously with obstacle avoidance. In addition, and with the help of a mounted camera on the

robot, the user is able to visualize the environment in which the robot is navigating. According to

those built-in abilities, our robot may serve as a vital tool for several systems used in discovering,

tracking and surveillance applications.

Report Organization
This work is divided into three chapters. The first chapter focuses on the theoretical background.

We’ll go through the amazing properties of hexapods and the mathematics behind it. The second

chapter deals with the conceptual aspect of the project, including both the mechanical and

electronics sides. The third chapter talks about the software that glues everything together. Finally

we’ll talk about the tests we’ve run and some guidelines for future improvements.

2

Chapter 1 : Theoretical background

1.1 Legged Robots: Overview and Classification:

A robot is a machine that can perform a complex task. Robotics is the science behind creating

these machines. Robots that were concealed in the realm of science fiction are now gaining more

and more importance in our daily lives. The first legged robot in the modern sense is the “Phony

Pony” [2] by Mcgee and Frank, University of South Carolina 1968 as shown in figure 1.1. It had

four legs with two degrees of freedom in each leg allowing it to move forward and backward only.

The walk was programmed with a simple state machine.

Starting from that time, there were a lot of legged robots that can be categorized according to

the number of legs as follows:

1.1.1 The one leg hopper (1983-1984)
The one leg hopper robot [3] is shown in figure 1.2. It relies on dynamic stability in order not to

fall. The principle is really simple. The robot hops all the time and with each hop it adjusts its

center of gravity by applying a corrective force in order not to fall. The advantage of such robot is

its ability to walk in any terrain as it has only one contact point with the ground. It can jump a

considerable distance which allows it to avoid obstacles. Having one leg removes the hassle of

coordinating the movement of many legs and reduces the energy consumption considerably. The

main disadvantage is the complexity of the design and control.

1.1.2 Bipeds (two legged robots or Humanoids)
With two legs those robots are designed to mimic human beings. They’re dynamically stable and

they can perform pretty much any walk that we humans can do. The disadvantage is the complexity

of the design and control. The most notable examples are “ASIMO” by HONDA and “Atlas” by

Boston Dynamics.

Figure 1.1: Phony Pony Figure 1.2: One Leg Hopper

3

1.1.3 Tripeds (three legged robots)
With three legs, these robots are statically stable, however they need a complex control algorithm

in order not to fall when walking. They didn’t receive much attention because there isn’t any

creatures with three legs in nature. The most notable example is “STriDER” [4] developed at

Virginia Tech University 2007. It has a unique and very innovative gait. Despite the fact that it

has 3 legs, its gait is closer to the human walk than the biped robots as it allows the knees to swing

freely like human’s do.

1.1.4 Tetrapods (Four legged)
With four legs they mimic most terrestrial animals. They’re statically stable and can move in two

main modes. The statically stable mode where only one leg is raised at a time and the dynamically

stable mode where 2 or more legs are in the air at the same time. The first mode offers great

stability and simplicity of control while the second increases speed in expense of complexity of

control and leg coordination. The most notable examples are “Big Dog” (Discontinued), “LS3”,

“Spot” and “Cheetah” [5] from Boston Dynamics.

1.1.5 Pentapods (five legged robots)
These robots are statically stable. Some of their gaits are inspired from starfish and others are

optimally generated using learning algorithms through trial and error as there’s no terrestrial

walkers with five legs [6].

1.1.6 Hexapods (six legged robots)
Hexapods raised a great interest in both the scientific and hobbyist communities. They have great

static stability when standing or walking. Having six legs also offers redundancy in case any leg

is damaged and the abundance of six legged creatures allows for biologically inspired gaits to be

programmed. One of the first advances in hexapod was the “Adaptive suspension vehicle” (1985)

figure 1.3 [7] which was a six legged vehicle that could lift up to 226 KG of payload. There are

also many hexapods available freely thanks to the contribution of many great minds most notably

Figure 1.3: Adaptive Suspension Vehicle

4

“Stubby”, “Phoenix”, “Hexy”. A model worth studying too is “Thex” developed by Boston

Dynamics.

1.1.7 Eight legged robots
These are inspired by spiders. They have an amazing stability, they offer redundancy if many legs

are damaged and they can walk on any terrain. The drawback is the complexity of leg coordination

and the increased cost.

1.2 Why did we chose the Hexapod?

Hexapods are in the middle of the spectrum of legged robots. They are statically stable when

standing or walking. There is a large documentation about them available freely. They can walk

virtually on any terrain and avoid many kinds of obstacles. With the appropriate gait programming,

they can adapt to accidents that may cause some legs to dysfunction which in turns gives them a

great advantage over less legged robots. They are energy efficient compared to wheeled vehicles.

Hexapods are easier to program compared to eight legged robots and they are considerably cheaper

and require less energy.

1.3 Areas of applications

Hexapods do a great work when we need something to be transported over a rough terrain. With

the appropriate modifications they can accomplish other tasks like logging figure 1.4. They can

be used to roam and discover unknown terrains and even sent to unknown planets, smaller models

can be sent into disaster areas in search for survivors. They are also a fun tool to teach people

about robotics and dynamics.

Figure 1.4: Hexapod logging

5

1.4 Kinematics of the model

Our model is based on “Stubby” developed by Mr Wyatt Olson. In what follows, we’ll study the

leg forward and inverse kinematics as it is very important to generate the gaits later on.

The design is inspired from insect legs. Figure 1.5 clearly shows the similarity between the robot’s

leg and an ant’s leg.

Each leg has three revolute joints giving each leg three degrees of freedom.

In what follows, we’ll study the forward and inverse kinematics of the leg.

1.5 Forward kinematics

Forward kinematics consists of finding the position of the tip of the leg given some specific angles

of the joints. This isn’t very relevant to our needs, however we need it for diagnosis purposes. . In

fact, it is used to verify the results produced by the inverse kinematics function. Figure 1.6 shows

the direction for the x, y, and z axis.

To find the end point coordinates, we start from the three joints angles and advance. As we see in

figure 1.7 we need the angle D and the leg length to find x and y.

We start by finding the angle D shown in figure 1.8

Figure 1.5

Figure 1.6

Figure 1.7

6

We know the lengths a, b, c and d. We also know the angles offset1, offset2 and coxa angle. We’ll

use the law of cosines on the triangle a, b, e to find the length e. Then, we’ll use the law of cosines

again on the triangle a, b, e to find the angle between “a” and “e” let’s call it C1 Then we apply

the same law on the triangle “e, d, c” to find the angle between “e” and “d” let’s call it C2.

The Desired angle, let’s call it D, is then 𝐶1 + 𝐶2 – 𝑜𝑓𝑓𝑠𝑒𝑡1

To find the Leg length we’ll move to the Tibia and femur joints

As we see in the figure 1.9 we need to find the leg extension to find both z and leg length.

We calculate the leg extension from figure 1.10 using the law of cosines.

As we can see we need to find the tibia angle first, which in turn is calculated from figure 1.11

First we calculate the length e using the triangle “a, b, e”

Then we calculate the two segments of the desired angle + E offset using the triangles “d, e, c”

and “a, b, e”

After that we get back to figure 1.10 in which we measure femur length and tibia length and we

use the law of cosines to calculate the leg extension

Figure 1.8

Figure 1.9 Figure 1.10

7

To find z and the leg length we first find femur angle A which is equal to the desired angle of

figure 1.12 minus the tibia angle of figure 1.10.

Back to figure 1.12

The desired angle is the angle between “a” and “d” minus the E offset

To find the angle between “a” and “d” we use the law of cosines to find e then to calculate both

halves of the angle.

Now we get back to Figure 1.9 and compute z and leg length using simple trigonometry.

Then we get back to figure 1.7 and calculate both x and y and we’re done!

1.6 Inverse kinematics

Inverse kinematics is about finding the joints’ angles that would position the leg at a certain point.

In other words we have (x,y,z) and we need to find the angles of the three revolute joints.

Here we start from Figure 1.9 and find the leg length using Pythagorean Theorem

We then use figure 1.13 to find the coxa angle

Coxa angle = angle between “a and d” – offset2

Figure 1.11
Figure 1.12

8

Angle between “a” and “d” is found using the law of cosines on the two triangles “b, e, c” and

“e, a, d”

Then we use figure 1.9 to find the leg extension using Pythagorean Theorem. After that we move

to figure 1.10 and calculate tibia angle using the law of cosines. Finally we move to figure 1.14

to find the desired tibia angle by applying the law of cosines on the triangle “e, d, a” to find e

then apply it once again on the same triangle and triangle “e, b, c” to find E(desired angle + E

offset). We then reduce the offset to find the desired tibia angle

The femur angle is divided into two angles: femur angle A as seen in figure 1.9 and femur angle

B as seen in figure 1.15.

Femur angle B is computed using the law of cosines from the triangle femur length, leg

extension, tibia length in figure 1.15

For femur angle A we use the Pythagorean Theorem and some simple trigonometry to find it from

figure 1.9

Figure 1.13

Figure 1.14

9

Finally we move to figure 1.16

 𝑻𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒇𝒆𝒎𝒖𝒓 𝒂𝒏𝒈𝒍𝒆 = 𝒇𝒆𝒎𝒖𝒓 𝒂𝒏𝒈𝒍𝒆 𝑨 + 𝒇𝒆𝒎𝒖𝒓 𝒂𝒏𝒈𝒍𝒆 𝑩

Another way to compute the femur angle is to apply the law of cosines on the triangles “a, d, e”

and “e, b, c” to find the angle between “a” and “b”. We then add the offset angle that we can

measure to find the desired coxa angle

And we’re done!

1.7 Gait generation:

A gait is the pattern in which the legs move. It can be random or periodic.

For all what follows, we’ll use the notation for the legs shown in figure 1.17.

For simplicity, we’ll assume that all the legs are mounted at the center of the robot which coincides

with the x, y axis shown in figure 1.17 .The middle right leg is mounted at angle 0° and we go

anticlockwise adding 60° on each leg.All the work is done on the middle right leg and then through

the magic of mathematics (translation & rotation matrices) we expand the results to the other legs.

Figure 1.15

Figure 1.16

Figure 1.17

10

A single leg performs a step by following some predefined points. When the points belonged to

cosine function curve there were a bit of inconsistency when the legs contact the ground. To solve

this problem, we used Bezier curves [8] instead of cosine function. The iterative procedure for

generating Bezier curves is shown in figure 18. After experimentation we changed the pattern to

get the best results.

In summary, the step works as follows:

The leg moves backwards a little bit, then it raises to the air and advancing forward. It then contacts

the ground and goes back to the starting position while pulling the body forward.

Now that we’re done with the step, we can generate the gaits.

The number of gaits depends on the number of legs. For instance if k is the number of legs and N

is the number of gaits we have: 𝑁 = (2𝑘 − 1)! [9]

Our robot has 6 legs which gives rise to11! = 39916800 𝑔𝑎𝑖𝑡𝑠

Each leg has 3 DOF meaning that the robot has 18 DOF. This gives rise to even more redundancy

in the gaits.

 It would be tiresome even for a super computer to go through all of them. Thankfully we’ve got

nature to turn to for inspiration.

There are two important gaits that we will study: the wave and tripod gait.

Before we dive into the gaits, there are two rules that we need to obey to ensure the robot’s

stability.

Figure 1.18

11

 First rule: never have two neighbouring legs raised from the ground at the same time.

 Second rule: No leg should be allowed to perform a step unless it obeys rule one and its

neighbouring legs stepped recently.

1.7.1 The wave gait:
The name comes from the fact that the leg movement creates two waves on each side of the

hexapod. This is the most stable gait which makes it very suitable for fragile terrains. The only

drawback is the speed.

To generate this gait, we add a simple rule to the previous ones: only one leg is in the air at any

time. The sequence is demonstrated on table 1-1 where shaded blocks signify leg is on the air.

Table 1-1: Wave gait sequence

1.7.2 Tripod gait:

We generate this gait by obeying the first two rules and raising three legs at a time. This gait is the

fastest statically stable gait. At any time the body is supported by three legs while the other three

are in the air. Table 1-2 demonstrates the sequence.

Table 1-2: Tripod gait sequence

Time

Front Right

Middle Right

Rear Right

Front Left

Middle Left

Rear Left

 Time

Front Right

Middle Right

Rear Right

Front Left

Middle Left

Rear Left

12

Chapter 2 : Hardware System Design

2.1 The Robot Frame:
The design of the mechanical body was taken from “Stubby” made by Mr Wyatt Olson. We’ve

taken the permission to reproduce his work at will.

We’ve made two bodies for the robot with two different materials. The parts were manually cut

and refined. The first one was made using Plexiglas 6mm thick. The first robot including the

batteries was about 700g. The second was made using Forex 5mm thick which is significantly

lighter but less resistant. It weighted about 595g which is a significant reduction in the overall

weight. (The camera and raspberry Pi weren’t included in the weighting)

Figure 2.1 is a picture of the mounted robot. Figure 2.2 shows all the mechanical parts with their

dimensions

Remark: we have six legs, so the leg section is repeated six times.

Furthermore, to construct the frame we needed the following components and tools:

1- 8x 70mm lengths of M4 threaded rod

2- 12x 32mm M4 rods

3- 28x M4 Nuts

4- 46x M4 Lock Nuts

5- Cutter with multiple blades

6- Scroll saw

7- Many files with different

8- Sandpaper

9- Glue

10- Rigid wire of 1mm (or less) diameter

11- Patience (lot of it)

13

Figure 2.1: Mounted Robot

14

Figure 2.2: Frame Parts

15

2.1.1 Assembling the Frame

2.1.1.1 Leg assembling

First we glue the two coxa parts as shown in figure 2.3. Then we glue the femur parts together.

After that we attach the tibia to the femur using a 32mm rod. The tibia is held tightly using two

nuts and the rod is secured using two lock nuts. Using the same technique we attach the coxa to

the femur and finally we add the servo motors. It’s better to use glue to hold the servos in their

places. We then place the pushrods that connect the servo motors with the parts they control. The

pushrods lengths shouldn’t necessary match the ones we used, however all the pushrods that

control the same parts should be equal figure 2.4.1.

For our design we used the following lengths:

Tibia rod = 55 mm

Femur rod = 40 mm

Coxa rod = 35 mm

We then screw a locknut 21mm into the 70mm rod figure 2.4.2, we then place the rod into the

coxa with the smaller end pointing to the ground figure 2.4.3 and we secure the rod using another

locknut figure 2.4.4.

Two legs should have one extra locknut on the 70mm rod on the side pointing up and one regular

nut on the side pointing to the ground. They would serve as space holders.

Figure 2.3: Coxa Assembled

Figure 2.4: Leg Assembly

16

2.1.1.2 Body assembly
 Place the servo motors on the servo layer as in figure 2.5.

 Place the two legs with the space holders in the positions indicated in figure 2.6 and hold

them using lock nuts.

 Add the other legs and place the servo motors layer.

 Place locknuts over them.

 Carefully attach the Coxa push rods.

 Then add locknuts on the spacers leaving 12mm to place the pcb layer.

 Place the PCB layer

 Finally add locknuts to hold everything together.

2.2 Electrical components
The various electrical components included in our design are as follows:

 18x 9g micro servo motors.

 Arduino mega

 Ultrasonic Sensor HC-SR04

 2x 10000 µf capacitors

 Wi-Fi Camera

 Gamepad

 Computer with Wi-Fi capability

 5V – 40A Power Supply

 4x rechargeable AA NiMh batteries with capacity of 1900mAh or more

Figure 2.5: Servo Layer Figure 2.6: Space holders

17

2.2.1 Micro servos:

The micro servo shown in figure 2.7 is one of the micro servos used in our design. This is because

they’re light (12g with the wires), and they’re cheap about 3$.

The disadvantage is their sensibility to noise (they can shake in some angles and there’s little to

do about it) and relatively low torque.

Geometrical and electrical specifications of the servo are gathered in figure 2.8 and table 2-1.

Table 2-1: Servo specifications

Weight (g) 9

Torque (kg) 1.5kg/cm (4.8V),

1.7kg/cm (6.0V)

Speed(Sec/60deg) 0.13sec/60° (4.8V),

0.12sec/60° (6.0V)

Operating voltage 4.8~6.0V

Operating current 80mA(4.8V) 100mA(6V)

Stall current 500mA(4.8) 650mA(6V)

A(mm) 29

B(mm) 23

C(mm) 25

D(mm) 12

E(mm) 32

F(mm) 19

Figure 2.7: Micro Servo Figure 2.8

18

2.2.2 Arduino Mega

The Arduino mega figure 2.9 uses the microcontroller ATmega2560. The arduino controls the

18 servos, receives data from the Ultrasonic sensor and commands from the gamepad. The full

specifications are on table 2-2.

Table 2-2: Arduino mega specifications

2.2.3Ultrasonic Sensor (HC-SR04)
The Ultrasonic sensor figure 2.10 is a transceiver that sends and receives ultrasound waves and

transforms them into electrical signals. The device measures distances by a simple concept. The

device sends an ultrasound wave, when it hits an obstacle it bounces back and the device receives

it. It is then converted to an electrical signal which in turn is translated into a distance. Our robot

uses this sensor to detect obstacles in front of him.

Microcontroller ATmega2560 DC Current for 3.3V Pin 50 mA

Digital I/O Pins 54 (of which 15

provide PWM output)

Flash Memory 256 KB of which 8 KB

used by bootloader

Input Voltage

(recommended)

7-12V SRAM 8 KB

Input Voltage (limit) 6-20V EEPROM 4 KB

 Clock Speed 16 MHz

Analog Input Pins 16 Length 101.52 mm

DC Current per I/O Pin 20 mA Width 53.3 mm

Weight 37 g Operating Voltage 5V

Figure 2.9:Arduino Mega

19

2.2.4 10000µF capacitors
Capacitors figure 2.11”are used to prevent the voltage from dropping when all the servos draw

current at the same time. The larger the capacity the better. 10000µF are the largest we could find

and we used only two due to weight and space limitations.

2.2.5 Wi-Fi Camera (SJ7000)

We chose this camera figure 2.12 for many reasons: first its lightweight (71g) and its small

dimensions (59.27 x 41.13 x 29.28mm) makes it suitable for our small hexapod. It doesn’t add

much to the weight. The other advantage is the Wi-Fi connection. The camera can stream video

over Wi-Fi which makes it excellent to use in our robot. The other advantage is that it can be

paired with laptops and smart phones too.

2.2.6 Power Supply
The power supply is used for the tethered mode. When the robot is in a controlled environment or

when we need to use it for a prolonged period of time (more than 45 minutes), it’s suitable to plug

the power supply with a long extension cord.

2.2.7 Rechargeable NiMh AA batteries
The choice of batteries was made because of two reasons:

1- Our micro servos need a voltage between 4.8V to 6V, 4x AA batteries in series give 4.8V

which eliminates the need for voltage regulation from the circuit.

Figure 2.10: HC-SR04 Figure 2.11: 10000uF capacitor

Figure 2.12: SJ7000

20

2- NiMh batteries have a low internal resistance. This property allow them to source enough

current for the servos.

Figure 2.13: Gamepad numbering

Figure 2.14: Gamepad map

21

2.2.7 Gamepad
The gamepad figure 2.13 is used to control the hexapod. The instructions are sent to the laptop

which in turn sends them to the Arduino using the USB serial communication. The gamepad has

21 buttons. The combinations are explained in the flow chart in figure 2.14.

2.3 The overall System

To make things clear for the reader, we present two diagrams. Figure 2.15 represents the

connections between the laptop, Arduino, gamepad and camera. Originally we planned to use

wireless connection between the arduino, the laptop and the gamepad and completely eliminate

wires. Sadly the Wi-Fi modules got lost somewhere from China to Algeria. So we had to rely on

wired, serial connections.We also wanted to give the robot a sense of direction by detecting the

magnetic poles of the earth using a magnetometer. The magnetometer lost its sense of direction

and got lost in the transit too. Figure 2.16 shows the connections between the Arduino, servos,

batteries, capacitors and ultrasonic Sensor. Table 2-3 shows the Arduino pin assignment for the

servos.

Table 2-3: Arduino pins assignment

Leg Middle

Right

Front

Right

Front

Left

Middle

Left

Rear

Left

Rear Right

Tibia 36 42 37 43 49 30

Femur 34 40 35 41 51 28

Coxa 32 38 33 39 53 26

Similarly, For the Ultrasonic sensor the following pins of the Arduino are used:

Trigger pin: A6 Echo pin: A7

For the servo motor controlling the Ultrasonic sensor: Control pin : 47

Figure 2.15: connections

22

Figure 2.16: Internal Circuit

23

Figure 2.17: Electronic Circuit

24

Chapter 3 : Software System Design

The software part of our system includes two main programs. A routine that runs on the Arduino

and a program that runs on the computer.

3.1 Arduino Side
This piece of code is responsible for the forward and inverse kinematics calculations, gait

generation, receiving commands through serial USB and sending information to the computer.

To make system elements more reusable, and thus improving system quality, an object-oriented

approach has been adopted in the design of our software. This approach makes use of several

classes which are described in the following subsections. Furthermore, the modelling of the system

is based on UML (Unified Modeling Language) tool which more suitable for this approach.

3.1.1 Class Point:
This class have three variables representing the position of the point in a 3D space (x,y,z)

The class has the following membership functions:

 A constructor Point (int x, int y, int z)

 add (Point offset) adds the offset to the point.

 set (int x, int y, int z) sets the point to the given position.

 Rotate2D(float angle) rotates a point in 2D space.

 rotateXY (float angle) rotates a point in the XY plan.

 rotateXZ (float angle) rotates a point in the XZ plane.

 rotateYZ (float angle) rotates a point in the YZ plane.

The rotation functions would prove very helpful when it comes to generalizing the results that we

get for a single leg to the other ones.

25

3.1.1.1Derivation of the new coordinates after rotation

To explain how this is done, we avoided the matrices to make it understandable to anyone based

on some basic mathematical geometry knowledge. Refer to figure 3.1.

𝑂𝑙𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑥, 𝑦. 𝑁𝑒𝑤 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑥′, 𝑦′

𝜃 = 𝑖𝑛𝑡𝑖𝑎𝑙 𝑎𝑛𝑔𝑙𝑒 ; ∅ = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

x = r × cos 𝜃

y = r × sin 𝜃

𝑥′ = r × cos(𝜃 + ∅) = r × cos 𝜃 × cos ∅ − 𝑟 × sin 𝜃 × sin ∅

𝑦′ = r × sin(𝜃 + ∅) = 𝑟 × sin 𝜃 × cos ∅ + 𝑟 × cos 𝜃 × sin ∅

𝑥′ = 𝑥 × cos ∅ − 𝑦 × sin ∅

𝑦′ = 𝑦 × cos ∅ + 𝑥 × sin ∅

3.1.2 Class Servo
This class was taken from the Arduino library. It offers many useful functions to work with servo

motors. We used two functions:

 attach (int pin) which instruct the Arduino that a servo is attached at the specified pin

 write (int angle) which instructs the servo to move to the specified angle.

It’s worth to describe how does this function works.

Figure 3.1 Derivation of coordinates

26

The servos are analog devices and we’re controlling them using digital outputs from the Arduino.

This is accomplished by using Pulse width modulation (PWM). By changing the duty cycle of the

pulse we’ll get different angles in the Servo. The PWM pulses are generated using the different

timers of the ATMEGA 2560. The servos need to be updated each 20ms. This allows using one

timer to control many servos.

In the arduino mega we can control up to 48 servo motors. There’s only a small limitation on the

pins that we can use which is summarized in table 3-1.

Table 3-1: Pins constraints

Servos analogWrite Pins Timers used

1 - 12 not pins 44,45,46 Timer 5

13 - 24 not pins 11,12,44,45,46 Timers 1 & 5

24 - 36 not pins 6,7,8,11,12,44,45,46 Timers 1,4 & 5

37 - 48 not pins 2,3,5,6,7,8,11,12,44,45,46 Timers 1,3,4 & 5

3.1.3 Class Newping (Ultrasonic Sensor)
This class was developed by “Tim Eckel” and distributed as a library along the standard arduino

libraries. It contains many functions to facilitate the use of ultrasonic sensors. We only needed two

functions:

 constructor NewPing (int trigger_pin,int echo_pin,int max_distance)

 ping_cm() returns the distance in cm

 sonar.ping_median(int iterations) Do multiple pings (default=5), discard out of range

pings and return median in microseconds

 sonar.convert_cm(int echoTime) Converts microseconds to distance in centimeters

3.1.4 Class Serial
This class is derived from a standard library in the Arduino. It handles the serial communication.

We used the following functions:

 begin (int baudrate) sets the data rate in bits per second

 available() returns the number of bytes available for reading

 read () : char returns the first byte of the incoming serial.

 println (String string) Prints data to the serial port as human-readable ASCII text

27

3.1.5 Class Leg
This is the most important class in the project. It encapsulates all the physical aspects of the leg

(as seen in the class diagram), functions responsible for calculating the forward and inverse

kinematics, calibration functions and functions to set the servos to the appropriate angles.

The core of this Class is “setPosition (Point point)” function figure 3.2. It takes as input the

desired point where we want the end of the leg to be in and does the inverse kinematics to get the

required servo angles. After that it sets the servos to the appropriate position.

Inverse kinematics Engine

Start

Rotate leg to

default angle

Translate leg to

deafault position

Calculate desired

angles

Coxa AngleTibia Angle Femur angle

Write angle to Tibia

Servo

Write angle to Coxa

Servo
Write angle to

Femur Servo

Exit

Figure 3.2: setPosition function

3.1.6 Class Rusty
The class is named after the robot. It handles the communication of the arduino with the computer.

It also handles, calibration, the step generation, gait generation and the synchronisation between

the legs.

Class Diagram in figure 3.3 shows the relation between the classes.

28

3.1.7 UML Class Diagram

Figure 3.3: UML Class Diagram

29

3.2 Computer Side
In the computer we have four independent programs running in parallel.

 The first program translates the commands from the gamepad into characters in order to

send them through serial connection to the Arduino

 The second program handles the actual serial connection with the Arduino and ensures the

synchronization.

 The third program handles the communication with the camera over Wi-Fi. It converts the

video stream into a format that is accepted by the program doing the image processing

 The fourth program handles image processing.

3.3 Description of the system

3.3.1 System Start-up
1- The robot s turned on by:

1- Turning on the Arduino mega this would automatically power the ultrasonic sensor.

2- Supplying the servos with power.

3- Turning on the camera.

4- Establishing the link with the computer.

2- On the computer side:

1- Plug the gamepad.

2- Start the software that translates the key presses.

3- Start the software handling the serial communication.

4- Establish the Wi-Fi connection between the camera and the computer.

5- Now depending on the use of the camera we can either:

1- Start the software that streams the video from the camera.

2- Start the software that does the image processing.

3.3.2 Use of the system
The robot boots and sets the servos at the default position and waits for orders from the user.

The use then choses the free mode or the automated mode.

The first mode lets the user control the robot. For instance he can make the robot walk four

direction, rotate clockwise or anticlockwise and perform body translations on x,y and z axes.

All the movements are done autonomously in the sense that the gait generation and the legs

manipulation are performed by the robot itself.

30

Body translation is changing the position of the body with respect to all

supporting legs

The second mode sets the robot free to explore its environment using the feedback from the

ultrasonic sensor to detect and avoid obstacles while giving the user a live view using the camera.

The robot can also look for an object while in motion. Once it detects the object it would circle it

with a green circle. When the robot gets closer to the desired object, the circle turns red and the

robot pauses declaring that it did find the object.

3.3.3 UML Activity diagrams

The next activity diagrams explain in a concise way the working of the robot.

 Figure 3.4 shows the start menu of the robot.

 Figure 3.5 shows the body translations.

 Figure 3.6 shows the free movements.

 Figure 3.7 explains the things that happen on the computer.

 Finally figure 3.8 describes the free roaming algorithm.

31

start

Initialize servos pins
Initialize serial connection

Initialize Ultrasonic pins

incoming data on serial

True

False

mode_select = Serial.read()

mode_select == manual
True

print "manual mode selected "

incoming data on serial

True

False

manual_select = Serial.read()

manual_select == exit

True

print "exit manual
mode"

False

mode_select == automatic

manual_select == free mouvementmanual_select == Body translation

True

print "Body
Translations "

True

print " Free
movement"

FalseFalse

False

mode_select == reset

False

False

True

print "Rusty reseted"

True

print "Automatic Mode"

start of free movementstart of Body translations

Start of Automatic mode

Figure 3.4: Start menu

Figure 3.4: start menu

32

Start Body translation

incoming serial data

True

False

move = Serial.read()

move== exit

Leave Body translation

False

move == translate+ x

False

move == translate - x

False

move == translate +y

False

move == translate -y

True

Perform inverse
kinematics calculations

True

TrueTrue

write angles to
servos

False

move == translate +z

False

move == translate -z

False

True

True

Figure 3.5: Body Translations

33

Start Free movement

incoming serial data
False

move = Serial.read()

move== exit

Leave Free movement

move == tripod Gait move == Wave Gait

move == increase LS move == decrease LS

True

move == increase RS move == decrease RS

True

select tripod gait

True

select wave gait

exceed limit
False

LS ++

True

exceed limit
False

LS --

exceed limit
False

RS ++

exceed limit
False

RS --

False

False False False

FalseFalse

move == forward

False

move == backward

false

move == right

False

move == leftmove = rotate
clockwise

False

move == rotate
 anticlockwise

False

Perform inverse
kinematics

True

True

True

True

TrueTrue

Write angles to
servos

Figure 3.6: Free movement

34

Start

Establish Wi-Fi

connection with

camera

Recieve video

stream

Display video

Initialize Gamepad

convert keypress to

char

data_ ready = true

Intialize serial

connection

data_ready

True

data_ready = false

send serial data to

arduino

Serial.Available()

True

read incoming data

from arduino

FalseFalse

true

gamepad press

False

data_ready = false

Exit the program

Exit

Need processing ?

True

Start image

processing script

False

Figure 3.7: Computer Side

35

Free Roaming

Arduino Computer

print "Free roaming :D"

Serial.Available()

True

False

mode = Serial.read()

mode == exit

True

print "
Exitining

Free
roaming"

Exit free roaming

DF = distance
forward

DF >10

Step forward

False

DR = distance to the
right

DR>10
True

Move right

(DF >10

Rotate 180°
corner

False

DF = distance
forward

False

True

True

Aquire Image
from Camera

Object detected

is object far?

Entour Object
with a green

circle

Entour Object
with red Circle

Pause roaming

Figure 3.8: Free roaming algorithm

36

3.4 Image processing

lbIn our humble work we barely scratched the surface of image processing. Our goal was to

develop an algorithm capable of detecting and tracking a certain object with a specific shape

and colour. For the sake of example, we’ve chosen a yellow circle as our desired object. The

idea is that while the robot is exploring its environment it will keep an eye looking for this

object. As an assumption, once the object is detected it will circle it in green and when the robot

gets closer to the object, the circle turns red and the robot stops.

To accomplish this we used OpenCV library which stands for Open source Computer Vision.

It’s mainly a software library used for Computer Vision and Machine learning. We’ve chosen

Python as a programming language for this task.

First the video stream is converted into a suitable format, the resolution is also reduced for

better performance.

We rely on the colour and shape to detect and track our object. For this reason, we convert the

colours from BGR “Blue, Green, Red” to HSV “Hue, Saturation, Value”. The reason for this

is that BGR colour space defines colours based on their composition of the three fundamental

colours, however the HSV colour space defines colours similarly to how the human eye

perceive them. After that we split the three components apart and each component is confined

into a threshold. The values can be modified to accommodate any colour we want to track. To

do this we start with some predefined values, then we keep tweaking till we get the best range

for our object. We then logically AND the three images to get a binary image where

approximately only the object is white and everything else is black. The resulting picture is

then smoothed. To identify the circle we use a special function called houghCircles. Finally

the detected circle is drawn on the original image and displayed to the user. The colour depends

on how far the object is: green for far and red for near. Activity diagram in figure 3.9 describes

this in a better way.

37

3.4.1Activity Diagram

Convert from BGR
colour space to HSV

colour space

Recieve stream from
Camera

Convert Stream to
usable Format

Show Stream

Split to three components Hue, Saturation,
Value

Create Hue DisplayCreate Saturation Display Create Value Display

Create Value sliderCreate Hue sliderCreate Saturation slider

HueSaturation Value

Change?Change?Change?

TrueTrueTrue

Logically AND Saturation, Hue, Value

Create tracking
windows

Detect Object

Near ?

Draw Red Circle

Draw Green Circle

True

False

Figure 3.9: Object tracking

38

Chapter 4 Results and Analysis

To check the robustness of our robot, several tests have been performed. First we connect the

different blocks of the system by placing the power supply, plugging the USB cable to the

Arduino and the Computer and plugging the gamepad. Then we start the serial link and the

software that handles the gamepad presses as seen in figure 4.1.

Figure 4.1: System Overview

For this phase we didn’t need the camera so we removed it. Once the system is on, the software

displayed “Rusty online :D” message meaning that everything is set and working as seen in

figure 4.2

Figure 4.2: Serial link up

39

4.1 Body Translations

4.1.1 Translation along z

First we started with the body translations. For z translation, we measured the height from the

ground to the lowest point of the body. This is useful because it gives us an idea about the

height of the obstacles that the robot can walk through without problems. In case we want our

robot to go inside some sort of tunnel we simply add to the previous measurements the actual

length of the robot’s body. Figure 4.3 shows the start position, figure 4.4 shows Max z

translation and figure 4.5 shows Min z translation. Table 4-1 summarizes the findings.

Figure 4.3: Start Position

Figure 4.4: Maximum z translation

40

Figure 4.5: Minimum z translation

Table 4-1: z translation

4.1.2 Translation along x and y axes

Once the translation along z axis has been successfully tested, we tested the body translation

along the x and y axes. Our reference point is the center of the robot. Figure 4.6 shows the robot

in Rest position.

Robot state Highest point in the robot (mm) Lowest point in the robot (mm)

Start position 120 (180 with camera) 35

Max z translation 135 (195 with camera) 50

Min z translation 105 (165 with camera) 20

Figure 4.6: Rest Position

41

 Figure 4.7 shows maximum translation along y axis, figure 4.8 shows maximum translation

along –y axis, figure 4.9 shows the maximum translation over -x axis, figure 4.10 shows the

maximum translation over x axis. Table 4-2 summarizes the measurements.

Table 4-2: x,y translations

 Min (mm) Max (mm)

X 45.5 20

Y -25 26

4.2 Gaits

We tested the robot in many terrains. It performed very well on rough terrains. Sand, little

rocks, terrain with medium length herbs, carpets and tables, the robot seems to love those

terrains. The added friction helps the feet to hold firmly and drag the body along. It had some

Figure 4.9: translation along - x axis Figure 4.10: translation along x axis

Figure 4.7: Translation along y Figure 4.8: Translation along -y

42

problems in slippery surfaces like glass. This is common for all types of robots and new

algorithms are currently developed to detect slippery terrains and avoid them if possible.

4.2.1 Speed

4.2.1.1 Linear speed

The robot has ten levels of speed. We tried the tripod and wave gaits for each speed level and

calculated the actual speed of the robot at each level.

Table summarizes the results and figure 4.11 displays them as 2-axes graph to see the

relationship between the variation of the speed as the level decreases. On the software side the

speed levels are related linearly. The experimental results confirm this with a deviation of less

than 15% from a perfect straight line.

Table 4-3: Speed levels

4.2.1.2 Rotational speed

Our robot can walk in any direction. This feature reduces the need for rotation. However there

are times when we need the robot to rotate as in the case when the mounted camera is used.

 Speed cm/s

Level 10 9 8 7 6 5 4 3 2 1

Tripod 10.66 10.12 9.85 8.14 7.80 7.37 5.90 5.47 5.10 4.63

Wave 3 2.2 1.8 1.7 1.2 0.95 0.7 0.6 0.5 0.867

10.66
10.12 9.85

8.14
7.80

7.37

5.90
5.47

5.10
4.63

3

2.2
1.8 1.7

1.2 0.95 0.7 0.6 0.5
0.867

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Level 10 Level 9 Level 8 Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1

SPEED

Tripod cm/s wave cm/sec

Figure 4.11: Speed levels

43

Our robot is capable of rotating in many speed levels. The following table summarizes our

experimental results and figure 4.12 displays its corresponding graph.

Table 4-4: Rotational speed

4.3 Free roaming algorithm tests

4.3.1 without Camera

We tried the algorithm without a camera and we found that it successfully avoided obstacles.

It also avoided getting stuck in corners. Figure 4.13 shows the serial output while the robot was

roaming.

 Angular velocity deg/sec

Level 10 9 8 7 6 5 4 3 2 1

Speed 12.97 11.84 7.11 5.86 4.65 4.05 3.78 3.23 3.05 2.63

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Level 10 Level 9 Level 8 Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1

ANGULAR VELOCITY DEG/S

Angular velocity deg/s

Figure 4.12: Rotational speed (deg/s)

44

Figure 4.13: Run example without Camera

Refer to the previous figure, when the serial connection between the robot and the computer is

established, we chose the free roaming mode. In this mode, the robot starts with the ultrasonic

sensor looking forward. It detects an obstacle and measures the distance to the obstacle. With

each step, the distance gets smaller which means that we’re advancing towards the obstacle.

Once the obstacle is 10 cm far the ultrasonic sensor turns right to check if there’s no obstacles.

If there isn’t any it will walk to the right. On the experiment the robot encountered a corner so

it rotated 180 degrees and continued roaming.

4.3.2 with camera

This time we placed the camera. First we adjust the thresholds of the Saturation figure 4.14,

Hue figure 4.15 and Value figure 4.16 to match our object. If that’s done properly we’ll see

Figure 4.14: Saturation window
Figure 4.15: Hue windows

45

only our object in the closing window as seen on figure 4.17. The colour of the circle depends

on the distance. Figure 4.18 shows a red circle when the object is near and figure 4.19 shows a

green circle when the object is far.

 Figure 4.20 shows the serial output when the robot detects the object. It then waits for

the user to either take the object and the robot continues roaming looking for other objects or

exit the free roaming mode. In our example the user decided to exit after the robot has found

the object.

Figure 4.16: Value window

Figure 4.18: Near Object

Figure 4.17: Closing window

Figure 4.19: Far Object

Figure 4.20: Object found

46

Conclusion
This work was about the design and implementation of a six legged (hexapod) autonomous

robot capable of obstacle avoidance using a single ultrasonic sensor and object tracking using

a mounted camera.

We built two frames for the robot: one made from 6mm Plexiglas and the second from 5mm

Forex. The first design is stronger with the drawback of the added weight and the time

consuming manual work to cut and refine the parts. The second frame is lighter and easier to

cut and refine with the disadvantage of the reduced resistance. However, unless if someone

wants to compete in Robot Combat League, both frames are strong enough for all the intended

uses.

The robot has two modes of use. The first mode is user controlled and the second is full

automated one. The user controls the robot using a gamepad or the computer’s keyboard. The

user can also get a live feed from the camera at any time. The camera can stream over a range

of 100 meters. It can stream to computers and smart phones.

We developed a program that runs on the robot which relies on an Atmega 2560 microcontroller

embedded in an Arduino mega board. The main part is an inverse kinematics engine capable

of generating all sort of movements. For instance it can generate the tripod and wave gaits, it

can also generate body translations. Using the ultrasonic sensor the robot can detect and avoid

obstacles without getting stuck. On the computer side we have several programs working

independently. One is responsible for translating the gamepad presses. Another is responsible

for the serial communication with the Arduino. The third one is a python script that manages

everything related to the camera. For instance it detects an object from its shape and size and

tracks it in real time.

We performed many tests on different terrains. The robot performed well on rough terrains by

adjusting the speed of the gait accordingly.

This work serves as a prototype that can be easily adjusted to fit the intended use. This robot

can be used in rescue missions to find survivors. It can be used to discover and map places that

aren’t accessible to human beings like caves.

Future perspectives

For start it’s advisable to add the components that we couldn’t due to their inaccessibility to us.

A magnetometer would give the robot a sense of direction, a good wireless transmitter would

47

eliminate the need for the USB cable and a GPS would add a whole new domain of applications.

We could also replace the Arduino with something more powerful in order to do inline image

processing. Obstacle avoidance can be done using the camera and the ultrasonic sensor would

only care about the unexpected obstacles. We can also experiment with adaptive gaits and

flexible muscle-based locomotion

48

References
[1] May, R. M. How many species are there on earth? Science, Volume 241: 441-

1449. 1988.

[2] Csonka, P. J. and Waldron, K. J.Technology Developments: the Role of

Mechanism and Machine Science and IFToMM.Ceccarelli, M. (ed.).Chapter A

Brief History of Legged Robotics. Springer Netherlands, 2011, pp. 59-73

[3] MIT Leg Laboratory. "3D One-Leg Hopper (1983-1984)." 3D One-Leg Hopper.

N.p., n.d. Web. 21 May 2016.

http://www.ai.mit.edu/projects/leglab/robots/3D_hopper/3D_hopper.html

[4] Morazzani, I., Lahr, D., Hong, D.W., Ren, P., “Novel Tripedal Mobile Robot and

Considerations for Gait Planning Strategies Based on Kinematics,” Recent

Progress in Robitics: Viable Robotic Service to Human, pp.35-48, Springer-Verlag

Berlin Heidelberg, 2008

[5] Boston Dynamics. "Boston Dynamics: Dedicated to the Science and Art of How

Things Move." Boston Dynamics: Dedicated to the Science and Art of How Things

Move. N.p., n.d. Web. 21 May 2016.

http://www.bostondynamics.com/robot_cheetah.html

[6] Besari, A. R. A., Zamri, R., Prabuwono, A. S. and Kuswadi, S.Intelligent Robotics

and Applications: Second International Conference, ICIRA 2009, Singapore,

December 16-18, 2009. Proceedings.Xie, M., Xiong, Y., Xiong, C., Liu, H. & Hu,

Z. (ed.).Chapter The Study on Optimal Gait for Five-Legged Robot with

Reinforcement Learning.Springer Berlin Heidelberg, 2009, pp. 1170-1175

[7] Waldron K. The Adaptive Suspension Vehicle / Kenneth J. Waldron, Robert B.

McGhee // IEEE Xplore – Control Systems Magazine, IEEE. – 1986. – N 6. – P.

7-12.

[8] Ben Greer. "Lab Notebook." : [HEX] Inverse Kinematics. N.p., n.d. Web. 21 May

2016.

[9] Siegwart, Roland, Illah Reza. Nourbakhsh, and Davide Scaramuzza. Introduction

to Autonomous Mobile Robots. Cambridge, MA: MIT, 2011. 20-21. Print.

[10] Albarral, J. L. "Implementation of a Driver Level with Odometry for the

LAUTON III Hexapod Robot." Climbing and Walking Robots: Proceedings of the

7th International Conference CLAWAR 2004. By E. Celayade. Berlin: Springer,

2005. N. pag. Print.

http://www.ai.mit.edu/projects/leglab/robots/3D_hopper/3D_hopper.html
http://www.bostondynamics.com/robot_cheetah.html

