
Development and Implementation of Even And Uneven
Environment Navigation Strategy

BELKALEM JUGURTHA

ABED MOHAMMED AMINE

5 juin 2016

Dedication

To my lovely parents and grandparents who always supported me in my studies.
To my brothers Sofiane and Malik and my sister

To all my family.
To all my friends who have been there for me, especially : Lyes, Messaoud , Karim, Madjid « The

Genius », Tayeb, Mokrane and Yacine.
To my first real life teacher Karim from « EPI_MEDIA »Entreprise.

To all people who helped and gave me the chance to be the person I am now.

BELKALEM Jugurtha

To my lovely parents, who have been always my source of inspiration and a big symbol of
sacrifice.

To my grand father and grand mother « rabi yarahmoum »my teachers of this life.
To my brothers youcef, koki, wassim and especially my little angel meissa.

To all my family.
To my football team’s players mamadou, adel, mounir and vitch and all who share this passion.
To my special friends Mehdi, mohcen, moncef, oussama, nassim, abdou, imad, hamza, okba,

foued, seddam and Suki.
To all the people who have helped me to be here today.

ABED Mohamed Amine

i

Acknowledgments

We would like to express our gratitude to the many people who helped us through this project ;
to all those who provided support, talked things over, read, wrote, offered comments, allowed us to
quote their remarks and assisted in the editing, proofreading and design.
We would like to thank our supervisor, Dr. Hadjira Belaidi, for the patient guidance, encouragement
and advice she has provided throughout our time as her students. We have been extremely lucky
to have a supervisor who cared so much about our work, and who responded to our questions and
queries so promptly. We would also like to thank all INELEC’s staff who helped us financially. In
particular we would like to thank signal and systems lab’s responsibles(Room B413) who made
this project realizable.
We would like to thank HADBI Karim from « EPI-MEDIA »entreprise for helping us in the process
of selection and editing.
We would like to thank phd students BAADJI Boussadia and MATI Ayache for proofreading and
comments.
Last and not least : we beg forgiveness of all those who have been with us over the course of the
years and whose names we have failed to mention.

ii

Abstract

Industrial robotics is evolving quickly around the world, a great interest is shown for these ma-
chines. The robot’s age is close, new citizens will join our society. However, for these machines
to operate complex algorithms are needed and required to handle various situations. An important
capability for mobile robots is navigation, reaching a destination without colliding the obstacles,
this problem is referred as Path Planning.
Path planning is required for an autonomous mobile robot to find an optimal trajectory to the des-
tination, a human controller is not needed anymore. A new approach has been proposed in this
work, built upon the internet of objects ; computers are focused on path computation and robots
on the execution, information is exchanged through the network (wireless local area network). The
results outperform by far the classical implementations where robots were making every decision.
Scalability is also achieved easily using the proposed topology, multiple robots can be controlled
without impacting on the implementation.
In this project, intelligent and robust software has been written to automate every task, a simple in-
put of the map will trigger the whole process, the computer will compute an optimal trajectory then
sends it to the robot for execution through the wireless medium(WIFI). The path is preplanned and
can be saved for further exploitation. The robot is also able to detect a change in the environment
and report it to the computer to get a new path.

iii

Table of Content

Dedication i

Acknowledgments ii

Abstract iii

List of Figures v

List of Tables v

Introduction ix

1 Generalities 1
1.1 Generalities on mobile robots . 1

1.1.1 Definition . 1
1.1.2 Classification Of Mobile Robots . 2

1.2 Environment modeling . 3
1.2.1 Continuous representation . 3
1.2.2 Discrete representation . 3

1.3 Path planning . 5
1.3.1 Road Map Method . 5
1.3.2 Graph Search . 6
1.3.3 Potential Field . 7
1.3.4 Sensor Based Methods . 9

1.4 Uneven Environment and Algorithm discretization 11
1.4.1 Uneven Environment . 11
1.4.2 Algorithm discretization . 12

1.5 Conclusion . 12

2 Hardware Implementation 13
2.1 Mobile robot platform description . 13
2.2 Sensors Description . 14

2.2.1 Camera . 14
2.2.2 LADAR . 14
2.2.3 Infrared Sensors . 15
2.2.4 Ultrasonic Sensors . 16

2.3 Necessary sensors which must be added to the platform 16

iv

2.3.1 LM35 : Temperature Detector . 16
2.4 Wireless LAN Communication Using WIFI . 17

2.4.1 Wifi Overview . 17
2.4.2 Interacting With Wifi . 17
2.4.3 Reprogramming the ESP8266 . 19

2.5 Conclusion . 19

3 Navigation strategy development 20
3.1 Environment recognition Using Environment’s Map 20
3.2 Obstacles detection and avoidance(Two Level ODA) 20

3.2.1 Computer Level Obstacle Detection(Path Generation) 21
3.2.2 Robot Level(Path Execution) . 23

3.3 Path planning algorithms . 24
3.3.1 Bug0 Algorithm . 24
3.3.2 Numerical Potential Field . 26
3.3.3 Local Minima Problem . 30

3.4 Conclusion . 32

4 Hardware and software implementation 33
4.1 Navigation strategy execution . 33

4.1.1 Circuit Overview . 33
4.1.2 Path Parsing And Execution . 35
4.1.3 Master Mode(Web Interface) . 36

4.2 Experimental tests . 37
4.2.1 Software Optimization . 37
4.2.2 Numerical Potential Field Computation Complexity 40
4.2.3 Adding Software Security . 41
4.2.4 Real World Results And Discussion . 42
4.2.5 Future Expansions . 46

4.3 Conclusion . 47

Final Conclusion 48

Appendices 51
.1 Arduino Mega 2560 . 51
.2 Dijisktra’s Algorithm . 52

v

List of Figures

1.1 Autonomous Mobile Robot . 1
1.2 Aerial robot Robot . 2
1.3 Underwater Robot . 2
1.4 Wheeled Robot . 3
1.5 Tracked Robot . 3
1.6 Exact Cell Decomposition . 4
1.7 Fixed Cell Decomposition . 4
1.8 Path Planning Problem . 5
1.9 Visibility Graph 1st Step . 5
1.10 Visibility Graph 2nd Step . 6
1.11 Visibility Graph repeated For n Steps . 6
1.12 Goal Potential Field . 8
1.13 Obstacle Potential field . 8
1.14 Obstacle-Goal Combined Potential Fields . 9
1.15 bug0 Algorithm . 9
1.16 bug1 Algorithm . 10
1.17 bug2 Algorithm . 10
1.18 Picture From Our Uneven 3D View Simulator Using Perlin Algorithm for terrain

generation . 11
1.19 bug0 implementation comparison (a)-Simulator from internet(no straight line) (b)-

Illustration of our approach . 12

2.1 Mobile Robot Platform Description (unit : mm) 13
2.2 Camera Based . 14
2.3 OV7670 Camera Module . 14
2.4 In the image above, on the left is a LADAR image from the front of a vehicle

stopped at a crosswalk in Santa Barbara, CA. On the right is the same LADAR data
« viewed »from an overhead location highlights the 3-D nature of the data collected. 15

2.5 infrared Sensor- GP2Y0A41SK0F Module . 15
2.6 Ultrasonic Sensor-HC-SR04 . 16
2.7 Channels and interference on a WiFi network . 17
2.8 SparkFun WiFly Shield . 18
2.9 ESP8266 . 18

3.1 Picture From Our Environment Map Editor / Pos : X and Y shows mouse cursor
position . 21

3.2 Picture from our Map Editor with Matrix representation of the field 22

vi

3.3 Potential Field Applied On The Map(Path Generation Phase) 22
3.4 Picture From Our Wireless Communication Program 23
3.5 Euclidean Shortest Distance in 2D Space(picture from our simulator) 24
3.6 Bug0 With Displacement Rounding . 25
3.7 Bug0 With Robot Position Discretization . 25
3.8 Numerical Potential Field Working Example . 26
3.9 Goal Force . 27
3.10 Object Force . 27
3.11 Total Sum Of Forces . 27
3.12 Potential Field Array . 28
3.13 Minimal Path Produced By Numerical Potential Field 28
3.14 Potential Field Implementation-Diagonals Are Not Allowed 28
3.15 Potential Field Implementation Results-Diagonals Are Allowed 29
3.16 Picture From Our 3D Simulator- Navigation with Numerical Potential Field on flat

surface . 29
3.17 Picture From Our 3D Simulator Uneven-terrain (ground circumvented using Nu-

merical Potential Field) . 30
3.18 Picture From Our 3D Simulator Uneven-terrain (ground climbed using Numerical

Potential Field) . 30
3.19 Local Minima Detection Using Time Based Estimation 31
3.20 Local Minima Detection Time . 31

4.1 Project Circuit Diagram Made With Fritzing . 34
4.2 Project Schematic Diagram Made With Fritzing 35
4.3 Picture From Master Mode Web Interface . 37
4.4 Our Software Dependencies Using Dependency Walker 38
4.5 Our Software Under PEview- Virtual Size=Raw Data 39
4.6 Compressing Our Javascript code using Google Closure Compiler yields 36.05%

compression efficiency . 40
4.7 Our Program Under OllyDbg(Debugger) : (a)-before AntiDebug / (b)-after Anti-

Debug . 42
4.8 Our Program Under HexEditor : (a)-before Steganography / (b)-after Steganography 42
4.9 Robot Implementation . 43
4.10 Initial state configuration of the environment . 43
4.11 Desired path produced using Numerical Potential Field 44
4.12 Robot executing the received trajectory . 44
4.13 Robot Real Trajectory Approximation - Best Case 45
4.14 Robot Real Trajectory Approximation - Worst Case 45
4.15 Multiple Robots Control Using Potential Field . 46
4.16 Our Implementation of Graph Search Algorithms 47

17 Arduino Mega 2560 . 51
18 Dijiktra Algorithm Pseudo-Code . 52

vii

List of Tables

4.1 Sections of a PE File for a Windows Executable 38
4.2 Program Size with different compiling options . 40
4.3 Cell Number VS Time Complexity and Memory Complexity 41

viii

Introduction

Robots are rapidly evolving from factory workhorses, which are physically bound to their work-
cells, to increasingly complex machines capable of performing challenging tasks in our daily en-
vironment. Robots are used everywhere like mass production of consumer goods, assembly and
packing, transportation, space and underwater exploration, surgery laboratory research and army.
Autonomous robots are special flavors of these which work without human operators with a high
degree of autonomy.
Autonomous Robot has to be intelligent in such a way that knowing it’s dynamics, initial state and
the environment description (set of Goals and Obstacles), it should be able to drive itself from an
initial position to a destination point while avoiding obstacles (collision free path), this is known
As Path Planning Problem.
Unfortunately, complicated software and hardware must be combined to construct these machines
which is not an obvious task. The software must be robust, fast and easy to use. By the same token,
the hardware must meet the environment’s irregularity and software compatibility requirements.
Complicated math functions are involved to bring system compensation to face different situations.
In this project we have constructed this machine, a user interactive system able to accomplish the
demands.
Navigation strategy is a classical challenge but papers around the world does not seem to cover the
programming aspects of this field. In this work we overcame this limitation and filled some gaps of
this problem.

The first chapter provides a description of mobile robots, defines the path planning problem as
well as the algorithms deployed in practice to solve it and gives a global image of our implementa-
tion of some them.
The second chapter is an overview of the hardware parts of our autonomous mobile robot, by the
same mean it provides a quick picture of some technologies evolving in the wild.
Coming to the third chapter, it provides a detailed analysis of our implementation to get a collision
free path with some sample codes illustrating this work.
Finally the last chapter shows optimization process made for faster execution and low memory
consumption and demonstrates how our software is resistive to reverse engineering and intellec-
tual property violations.
The remaining chapters dive into the world of path planning.

ix

Chapter 1

Generalities

A new era is coming, a world where robots will live among us and cooperate with humans in our
society. This reminds us computers 20 years ago, they invaded our lives suddenly and today they
are everywhere (schools, universities, business buildings, railway stations and even in our homes).
Robots are expected to be the next computers in the near future.
In this chapter, a special flavor of these are studied closely. Some robots are different from the
others which attracted our attention, they are given the name « Autonomous Mobile Robots ».

1.1 Generalities on mobile robots

1.1.1 Definition

According To McGraw-Hill Dictionary : « a robot mounted on a movable platform that trans-
ports it to the area where it carries out tasks. »[1]

Informally speaking, a mobile robot is an automatic machine that is capable of locomotion(see
figure 1.1), an intelligent physical agent that is built to simulate the actions of humans. When they
are in an environment : they have self awareness and awareness of others in the same space, they
can perceive it, note the changes that occur in the environment, then reacts to the changes, and takes
appropriate decisions.
Almost every type of mobile robot operates in a different environment, has different behavior, and
connects to different sensors and actuators. Mobile Robots can be classified as follow [2] :

FIGURE 1.1 – Autonomous Mobile Robot

AMR - Autonomous Mobile Robot : can navigate without the need for physical or electro-
mechanical guidance devices

1

AGV - Autonomous Guided Vehicle : rely on guidance devices that allow them to travel a
pre-defined navigation route in relatively controlled space

1.1.2 Classification Of Mobile Robots

The possible types of mobile robots are unlimited but most often they fall into two categories[3] :

1.1.2.1 The environment in which they travel

Land or home robots : are usually referred to as Unmanned Ground Vehicles (UGVs).

Delivery & Transportation robots can move materials and supplies.

Aerial Robots (UAVs) : are usually referred to as Unmanned Aerial Vehicles (see figure 1.2).

FIGURE 1.2 – Aerial robot Robot

Underwater Robots (AUVs) : are usually called autonomous underwater vehicles (see example
in figure 1.3).

FIGURE 1.3 – Underwater Robot

Polar robots : designed to navigate in icy, crevasse filled environments.

1.1.2.2 The Way(Device) Used To Move

Legged robot : an increasing number of robots use legs for mobility. Legs are often preferred
for robots that must navigate on very uneven terrain.
Examples : human-like legs (i.e. an android) or animal-like legs.

Wheeled robot : wheels are by far the most popular method of providing robot mobility and
are used to propel many different sized robots and robotic platforms(An example is shown
in figure 1.4).

Tracks : tracks (or treads) are similar to what tanks use. Track drive is best for robots used
outdoors and on soft ground.(Consider figure 1.5)

2

FIGURE 1.4 – Wheeled Robot

FIGURE 1.5 – Tracked Robot

1.2 Environment modeling
To perform navigation, a robot needs to interact within its environment. It needs to know how

to negotiate terrain, detect and avoid obstacles and sense the surrounding.

1.2.1 Continuous representation
A continuous-valued map is one method for exact decomposition of the environment. The po-

sition of environmental features can be described with high accuracy. Today’s Mobile Robots use
continuous map representation only for 2D space as increasing the dimension yields computational
complexity.

1.2.2 Discrete representation
We can group them into the following :

1.2.2.1 Exact decomposition

In exact decomposition of a planar workspace populated by polygonal obstacles, the map repre-
sentation tessellates the space into areas of free space. The representation can be extremely compact
because each area is actually stored as a single node(method Shown in figure 1.6).
About Exact decomposition :

— A version of exact cell decomposition can be extended to higher dimensions and non-
polygonal boundaries (cylindrical cell decomposition).

— Provides exact solution and leads to completeness.
— Expensive and difficult to implement in higher dimensions.

3

FIGURE 1.6 – Exact Cell Decomposition

1.2.2.2 Fixed decomposition or Approximate Cell Decomposition

In which the world is tessellated, transforming the continuous real environment into a discrete
approximation for the map.The idea of Fixed cell decomposition approach is to keep subdividing
the environment into subspaces of equal size recursively until each subspace is either completely
occupied by some obstacle, or completely outside of any of the obstacles, or the pre-specified re-
solution limit is reached(see figure 1.7).
Approximate Cell Decomposition Advantages :

FIGURE 1.7 – Fixed Cell Decomposition

— Limited assumptions on obstacle configuration.
— Approach used in practice.
— Find obvious solutions quickly.

Approximate Cell Decomposition Drawbacks :

— No clear notion of optimality (« best »path).
— Trade-off completeness/computation.
— Still difficult to use in high dimensions.

1.2.2.3 Hybrid representation

It is a combination of the both representation mentioned above. The environment is taken dis-
crete but the motion planning algorithm is considered as continuous environment. This strategy is
used to avoid the difficulties of software implementation of continuous environment.

4

1.3 Path planning
The path planning problem is described as : finding a shortest or optimized path between start

point and goal in a spatial configuration consisting of obstacles of various types(see figure 1.8).
There are many fundamentally different approaches suitable for different environmental configu-
rations. The various methods are Cell Decomposition, Sampling Method, Probabilistic Roadmap
methods, Generalized Voronoi diagrams, etc...

FIGURE 1.8 – Path Planning Problem

1.3.1 Road Map Method
The basic idea behind probabilistic roadmap planner(PRM) is to take random samples from the

configuration space of the robot, testing them for whether they are in the free space, and use a local
planner to attempt to connect these configurations to other nearby configurations[4]. The starting
and goal configurations are added in, and a graph search algorithm is applied to the resulting graph
to determine a path between the starting and goal configurations.
Two different kinds can be Distinguished :

1.3.1.1 Visibility Graph

1. First, draw lines of sight from the start and goal to all « visible »vertices and corners of the
world(step illustrated in figure 1.9).

FIGURE 1.9 – Visibility Graph 1st Step

2. Second, draw lines of sight from every vertex of every obstacle like before. Remember lines
along edges are also lines of sight(step illustrated in figure 1.10).

3. Repeat until you are done(step illustrated in figure 1.11).

5

FIGURE 1.10 – Visibility Graph 2nd Step

FIGURE 1.11 – Visibility Graph repeated For n Steps

Visibility Graphs : Weaknesses
— It produces a short path but :

— Tries to stay as close as possible to obstacles.
— Any execution error will lead to a collision.
— Complicated in higher dimensions(greater then 2D).

— We may not care about strict optimality so long as we find a safe path. Staying away from
obstacles is more important than finding the shortest path.

1.3.1.2 Voronoi diagram(Maximum Clearance Roadmap)

Voronoi diagram of a set of sites in the plane is a collection of regions that divide up the plane.
Each region corresponds to one of the sites and all the points in one region are closer to the site
representing the region than to any other site.[5]

— Difficult to compute in higher dimensions or nonpolygonal worlds.
— Can be unstable because Small changes in obstacle configuration can lead to large changes

in the diagram.
— Localization is hard (e.g. museums) if you stay away from known surfaces.

1.3.2 Graph Search

1.3.2.1 Breadth-first search (BFS)

Breadth First Search algorithm(BFS) traverses a graph in a breadthwards motion and uses a
queue to remember to get the next vertex to start a search when a dead end occurs in any iteration[6].
BFS was invented in the late of 1950s by E. F. Moore, who used it to find the shortest path out of
a maze[7], and discovered independently by C. Y. Lee as a wire routing algorithm (published in
1961)[8]. This algorithm is summarized by the following :

6

1. Visit adjacent unvisited vertex. Mark it visited. Display it. Insert it in a queue.

2. If no adjacent vertex found, remove the first vertex from queue.

3. Repeat Step 1 and Step 2 until queue is empty.

1.3.2.2 Depth First Search(DFS)

Depth First Search algorithm(DFS) traverses a graph in a depthward motion and uses a stack to
remember to get the next vertex to start a search when a dead end occurs in any iteration.
A version of depth-first search was investigated in the 19th century by French mathematician
Charles Pierre Tremaux as a strategy for solving mazes[9][10]. It is described as follow :

1. Visit adjacent unvisited vertex. Mark it visited. Display it. Push it in a stack.

2. If no adjacent vertex found, pop up a vertex from stack(It will pop up all the vertices from
the stack which do not have adjacent vertices).

3. Repeat Step 1 and Step 2 until stack is empty.

Important : DFS is the building block of Garbage Collection Languages(Like Java, Javascript,
Python, VB.Net, etc...) 1.

1.3.2.3 Dijkstras Algorithm

Dijkstras algorithm, discovered by E. W. Dijkstra in 1959, is a graph search algorithm that
solves the single-source shortest path problem for a graph with nonnegative edge weights 2.
This problem is related to the spanning tree one. The graph representing all the paths from one
vertex to all the others must be a spanning tree - it must include all vertices. There will also be no
cycles as a cycle would define more than one path from the selected vertex to at least one other
vertex 3(see figure 18 in the appendix page52).

1.3.3 Potential Field
The first formulation of artificial potential fields for autonomous robot navigation was proposed

by Khatib (1986)[11]. Since then other potential fields formulation have been proposed (Canny
1990, Barraquand 1992, Guldner 1997, Ge 2000, Arambula 2004).[12]
The idea of a potential field is taken from nature[13].The main idea is to generate attraction and
repulsion forces within the working environment of the robot to guide it to the target. The goal
point has an attractive influence on the robot and each obstacle tends to push away the robot, in
order to avoid collisions.
Here is a guide line for Potential Field :

1. Compute the attraction potential field(due to the goal) : Uatt(q)= 1
2 ∗ξ ∗d2(see figure1.12) 4.

Where d = qrobot −qgoal Where qrobot is the current position of the robot, qgoal is the position
of an attraction point, and ξ is an adjustable constant.

1. Mark And Sweep Phase can be found at : http://www.brpreiss.com/books/opus5/html/page424.html
shows « Mark and Sweep phase »

2. Dijikstra tutorial is available on this page :http://optlab-server.sce.carleton.ca/
POAnimations2007/DijkstrasAlgo.html

3. Dijiktra’s pseudo-code can be found on this link : http://pearl.ics.hawaii.edu/~sugihara/course/
ics241/notes/Graphs4.html

4. You can download the potential field line simulator from : http://www.physics-software.com/

7

http://www.brpreiss.com/books/opus5/html/page424.html
http://optlab-server.sce.carleton.ca/POAnimations2007/DijkstrasAlgo.html
http://optlab-server.sce.carleton.ca/POAnimations2007/DijkstrasAlgo.html
http://pearl.ics.hawaii.edu/~sugihara/course/ics241/notes/Graphs4.html
http://pearl.ics.hawaii.edu/~sugihara/course/ics241/notes/Graphs4.html
http://www.physics-software.com/

FIGURE 1.12 – Goal Potential Field

2. Synthesize a repulsive force generated by the obstacles. If the robot approaches the obstacle,
a repulsive potential : Urep(q) = ∑

allobstacles
i=0 UrepO[i] will act on it, pushing it away from

It(see figure 1.13).

UrepO(q) =
{ 1

2 ∗κ ∗ (1
d −

1
d0
)2 d ≤ 0
0 d > 0

Where d = qrobot − qobstacle for the robot qrobot and the obstacle position qobstacle.d0 is the
influence distance of the force and κ is an adjustable constant.

FIGURE 1.13 – Obstacle Potential field

3. Add the previous two behaviours(because a force is linear), the robot then can follow the
potential induced by the new field to reach the goal while avoiding the obstacle(see figure
1.14).
Now the robot can be represented as a particle under the influence of a scalar potential field
U(q) as follow : U(q) =Uatt(q)+Urep(q) Where Uatt(q) and rep Urep(q) are the attractive
and repulsive potentials respectively. Now we can define the vector field of artificial forces
F(q) which is given by the gradient of U(q) : F(q) =−∇Uatt(q)+∇Urep(q) where ∇U is the
gradient vector of U at robot position q(x, y) in a two dimensional map.

8

FIGURE 1.14 – Obstacle-Goal Combined Potential Fields

1.3.4 Sensor Based Methods
1.3.4.1 Bug Algorithms

The Bug algorithms are perhaps the simplest and earliest obstacle avoidance techniques one
could imagine[14]. Perhaps the most straight forward path planning approach is to move toward
the goal, unless an obstacle is encountered, in which case, circumnavigate the obstacle(follow the
boundaries) until motion toward the goal is once again allowable 5.
Bug algorithm’s family include a broad range of flavors from which we can state :

— Bug0 Pseudo Code : The simplest one in this family(see Figure 1.15) :

1 WHILE (Goal Not Reached)
2 head toward g o a l
3 IF an o b s t a c l e i s e n c o u n t e r e d , t h e r o b o t w i l l f o l l o w t h e o b s t a c l e

b o u n d a r i e s u n t i l i t can head toward t h e g o a l a g a i n
4 CONTINUE

FIGURE 1.15 – bug0 Algorithm

— Bug1 Pseudo Code : the evolution of bug0(see Figure1.16)

1 WHILE (Goal Not Reached)

5. Bug Algorithm’s Javascript simulation/implementation is available in this link : http://barankahyaoglu.
com/robotics/bug/

9

http://barankahyaoglu.com/robotics/bug/
http://barankahyaoglu.com/robotics/bug/

2 head toward g o a l
3 IF an o b s t a c l e i s e n c o u n t e r e d , t h e r o b o t w i l l c i r c u m n a v i g a t e i t and

remember how c l o s e i t g e t s t o t h e g o a l .
4 The r o b o t w i l l re turn t o t h a t c l o s e s t p o i n t (by wal l−f o l l o w i n g) .
5 CONTINUE

FIGURE 1.16 – bug1 Algorithm

— Bug2 Pseudo Code : the evolution of bug1(see Figure 1.17)

1 WHILE (Goal Not Reached)
2 head toward g o a l on t h e m− l i n e
3 IF an o b s t a c l e i s i n t h e way , t h e r o b o t w i l l f o l l o w i t s

b o u n d a r i e s u n t i l i t e n c o u n t e r s t h e m− l i n e a g a i n c l o s e r t o t h e
g o a l and w i l l l e a v e t h e o b s t a c l e .

4 CONTINUE

FIGURE 1.17 – bug2 Algorithm

1.3.4.2 D* Algorithm

D* (pronounced "D star") is any one of the following three related incremental search algorithms[15] :
— The original D*,[16] by Anthony Stentz, is an informed incremental search algorithm.
— Focused D*[17] is an informed incremental heuristic search algorithm by Anthony Stentz

that combines ideas of A*[18] and the original D*. Focused D* resulted from a further
development of the original D*.

10

— D* Lite 6[19] is an incremental heuristic search algorithm by Sven Koenig and Maxim Li-
khachev that builds on LPA*,[20] an incremental heuristic search algorithm that combines
ideas of A* and Dynamic SWSF-FP.[21]

All three search algorithms solve the same assumption-based path planning problems 7, including
planning with the freespace assumption,[22] where a robot has to navigate to given goal coordinates
in unknown terrain.

1.3.4.3 Rapidly Exploring Random Trees

A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search non-
convex[23], high-dimensional spaces by randomly building a space-filling tree. The tree is construc-
ted incrementally from samples drawn randomly from the search space and is inherently biased to
grow towards large unsearched areas of the problem 8. RRTs were developed by Steven M. LaValle
and James J. Kuffner Jr. [24].

1.4 Uneven Environment and Algorithm discretization

1.4.1 Uneven Environment
Uneven is the opposite of uniform and predictable 9.If the road is uneven, not regular, consistent

or equal(see figure 1.18).
This introduces a new challenge in navigation as we must take a couple of other factors into

FIGURE 1.18 – Picture From Our Uneven 3D View Simulator Using Perlin Algorithm for terrain
generation

consideration : gravity constrains, speed variation, fast algorithm response.

6. D* Lite implementation in C is available from Sven Koenig’s page : http://idm-lab.org/code/dstarlite.
tar

7. Learn A* and D* with Python programming : http://letsmakerobots.com/node/40568
8. Rapidly Exploring Random Trees animation can be found in this page : https://www.jasondavies.com/

rrt/

9. uneven defintion : https://www.vocabulary.com/dictionary/uneven

11

http://idm-lab.org/code/dstarlite.tar
http://idm-lab.org/code/dstarlite.tar
http://letsmakerobots.com/node/40568
https://www.jasondavies.com/rrt/
https://www.jasondavies.com/rrt/
https://www.vocabulary.com/dictionary/uneven

1.4.2 Algorithm discretization
In this C and JavaScript programming languages are used along the way to build a powerful

simulator. Unfortunately, the biggest issue with digital computers is the need to discretize.
In this project two different algorithms have been choosen to be manipulated : Bug0 and Potential
Field using a fixed cell decomposition for the environment.

1.4.2.1 Bug0

Bug0 can be easily coded without difficulty, only a finite set of data are required to generate a
Path. But we have provided an enhanced model of the old bug0 and we came with a version that
outperforms other implementations on internet(see figure 1.19).

FIGURE 1.19 – bug0 implementation comparison (a)-Simulator from internet(no straight line) (b)-
Illustration of our approach

1.4.2.2 Numerical Potential Field

Potential field evaluates an infinite number of points which makes it impossible to implement
without sampling.
In 2005, Numerical Potential Field[25] was released making it suitable for computers(this method
is implemented in this project).

1.5 Conclusion
This chapter has been an introduction to how mobile robots are impacting our lives and how

they are gaining popularity, some of their uses have been exposed as well as their classification and
evolution.
Competitors around the world are trying to produce efficient algorithms capable of moving the
robot from a starting point to some destination without colliding the objects in it’s environment.
Another constrain would be reaching the goal as quickly as possible(optimal path), the reason why
some algorithms are easy (like bug algorithms which require low computational power) and others
are complicated (like dijikstra, A* , D* which needs high computational power). In this work bug0
and Numerical Potential Field have been choosen for our implementation.

12

Chapter 2

Hardware Implementation

Robots are bringing a revolution, a world’s change, they are needed everywhere(industry, war-
fare, exploration, health, lifting and many more), they became a symbol of power.
However, stable software system and complex hardware are required to complete their daily tasks
that they have to undergo.
Hardware industry evolved a lot, it became a competitive field(since the invention of transistor eve-
rything is made possible) ; a reason why we must choose the appropriate robot’s parts carefully.
Let’s take a deeper look at the hardware part :

2.1 Mobile robot platform description
The robot’s platform(wheeled Robot see figure 1.4 3) is described in figure 2.1, the measure-

ments are in millimeters(mm). it is large enough to carry on the Arduino and the protoboard.

FIGURE 2.1 – Mobile Robot Platform Description (unit : mm)

13

2.2 Sensors Description
A sensor is an object whose purpose is to detect events or changes in its environment, and then

provide a corresponding output 10.
Sensors can detect and respond to some type of input from the physical environment. The specific
input could be light, heat, motion, moisture, pressure, or any one of a great number of other envi-
ronmental phenomena. The output is generally a signal that is converted to human-readable display
at the sensor location or transmitted electronically over a network for reading or further processing.

2.2.1 Camera
Vision is one of the most powerful and popular sensing method used for autonomous navigation.

Camera(see figure 2.2)is the best vision device. it allows large ranges of vision and delivers very
detailed images of the environment.

FIGURE 2.2 – Camera Based

An example of these is the OV7670 Camera Module : This camera module (shown in figure
2.3)can perform image processing such as AWB (auto white balance), AE (automatic exposure)
and AGC (automatic gain control), for the video signal coming from CMOS sensor. What is more,
the fusion of other advanced technology such as image enhancement processing under low illumi-
nation, and image noise intelligent forecast and suppress, this module would output high quality
digital video signals by standard CCIR656 interface.

FIGURE 2.3 – OV7670 Camera Module

2.2.2 LADAR
LADAR (LAser Detection And Ranging) systems use light to determine the distance to an ob-

ject. Since the speed of light is well known, LADAR can use a short pulsed laser to illuminate

10. https://en.wikipedia.org/wiki/Sensor

14

https://en.wikipedia.org/wiki/Sensor

a target and then time how long it takes the light to return. The advantage of LADAR over RA-
DAR (Radio Detection And Ranging) is that LADAR can also image the target at the same time as
determine the distance. This allows a 3D view of the object in question. This provides long range re-
connaissance with greater fidelity and thus greater recognition range than other technologies(figure
2.4 illustates this method).

FIGURE 2.4 – In the image above, on the left is a LADAR image from the front of a vehicle stopped
at a crosswalk in Santa Barbara, CA. On the right is the same LADAR data « viewed »from an
overhead location highlights the 3-D nature of the data collected.

2.2.3 Infrared Sensors

An infrared sensor is a device that emits and/or receives infrared waves in the form of heat(figure
2.5 shows an instance of IR sensor). While most infrared sensors transmit and receive infrared
waves, some can only receive them. These types of infrared sensors are known as Passive Infrared
Sensors (PIR sensors) or motion detectors.
Although infrared sensors can be designed to perform different functions, all infrared sensors are
made of pyroelectric materials, whether natural or artificial. A pyroelectric material produces an
electrical voltage whenever it is heated or cooled. Most infrared sensors are coated with either
parabolic mirrors or Fresnel lenses in order to retrieve infrared waves from an entire room or area.
As infrared waves reach the sensor from different areas, they cause the sensor to generate a voltage
in different waves, which can be used to trigger an alarm or activate another system.

FIGURE 2.5 – infrared Sensor- GP2Y0A41SK0F Module

15

2.2.4 Ultrasonic Sensors

A basic ultrasonic sensor (as shown in figure 2.6) consists of one or more ultrasonic transmit-
ters (basically speakers), a receiver, and a control circuit. The transmitters emit a high frequency
ultrasonic sound, which bounce off any nearby solid objects. Some of that ultrasonic noise is re-
flected and detected by the receiver on the sensor. That returned signal is then processed by the
control circuit to calculate the time difference between the signal being transmitted and received.
This time can subsequently be used, along with some clever math, to calculate the distance between
the sensor and the reflecting object.

FIGURE 2.6 – Ultrasonic Sensor-HC-SR04

HC-SR04 Specifications :

— Working Voltage : DC 5V
— Working Current : 15mA
— Working Frequency : 40Hz
— Max Range : 4m
— Min Range : 2cm
— Measuring Angle : 15 degree
— Trigger Input Signal : 10µS TTL pulse
— Echo Output Signal Input TTL lever signal and the range in proportion
— Dimension 45∗20∗15 mm

2.3 Necessary sensors which must be added to the platform

2.3.1 LM35 : Temperature Detector

The LM35 is an integrated circuit sensor 11 that can be used to measure temperature with an
electrical output proportional to the temperature (in °C). In this work, it is used in Master Mode to
report environment’s temperature (see figure 4.3 in page 37).

2.3.1.1 Buzzer

A buzzer or beeper is an audio signaling device, which may be mechanical, electromechanical,
or piezoelectric. In this project it has two usages 12 :

— trigger an alarm to signal that robot reached the destination.

11. Find LM35 Datasheet at : www.ti.com/lit/ds/symlink/lm35.pdf
12. Arduino-Buzzer connections and usage : https://www.arduino.cc/en/Reference/Tone

16

www.ti.com/lit/ds/symlink/lm35.pdf
https://www.arduino.cc/en/Reference/Tone

— to tell that the received path is inconsistent if it detects an obstacle not supposed to be in the
trajectory.

2.4 Wireless LAN Communication Using WIFI

2.4.1 Wifi Overview
Wi-Fi is the name of a wireless networking technology that uses radio waves to provide high-

speed network and Internet connections. The Wi-Fi Alliance 13, the organization that owns the Wi-
Fi (registered trademark) term specifically defines Wi-Fi as « wireless local area network (WLAN)
products that are based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 stan-
dards ». Initially, Wi-Fi was used in place of only the 2.4GHz 802.11b standard, but the Wi-Fi
Alliance has expanded the generic use of the Wi-Fi term to include any type of network or WLAN
product based on any of the 802.11 standards, including 802.11b, 802.11a, dual-band, and so on,
in an attempt to stop confusion about wireless LAN interoperability.
Precaution : in this work we tried to reduce interferences, we have made a quick site survey and
verified which channels (see figure 2.7) are already in use by the help of spectrum frequency ana-
lyser (lot of them are free for Windows, Mac, Linux) 14.

FIGURE 2.7 – Channels and interference on a WiFi network

Note : we can always keep things simple by issuing the command : « netsh wlan show all »in
windows cmd and get some precious information (like channels used by every SSID 15).

2.4.2 Interacting With Wifi
At this time of writing, the searching query wifi module returned « About 10,300,000 results

(0.43 seconds) »which shows the variety of ways of Wifi interaction. Let’s choose some of them in
terms of : fidelity, transmission speed, cost and documentation.

13. Wi-fi Alliance official website : http://www.wi-fi.org/
14. Have a list of spectrum frequency analyser on this link : http://blog.tanaza.com/blog/

wifi-stumblers-the-complete-list-windows-mac-linux-android-ios

15. More Information on SSID is in this link : http://searchmobilecomputing.techtarget.com/

definition/service-set-identifier

17

http://www.wi-fi.org/
http://blog.tanaza.com/blog/wifi-stumblers-the-complete-list-windows-mac-linux-android-ios
http://blog.tanaza.com/blog/wifi-stumblers-the-complete-list-windows-mac-linux-android-ios
http://searchmobilecomputing.techtarget.com/definition/service-set-identifier
http://searchmobilecomputing.techtarget.com/definition/service-set-identifier

2.4.2.1 SparkFun WiFly Shield

The WiFly Shield equips the Arduino with the ability to join an 802.11b/g wireless networks.
The featured components of the shield are a Roving Networks RN-131C wireless module and an
SC16IS750 SPI-to-UART chip. The SPI-to-UART bridge is used to allow for faster transmission
speed and to free up the Arduinos UART(figure 2.8 show the WiFly Shield).

FIGURE 2.8 – SparkFun WiFly Shield

2.4.2.2 ESP8266

The ESP8266 WiFi Module is a self contained SOC with integrated TCP/IP protocol stack that
can give any microcontroller access to a WiFi network(see figure 2.9). The ESP8266 is capable of
either hosting an application or offloading all WiFi networking functions from another application
processor. Each ESP8266 module comes preprogrammed with an AT command set firmware(can be
reprogrammed using AT Or Lua Firmware 16), meaning, it can be simply connected to an Arduino
device and get about as much WiFi ability as a WiFi Shield offers. The ESP8266-01 module is an
extremely cost effective board(For less Than 3$) with a huge, and ever growing, community.

FIGURE 2.9 – ESP8266

Some features of this module are :
— 802.11 b/g/n
— WiFi Direct (P2P), softAP
— Integrated TCP/IP protocol stack
— 1MB Flash Memory
— Integrated low power 32bit CPU could be used as application processor

16. This link explains how to reprogram the ESP8266 http://blog.randypatterson.com/

esp8266-firmware-updates-and-options/

18

http://blog.randypatterson.com/esp8266-firmware-updates-and-options/
http://blog.randypatterson.com/esp8266-firmware-updates-and-options/

2.4.3 Reprogramming the ESP8266
This step is quite difficult, it requires some special settings and considerations. The ESP8266

is known to be powerful but hard to use. For this reason, a detailed page[26] has been written in
our website along this work at : http://www.mrobot.netai.net/hardImplemntation.html
discussing this WIFI module and solutions for all problems encountered in this project.

Note : Many counterfeited ESP8266 chips exist, latest « serial com »drivers detect the fake
versions and block it(error code 10 is returned). Downloading an old driver will fix the issue 17.

2.5 Conclusion
At this point of the project, precious information have been gathered which allowed us to choose

the right hardware components to build our autonomous mobile robot, the Arduino will be the ro-
bot’s artificial intelligence controller which will guide all other peripherals (Ultrasonic sensors,
motors , ESP8266 and buzzer).
Having such a configuration is very common among the educational and professional worlds ,
Arduino’s community is wide enough to get maximum documentation and help. This was an im-
portant step as the choice of hardware will influence dramatically the software’s model(discussed
more in the next chapter).

17. Error Code 10 can be fixed with an old driver : http://www.ifamilysoftware.com/news37.html

19

http://www.mrobot.netai.net/hardImplemntation.html
http://www.ifamilysoftware.com/news37.html

Chapter 3

Navigation strategy development

Navigation strategy must meet the user requirements, the previous works that have been seen in
the institute till the date focused on the mathematical part of the problem. The programming part is
discussed in this part.
RNCS(Robot Navigation Control/Simulation) is the C language Based program developed during
this work. A software which is intended to be the building block of our implementation, a complete
path generator program.
The following features can be identified in RNCS :

— User friendly : GUI(Graphical User Interface) is used to increase user experience.
— Robustness : the code is stable, clean and optimized (use very few resources) and can run

for very long periods without crashing down.
— Fast in response : the program reacts quickly to the user and optimal path is computed in

minimal time.
— Security : the software sanitizes user inputs and protects the communication to the ro-

bot(Arduino) to avoid eavesdroppers(hackers).
Let’s dig deeper into the wonderful world of navigation strategies.

3.1 Environment recognition Using Environment’s Map

A computer can be fed with a map and apply on it any algorithm that have been learned so
far(bug0 and Numerical Potential Field in our study). One section of our software is the MAP
EDITOR(see figure 3.1). The user can place any element (goal, robot, obstacles) relative to the
real world with a simple mouse click in the environment map. Finally, using the map editor the
space configuration of the field is available, by pressing « s »in the keyboard the topology will be
saved into a file (maps.ja), so that both Bug0 and Numerical Potential Field can be applied on it to
generate a path.

3.2 Obstacles detection and avoidance(Two Level ODA)

Many approaches have been known through the last decades in the field of obstacle detection
and avoidance, from the simplest(sensor based like bug family) to the most complicated(image
processing using libraries like openCV).

20

FIGURE 3.1 – Picture From Our Environment Map Editor / Pos : X and Y shows mouse cursor
position

However, this work deals with known environment(even and uneven) and it proposes a different
solution for the problem, a two steps solution :

1. Computer based computation which does the heavy work of producing the optimal path,
then sending it to the robot.

2. the robot is the computer’s slave but will not execute the received trajectory blindly, it will
always check(using ultrasonic sensors) the correctness of the path.

3.2.1 Computer Level Obstacle Detection(Path Generation)

Having the space configuration(using the Map Editor) a collision free path can be easily pro-
duced.
How does this work ? : the map is a 2D integer array (int mapField[width][height])filled with
numbers to indicate the different elements in each cell, for instance this line in C language :

1 i n t map [4] [4] = { { 1 , 0 , 1 , 2 } , { 0 , 1 , 1 , 0 } , { 0 , 3 , 0 , 0 } , { 1 , 0 , 4 , 1 } } ;

has a matrix representation :
1 0 1 2
0 1 1 0
0 3 0 0
1 0 4 1

We can interpret the matrix as follow :

— Number 0 : Empty
— Number 1 : Obstacle
— Number 2 : Goal
— Number 3 : Uneven obstacle(ground irregularity)
— Number 4 : Robot

We can represent the above numbers in C using « enum »because constants are easier to deal with
at source code level than numbers, a sample line from our c code :

21

1 enum {SAFE = 0 , OBJECT , GOAL, UNEVENOBJECT, ROBOT, ROBOTPREVIOUS,
ROBOTPREVIOUSLEFT , ROBOTPREVIOUSRIGHT, ROBOTPREVIOUSUP, ROBOTPREVIOUSDOWN
, ROBOTPREVIOUSUPRIGHT, ROBOTPREVIOUSUPLEFT, ROBOTPREVIOUSDOWNRIGHT,
ROBOTPREVIOUSDOWNLEFT} ;

At this point, we are able to synthesize a map with numbers, let’s see a sample from our software
(see figure 3.2). Now that we know the content of each cell in our map we can avoid the unwanted

FIGURE 3.2 – Picture from our Map Editor with Matrix representation of the field

objects(Number 1 in our case) and reach the goal(Number 2 in our case), we can generate the path
using either Bug0 or Numerical Potential Field(see figure 3.3) and save the path into a file « report-
Path.txt ».

FIGURE 3.3 – Potential Field Applied On The Map(Path Generation Phase)

Path Transmission :
In order to transmit the trajectory across the network we need to extend our program’s functionali-
ties to manage Network Communication. The best library candidate from plenty in the wild (like :
winHTTP or winINet) is « winsock32.h » 18 because :

18. An excellent tutorial on winSock32 is available on this page : http://www.binarytides.com/

winsock-socket-programming-tutorial/

22

http://www.binarytides.com/winsock-socket-programming-tutorial/
http://www.binarytides.com/winsock-socket-programming-tutorial/

— It is low level compared to other libraries.
— The functions it uses are exactly the same as Linux networking libraries which has helped

us to make cross-platform code(more in chapter 4).
This header gave our software more flexibility topology for sending data(path) to the robot .
« Wless Com »is the subprogram (see figure 3.4) responsible to send the path to the robot in
WLAN(Wireless Local Area Network), secure the communication and detect transmission er-
rors(as it uses TCP) through the wireless medium.

FIGURE 3.4 – Picture From Our Wireless Communication Program

Path Transmission Format :
— Bug0 : It is enough to send displaceWithX and displaceWithY which will be added to the

current position of the robot. The format of the message {[displaceWithX0, displaceWi-
thY0], [displaceWithX1, displaceWithY1], [displaceWithX2, displaceWithY2], [displace-
WithX3, displaceWithY3], [displaceWithX4, displaceWithY4], etc...}

— Numerical Potential Field : this method relies on how we subdivided the map, we send first
the map precision(cell size) than a stream of direction letters « UDDUR »which means : UP,
DOWN, DOWN, UP, RIGHT. Having this we can easily move the robot till the destination.
Though, some compression can be made to reduce network overhead, for insctance if the
direction letters are of the form « UUUUUULDDDRDRRRRU »can be replaced using Run-
Length Encoding[27] by « U6LD3RDR4U ».

3.2.2 Robot Level(Path Execution)

At the reception side (the robot), the Arduino will parse the formatted path and begins the jour-
ney to the destination.
Sensors will always be used even if the path is preplanned to check the consistency of the trajec-
tory(there is no obstacle).

How the robot will behave when it encounters an obstacle ?
— Case of path consistency : normal path execution the robot will follow the preplanned tra-

jectory but always checking the sensor data before moving.

23

— Case of path inconsistency : the Arduino will stop, make a backward move and triggers an
alarm, then it will send a message to the computer with the updated obstacle position to
compute a new way out.

3.3 Path planning algorithms

3.3.1 Bug0 Algorithm
Bug0 is one of the easiest algorithms in path planning, only a prior knowledge of the robot and

goal locations is required.

3.3.1.1 Even environment(2D Environment)

From Linear Algebra : the shortest distance between 2 points(2D configuration space) is the
straight line[28]. However, in game theory it is the hypotenuse of the right triangle[29] which can
be computed with : shortestdistance =

√
(x1 − x2)2 +(y1 − y2)2 (see figure 3.5). From this we can

FIGURE 3.5 – Euclidean Shortest Distance in 2D Space(picture from our simulator)

build an extended pseudo-code of bug0 algorithm, take a look at the following pseudo-code :
1 WHILE (r o b o t . p o s i t i o n . x != g o a l . p o s i t i o n . x OR r o b o t . p o s i t i o n . y != g o a l .

p o s i t i o n . y)
2 F l o a t dX = (r o b o t . p o s i t i o n . x >= g o a l . p o s i t i o n . x) ? (r o b o t . p o s i t i o n . x −

g o a l . p o s i t i o n . x) : (g o a l . p o s i t i o n . x − r o b o t . p o s i t i o n . x)
3 F l o a t dY = (r o b o t . p o s i t i o n . y >= g o a l . p o s i t i o n . y) ? (r o b o t . p o s i t i o n . y −

g o a l . p o s i t i o n . y) : (g o a l . p o s i t i o n . y − r o b o t . p o s i t i o n . y)
4 F l o a t h y p o t h e n u s = s q u a r e _ R o o t (dX * dX + dY * dY)
5 F l o a t d i s p l a c e W i t h X = dX / h y p o t h e n u s
6 F l o a t d i s p l a c e W i t h Y = dY / h y p o t h e n u s
7

8 IF (NO O b s t a c l e i n t h e d i s p l a c e W i t h X AND d i s p l a c e W i t h Y D i r e c t i o n)
9 r o b o t . p o s i t i o n . x += d i s p l a c e W i t h X

10 r o b o t . p o s i t i o n . y += d i s p l a c e W i t h Y
11 ELSE
12 WHILE (O b s t a c l e B o u n d a r i e s D e t e c t e d And Leav ing P o i n t Not Found)
13 Fol low O b s t a c l e B o u n d a r i e s In Ant i−CLOCK WISE Manner
14 End IF
15 End While

Practical Problem :
When we manipulate pixels, floating points cannot be used. Only unsigned integers(uInt32 with
SDL.h) are allowed. We have tried :

24

— Forcing the C program to work with Floats : The application opens and terminates with
« code execution 3 »(Segmentation fault).

— Rounding the results to the nearest integer (displaceWithX and displaceWithY) which was
working but the trajectory was wrong (no stright line) (see figure 3.6).

FIGURE 3.6 – Bug0 With Displacement Rounding

Finally we came with a trick for robot position discretization(see figure 3.7)

FIGURE 3.7 – Bug0 With Robot Position Discretization

3.3.1.2 Uneven environment

In this kind of environment, a distinction between obstacles and ground irregularity is needed.
In this work, it has been kept simple with the assumptions that :

— Obstacles are higher than ultrasonic sensors level of the robot.
— Ground is lower than sensor level.

This works as follow :

25

1 WHILE d e s t i n a t i o n n o t r e a c h e d
2 Head (s t r a i g h t l i n e) To D e s t i n a t i o n
3 IF O b j e c t D e t e c t e d And O b j e c t i s h i g h e r t h a n u l t r a s o n i c p l a c e m e n t
4 Fol low The B o u n d a r i e s o f t h e o b j e c t t i l l a l e a v i n g p o i n t a p p e a r s .
5 ELSE IF O b j e c t D e t e c t e d And O b j e c t i s l e s s t h a n u l t r a s o n i c p l a c e m e n t (

Ground D e t e c t e d)
6 IF Robot Can C i r c u m n a v i g a t e t h e ground
7 C i r c u m n a v i g a t e Like For O b s t a c l e s
8 ELSE IF Ground I s The Only Pa th To D e s t i n a t i o n
9 D e c r e a s e Motor speed (Higher Torque) t o a c e r t a i n v a l u e and

c l imb (a lways head toward d e s t i n a t i o n)
10 END IF
11 END IF
12 CONTINUE

3.3.2 Numerical Potential Field
For these potentials to be useful the space must be discretized. While the objects themselves

have continuous boundaries and smooth path is required, it is not possible to evaluate the potential
at an infinite number of points. A rectangular grid is a simple discretization that places points at
the corners of squares (in 2D) or cubes (in 3D)[25]. The resolution of the potential and the resulting
path increases as the size of the squares decreases. As with all numerical methods there is a tradeoff
between computation time (square size), output accuracy and resolution[30].

3.3.2.1 Even environment(2D Environment)

Let’s take figure 3.8 as a working example :

FIGURE 3.8 – Numerical Potential Field Working Example

Steps of obtaining the Numerical Potential Field(see figure 3.14)

1. Create the goal force. If a flat goal force is used then the force at every point except the goal
is 1, and the force at the goal is 0(see figure 3.9).

1 For a l l p o i n t s x i n t h e space , FG(x) = 1
2 FG(x g o a l) = 0

26

FIGURE 3.9 – Goal Force

2. For simplicity, the obstacle force is assigned with a value 1 in the surrounding grid points
and 0 everywhere else. Remember that obstacle’s forces add, so if a point is within one grid
point of two obstacles then its force is 2(see figure 3.10).

1 For a l l p o i n t s x i n t h e space , FO(x) = 0
2 For a l l o b s t a c l e s K,
3 For a l l p o i n t s x s u r r o u n d i n g o b s t a c l e k , FO(x) = FO(x) + 1
4 End o b s t a c l e loop

FIGURE 3.10 – Object Force

3. Next, sum the goal force and the obstacle force to get the total force(see figure 3.11).

1 For a l l p o i n t s x i n t h e space , F (x) = FG(x) + FO(x)

FIGURE 3.11 – Total Sum Of Forces

4. Now it is time to evaluate the potential at every point. Start by assuming that the potential
at every point is infinity (or a very large number). Then, starting with the goal, find the
points that have the lowest potential and look at their neighbors to update their potentials if
necessary. Use a queue to keep track of the points that must be examined(see figure 3.12).

1 For a l l p o i n t s x i n t h e space , U(x) = 1 ,000
2 U(x g o a l) = 0
3 Add x g o a l t o t h e queue Q
4 While Q i s n o t empty ,
5 Remove t h e p o i n t x i w i th t h e minimum U from Q
6 For a l l p o i n t s x j t h a t s u r r o u n d xi ,

27

7 I f U(x j) > U(x i) + F (x j)
8 U(x j) = U(x i) + F (x j)
9 Add x j t o Q

10 end i f
11 end n e i g h b o r f o r l oop
12 End whi le l oop

FIGURE 3.12 – Potential Field Array

5. The final step is to make the path from a point xstart.
1 x i = x s t a r t
2 While x i != xgoal ,
3 x (i +1) = argmin (f o r x j n e i g h b o r s o f x i) o f U(x j)
4 end whi le l oop

FIGURE 3.13 – Minimal Path Produced By Numerical Potential Field

In the last step(when moving the robot using potential array) of the algorithm two scenarios may
be handled differently :

— Diagonals are not allowed which takes more time (see figure 3.14)

FIGURE 3.14 – Potential Field Implementation-Diagonals Are Not Allowed

28

— Diagnals are allowed which takes less time(see figure 3.15)

FIGURE 3.15 – Potential Field Implementation Results-Diagonals Are Allowed

3.3.2.2 Uneven environment

Same algorithm of Numerical Potential Field can be extended To 3D but ground and object
distinction is added (same assumption as with 3D bug0) as follow :

— Obstacles are higher than ultrasonic sensors level of the robot.
— Ground is lower than sensor level.

The results are as follow :
— On a flat surface, same algorithm as 2D(see figure 3.16).

FIGURE 3.16 – Picture From Our 3D Simulator- Navigation with Numerical Potential Field on flat
surface

— On Uneven surface the algorithm tries to avoid the irregular ground when possible(see figure
3.17).

29

FIGURE 3.17 – Picture From Our 3D Simulator Uneven-terrain (ground circumvented using Nu-
merical Potential Field)

— When no choice is possible the robot must climb over the ground (see figure 3.18).

FIGURE 3.18 – Picture From Our 3D Simulator Uneven-terrain (ground climbed using Numerical
Potential Field)

3.3.3 Local Minima Problem
Several methods have been suggested to deal with the local minimum phenomenon in path

planning. However all of them can be broken into two main blocks :

3.3.3.1 Local Minimum Detection

The first step that must be handled is detecting the local minimum(see figure 3.19).
In our implementation a position based estimator is used to estimate the current position of the
robot. If the current position does not change for a considerable amount of time (a predefined thre-
shold) the robot is considered to be trapped.

30

FIGURE 3.19 – Local Minima Detection Using Time Based Estimation

In C Programming different ways for time measurements exist :
— Using the rdtsc Instruction(Intel Assembly AI32) which returns the count of the number of

ticks since the last system reboot as a 64-bit value placed into EDX :EAX registers 19.
— Win32 API to Acquire high-resolution time stamps 20.
— Use function SDL_GetTicks() to get the number of milliseconds since the SDL library ini-

tialization (Must include SDL.h) 21(this option was used in our work).
The time required for our software to detect the local minima is around 115ms(see figure 3.20).

FIGURE 3.20 – Local Minima Detection Time

3.3.3.2 Escaping Local Minima

A set of approaches can be applied to try fixing the local minima Problem by :

19. More On rdtsc Instruction : https://www.aldeid.com/wiki/X86-assembly/Instructions/rdtsc
20. Win32 API for time measurements : https://msdn.microsoft.com/en-us/library/windows/desktop/

dn553408(v=vs.85).aspx

21. More information on SDL_GetTicks() can be found at : https://wiki.libsdl.org/SDL_GetTicks

31

https://www.aldeid.com/wiki/X86-assembly/Instructions/rdtsc
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
https://wiki.libsdl.org/SDL_GetTicks

— Backtracking from the local Minimum and then using another strategy to avoid the local
minimum.

— Doing some random movements, with the hope that these movements will help escaping
the local minimum.

— Using one of the bug algorithms to avoid the obstacle where the local Minimum exists.
— Using more complex potential fields that are guaranteed to be local minimum free, like

harmonic potential fields.

3.4 Conclusion
In this chapter, path planning generation problem has been solved for both 2D(Even field)

and 3D(Uneven field) based on some assumptions. The mathematical part has been translated to
model pseudo-codes, then the latest has led to the software that automates the task of finding a
collision free path. RNCS(our software) is also able to send the trajectory through the wireless
medium(WIFI) using it’s sub-program « Wless Com »to be executed by the robot.
At this time, the first part of the challenge was accomplished with success (how to get a collision
free path ?), the remaining task will be the exploitation of this path for real execution (at the robot
side).

32

Chapter 4

Hardware and software implementation

Generating the path was the first step in navigation strategy, path execution must follow it qui-
ckly and effectively. However, real world perspective is usually different from discrete view(computer)
of the environment.
Both softwares (computer and robot sides) must be fully optimized, compressed with very few re-
sources utilization(especially the robot) and immune against internal and external malicious entities
and attacks that are rising in the hood. Packet injection is commonly used and require very limited
knowledge due to the availability of tools(Wireless Network is more vulnerable to wired network),
encryption is used along the way in this work.
The computer software must also be rewritten to work on most platforms (Windows, Linux, Mac
OS). Removing dependencies is a hard challenge that we have undertaken.
These points have been investigated in this project, let’s explore them more in this chapter.

4.1 Navigation strategy execution

In Chapter 3, the computer side and it’s software have been discussed. This part will bring us
to the robot and path execution in the real world.

4.1.1 Circuit Overview

Now It is time to take a look at the circuit diagram of this project (see figure 4.1 22) :

1 - Arduino Mega 2560 : is a microcontroller board based on the ATmega2560. It has 54 di-
gital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4
UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power
jack, an ICSP header, and a reset button(see figure 17 page 51).

2 - DC Motors : converts direct electrical current power into mechanical power to move the
robot, one motor is used for direction(left or right) and one for forward or backward motion.

3 - ESP8266-01 Module : Wi-Fi chip with full TCP/IP stack and microcontroller capability
produced by Shanghai-based Chinese manufacturer 23 in August 2014.

22. Visit The Official Web Site Of Fritzing : http://fritzing.org/home/
23. Complete Documentation on ESP8266 on http://www.esp8266.com/

33

http://fritzing.org/home/
http://www.esp8266.com/

4 - L293d : The L293D works on the concept of typical H-bridge, a circuit which allows the
high voltage to be flown in either direction 24. In a single L293D IC there are two H-bridge
circuits which can rotate two DC motors independently.

5 - Ultrasonic Sensors : Ultrasonic sensors use sound waves rather than light, making them
ideal for stable detection of uneven surfaces, liquids, clear objects, and objects in dirty
environments. These sensors work well for applications that require precise measurements
between stationary and moving objects.

6 - 9V-Battery : to power-up the hole system.

7 - Buzzer : to signal path execution completion or the presence of a dynamic obstacle(obstacle
not supposed to exist at that location).

FIGURE 4.1 – Project Circuit Diagram Made With Fritzing

The following corresponds to the circuit diagram above :

24. L293d data sheet : http://www.ti.com/lit/ds/symlink/l293.pdf

34

http://www.ti.com/lit/ds/symlink/l293.pdf

FIGURE 4.2 – Project Schematic Diagram Made With Fritzing

4.1.2 Path Parsing And Execution

The last step of path planning is path execution ; but in order to follow the trajectory, the robot
must extract the information inside the received packets which depends on the algorithm being
used.

4.1.2.1 Parsing Received Path

Bug0 : the received path is defined as {[x0,y0], [x1,y1], [x2,y2], [x3,y3], [x4,y4], etc, ...}
where [x0,y0] are robot’s initial position(the robot must know it’s position), then the execu-
tion strategy is explained by the following Pseudo-Code :

1 S t r i n g p a t h = r e a d F r o m A r d u i n o S e r i a l P o r t ()
2 r o b o t P o s i t i o n . x = p a t h [0] [0]
3 r o b o t P o s i t i o n . y = p a t h [0] [1]
4 c o u n t e r = 1
5 WHILE p a t h [c o u n t e r] != ’ \ 0 ’
6 ACTIVATE t h e U l t r a s o n i c Se nso r c l o s e s t t o p a t h [c o u n t e r] [0] and

p a t h [c o u n t e r] [1] d i r e c t i o n
7 IF NO OBSTACLE DETECTED
8 r o b o t P o s i t i o n . x += p a t h [c o u n t e r] [0]
9 r o b o t P o s i t i o n . y += p a t h [c o u n t e r] [1]

10 ELSE
11 STOP t h e Robot
12 Use Buzzer t o s i g n a l p a t h i n c o n s i s t e n c y

35

13 Send new o b s t a c l e p o s i t i o n t o t h e compute r t o compute t h e
p a t h a g a i n

14 break
15 END IF
16 D e a c t i v a t e U l t r a s o n i c Se ns o r
17 c o u n t e r ++
18 END WHILE

Numerical Potential Field : the received path is simple of the form [mapSize/URLUUL], this
can divided using « / »character which yields to [mapSize] and [URLUUL], now the robot
will execute it as [go Up with mapSize, go Right with mapSize, go Left with mapSize, go
Up with mapSize, go Up with mapSize, go Left with mapSize], in our work mapSize =
20cm.

4.1.2.2 Path Execution

After parsing the path, the robot deduces the algorithm being used and start moving the motors
toward the goal.
Special Precaution :
The internal buffer of Arduino accepts up to 64Bytes of data.The received path should not exceed
this amount of space otherwise buffer overflow would result[31].
In case of long path(more than 64Bytes), the computer program divides it into chunks and sends
them across the network.The Arduino will reconstruct the path easily because the communication
is built on the top of reliable protocol TCP(sequence and acknowledgment numbers are used to
reorder the received packets).

4.1.3 Master Mode(Web Interface)

Even if the algorithms seen so far are powerful and efficient, no program can replace a human
controller ; for this reason, a master mode or full control mode is provided and open for customiza-
tions depending on the specific application (see figure 4.3).

36

FIGURE 4.3 – Picture From Master Mode Web Interface

4.2 Experimental tests

4.2.1 Software Optimization

4.2.1.1 Cross-Platform Code (Removing Software OS Dependencies)

One of the most useful pieces of information that can be gathered about an executable is the list
of functions that it imports. Code libraries can be connected to the main executable by linking. This
linking process has been studied because libraries makes a program operating system’s specific.
This work started from analyzing our windows executable in order to add multiplatform features to
our software(rncs.exe).
The program executable(.exe) file header stores information about most libraries and functions(see
table 4.1) that will be loaded to be used by the program.

dynamically linked libraries : When libraries are dynamically linked, the host Operating Sys-
tem searches for the necessary libraries(.idata PE part) when the program is loaded. This
section of our program can be easily reversed Using Dependency Walker(see figure 4.4) 25.
In this way, operating system specific libraries can be determined and provided with their
equivalents on other platforms.

25. Explore PE imported functions using Dependency Walker : http://www.dependencywalker.com/

37

http://www.dependencywalker.com/

TABLE 4.1 – Sections of a PE File for a Windows Executable
Executable(.exe) sections Description

.text Contains the executable code
.rdata Holds read-only data that is globally accessible within the program
.data Stores global data accessed throughout the program
.idata Sometimes present and stores the import function information ; if this

section is not present, the import function information is stored in the
.rdata section

.edata Sometimes present and stores the export function information ; if this
section is not present, the export function information is stored in the
.rdata section

.pdata Present only in 64-bit executables and stores exception-handling infor-
mation

.rsrc Stores resources needed by the executable
.reloc Contains information for relocation of library files

FIGURE 4.4 – Our Software Dependencies Using Dependency Walker

From the list shown in figure 4.4 the following is concluded : SDL, SDL_ttf and fmodex are
all cross platform libraries. However WS2_32.dll(winsock2.h) works only on windows[32].
The source code must be rewritten as :

1 # i f d e f _WIN32 / * i f WINDOWS i s d e t e c t e d * /
2 # i n c l u d e <winsock2 . h> / * f o r s o c k e t () , c o n n e c t () , send () , and r e c v

() * , s o c k a d d r _ i n and i n e t _ a d d r () , c l o s e s o c k e t () * /
3 # e l s e / * UNIX , LINUX , MAC OS * /
4 # i n c l u d e < s y s / s o c k e t . h> / * f o r s o c k e t () , c o n n e c t () , send () , and

r e c v () * /
5 # i n c l u d e < a r p a / i n e t . h> / * f o r s o c k a d d r _ i n and i n e t _ a d d r () * /
6 # i n c l u d e < u n i s t d . h> / * f o r c l o s e () * /
7 # e n d i f

38

Running time linking libraries : which cannot be viewed using Dependency walker. Several
Microsoft Windows functions allow programmers to import linked functions not listed in a
program’s file header. The two most commonly used are LoadLibrary and GetProcAddress.
LdrGetProcAddress and LdrLoadDll are also used. Hopefully, these functions(LoadLibrary
and GetProcAddress) do not exist in the header (see figure 4.4) as we saw using Dependency
Walker, the program will never import any library at run-time.

Checking for program’s start-up external program dependencies : sometimes decompres-
sion, decryption or unpacking programs must be used on a program before the OS loads
it(another form of OS dependency). We must have a greater insight to the « .text »section of
our program to get the answer. Let’s use PEview (see figure 4.5).

FIGURE 4.5 – Our Software Under PEview- Virtual Size=Raw Data

Virtual Size(found in .text section in table 4.1) tells us how much space is allocated for a
section during the loading process. The Size of Raw Data shows how big the section is on
disk[33]. These two values should usually be equal, because data should take up just as
much space on the disk as it does in memory. Small differences are normal, and are due to
differences between alignment in memory and on disk. It can be seen clearly that the Virtual
Size is almost equal to raw data size so the program is neither compressed nor encrypted.
Note : Computing program’s entropy can also lead to the same conclusion.

More with 32/64 bits version : Mingw(C++ Compiler) is a 32 bits Compiler, but there exists
a 64 bits version(it can be downloaded from : http://www.mingw-w64.org/). When a 32
bits version program is running inside a 64 bits machine, the operating system is rushing for
backward compatibility[34] which results in slow software’s execution. After setting-up our
IDE(Code-Blocks for windows and Linux is shown in) we produced the 64 bits software
versions for Windows, Unix, Linux and Mac OS.

Now, our C code can be compiled for most known 32/64 bits Platforms (Windows, Unix, Linux,
Mac Os).

4.2.1.2 Code Minification (minimization)

C/C++ Code : C++ compiler(recommended over traditional C Compiler) is making a lot of
optimizations on the code, gcc supports more than 1500 different options that change it’s behavior

39

http://www.mingw-w64.org/

toward the source code. In order to reduce the code size the following arguments have been added
to the compiler settings : « gcc myProgram.cpp -o myProgram -O2 -s ».
Where -O2 reduces program assembly output size (there is also -O3 which is the most effective but
error prone) and -s removes debugging options from the program’s header for further minification
(most today’s softwares are compiled using this parameter). The results are shown in table 4.2.
Javascript : Javascript is one of the most popular programming languages, many tools have been

TABLE 4.2 – Program Size with different compiling options
Option Size(Ko)

gcc myProgram.cpp -o myProgram 272
gcc myProgram.cpp -o myProgram -O1 289
gcc myProgram.cpp -o myProgram -O2 281
gcc myProgram.cpp -o myProgram -s 113

gcc myProgram.cpp -o myProgram -O1 -s 93
gcc myProgram.cpp -o myProgram -O2 -s 90

designed through the last years to check 26 and compress it for faster transmission over the net-
work(like : JSMin YUI Compressor). In our work the « Google Closure Compiler is used 27 »(see
figure 4.6).

FIGURE 4.6 – Compressing Our Javascript code using Google Closure Compiler yields 36.05%
compression efficiency

Our programs are optimized to run with high efficiency.

4.2.2 Numerical Potential Field Computation Complexity
The time complexity and memory usages required for numerical potential field to compute the

potential array(which is used to move the Robot) have been studied, the environment has been

26. JSLint is the best Javascript validator : http://www.jslint.com/
27. You can access Google Closure Compiler in this link : https://closure-compiler.appspot.com/home

40

http://www.jslint.com/
https://closure-compiler.appspot.com/home

subdivided into different number of cells and tests have been made on « AMD C-60 APU with
Radeon(tm) HD Graphics 1GHZ »(very low processing capacity), the results are shown on table
4.3.

TABLE 4.3 – Cell Number VS Time Complexity and Memory Complexity
Map Decomposition(Cells) Time Complexity To Compute(ms) Memory Consumption

2 * 2 0.041047 4 bytes
4 * 4 0.082094 16 bytes
8 * 4 0.135456 32 bytes
8 * 6 0.141613 48 bytes
8 * 8 0.167267 64 bytes

10 * 8 0.204210 80 bytes
10 * 10 0.221655 100 bytes
11 * 10 0.273990 110 bytes
11 * 11 0.311959 121 bytes
12 * 11 0.356085 132 bytes
12 * 12 0.368399 144 bytes
13 * 12 0.397132 156 bytes
13 * 13 0.405341 169 bytes
14 * 13 0.412525 182 bytes
14 * 14 0.448441 196 bytes
15 * 14 0.456651 210 bytes
15 * 15 0.462808 225 bytes
16 * 15 0.477174 240 bytes
16 * 16 0.483331 256 bytes

4.2.3 Adding Software Security

Security became an important task which is not well understood by engineers. A crucial step
has to be made(most programmers fail to do it) for our software to survive reverse engineering and
prove the ownership of the code.
To achieve this different protection mechanisms are introduced to our program which can be stated :

Anti Virtual Machine Techniques : Generally, reverse engineering(especially : malware ana-
lysis) is made inside a virtual machine to avoid any infection and have more control on the
program.

Anti Debugging Techniques : The Debugger is the most used tool to understand the dynamic
behavior of the software. Examples are : OllyDbg, an x86 debugger developed by Oleh
Yuschuk 28(see figure 4.7).

28. This link shows OllyDbg official website http://www.ollydbg.de/

41

http://www.ollydbg.de/

FIGURE 4.7 – Our Program Under OllyDbg(Debugger) : (a)-before AntiDebug / (b)-after AntiDe-
bug

Anti Disassembly Techniques : Disassembler come to the second position of tools used against
softwares, an example of these is IDAPro 29.

Extensive use of digital Steganography : hidden data are also inserted into the software(see
figure 4.8) to prove the ownership[35].

FIGURE 4.8 – Our Program Under HexEditor : (a)-before Steganography / (b)-after Steganography

Code Obfuscation : (At source code level not at Assembly level[36]) was introduced into the
code to make difficult to reverse and understand 30.

4.2.4 Real World Results And Discussion
At this stage, it is time to take a look at the robot. Figure 4.9 gives a real picture of the discussed

circuit (figure 4.1 at page 34).

29. IDAPro official website : https://www.hex-rays.com/products/ida/
30. Learn about Top Down Obfuscation : https://www.defcon.org/images/defcon-17/

dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf

42

https://www.hex-rays.com/products/ida/
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf

FIGURE 4.9 – Robot Implementation

4.2.4.1 Path Execution

A map is constructed in our software(rncs) which will serve as a reference test or ideal path(see
figure 4.10).

FIGURE 4.10 – Initial state configuration of the environment

Let’s use Numerical Potential Field in order to generate a path which will be compared to the
real trajectory followed by the robot in the real world(see figure 4.11).

43

FIGURE 4.11 – Desired path produced using Numerical Potential Field

Figure 4.12 shows the robot while executing the reference path(see figure 4.11), each move is
followed purposely by an important delay to make it possible for us to take precise pictures.

FIGURE 4.12 – Robot executing the received trajectory

44

4.2.4.2 Measurements Error (Simulation Vs Real Robot)

For the same map, tests were repeated twelve times, let’s consider two particular cases :

Best case : for this situation, an approximate drawing has been made representing the robot’s
real path execution(see figure 4.13), the red line is the real robot and the green squares are
the simulated path.

FIGURE 4.13 – Robot Real Trajectory Approximation - Best Case

Worst case : due to some limitations in the hardware, if we have to reconstruct the path for
this situation, the results will be as shown in figure 4.14.

FIGURE 4.14 – Robot Real Trajectory Approximation - Worst Case

Error Origins :

Robot’s avoiding constrains : Robot’s wheels can turn to a maximum of 30 degrees (right or
left), but our simulator assumes a turning of 45 degrees (because we move from cell to cell).

45

ESP8266 chip counterfeit : the esp8266 introduces some errors in the received path, a filter
has been added to Arduino program to minimize the effect, though long use of this chip
loses some part of the path.

Slippery ground : the robot is designed to navigate in outdoor environment not indoor, a rea-
son why tests were mostly made on high friction surface.

Stepping Errors : Even if we are moving the robot by 20 centimeters each time(remember :
1pixel=1cm ; and each cell in the software is 20pixel by 20pixel), it is impossible to get this
displacement value with 100% accuracy.

4.2.5 Future Expansions

4.2.5.1 Multiple robots control

Single robot control can be extended to multiple robots because the structure of potential field
allows us to have such a flexibility, an experimental version has been already started(see figure
4.15).

FIGURE 4.15 – Multiple Robots Control Using Potential Field

4.2.5.2 Implementing More Enhanced Algorithms

More robust methods must be also implemented in particular for 3D, an overview of Graph
Search algorithms (BFS, DFS and Dijikstra) has been released as a sample of our future work(see
figure 4.16).

4.2.5.3 Multiprocessing architecture Execution

Parallel code execution running on multiple processors will be added :
— for C language SDL can already handle this(for thread management https://wiki.libsdl.

org/CategoryThread).

46

https://wiki.libsdl.org/CategoryThread
https://wiki.libsdl.org/CategoryThread

FIGURE 4.16 – Our Implementation of Graph Search Algorithms

— and from Javascript side webworkers can be used for a such purpose (you can dive more
in : http://www.w3schools.com/html/html5_webworkers.asp), however the 3D will
be rewritten with pure C++ (using OPENGL Library).

4.2.5.4 Adding digital certificate

Our program’s executable has been uploaded to https://www.virustotal.com/ in order be
scanned with more than 50 different anti-viruses, the result was it was neither malicious nor trusted.
In order to fix this issue a digital certificate must be purchased to white-list our application and gain
full customer’s trust.

4.3 Conclusion
At the end of this chapter, the expected results have been obtained ; another view of path plan-

ning and navigation strategy has been proposed. The robot is executing the preplanned path and
avoiding the obstacles till it reaches the destination. Dividing the software between the computer
and the robot helps to create, maintain, manage the code and increases the user experience (at the
computer side). New algorithms can be added easily due to the flexibility of our implementation,
the core of the code has been already written.
Our software is secure and hard to reverse(even in the wireless network), a source of trustfulness
and fidelity.

47

http://www.w3schools.com/html/html5_webworkers.asp
https://www.virustotal.com/

Final Conclusion

Path-planning is an important primitive for autonomous mobile robots that lets robots find the
shortest (or optimal) path between two points or even ways that minimize the amount of turning,
the amount of braking or whatever a specific application requires. Algorithms to find a shortest path
are important not only in robotics, but also in network routing, video games and gene sequencing.

Path-planning requires a map of the environment and the robot to be aware of its location in it.
In this project, a solution was provided to construct the field (through a GUI « the MAP Editor »)
and place the robot, goal and obstacles in user-friendly fashion. After this step, bug0 and Numerical
Potential Field can be applied on the map to find a collision free path from an initial to a destination
point. Wireless communication(Using WIFI) is important in today’s systems, a reason why networ-
king functionalities have been added to our software in order to send the trajectory to the robot. As
a last step, the robot will parse the received path and deduce which algorithm must be used and
how to move and reach the goal. Moreover, the human can master the robot when necessary.
Software optimization was also taken into consideration, dependency analysis has been shown and
fixed to produce cross platform code. Various ways to minify the code have been demonstrated (for
C and JavaScript), and target specific applications(32/64 bits) was produced for further execution
speed enhancement(no need for backward compatibility).
Finally, security precautions were integrated into the code, many protection mechanisms against
various attacks (including reverse engineering) have been discussed. It is a mandatory skill in mo-
dern time that we have to master in order to face the dark art and withstand their attempts and stop
them. Everyone must keep in mind : there are ghosts in the wires, security is our concern[37].
The requested task has been completed but this opens new opportunities to generalize the results
to multiple robots and real time controlling systems. Eventually, camera can be added allowing the
human controller to take the full control when precision is needed, target tracking can also be used
when the destination is reached(OpenCV is an excellent choice in the professional world).

After this work, some questions should get an answer « how smart will be future robots ?,
Can they be more intelligent than we are ? ». Renowned physicist Stephen Hawking said at the
Zeitgeist 31 conference in London that : « robots powered by artificial intelligence (A.I.), could
overtake humans in the next 100 years 32. When that happens, we need to make sure that computers
have goals aligned with ours ». Path planning was the first step that we have taken to understand the
robots, more challenges are waiting but as engineers we should always keep our creation’s impacts
positive on the society, never create a machine able to rule a man.

31. Follow the Zeitgeist Movement - London at : http://www.meetup.com/fr-FR/

Zeitgeist-Movement-London/?chapter_analytics_code=UA-12837668-1

32. Stephen Hawking predicts robot apocalypse coming within 100 years : http://www.geek.com/news/

stephen-hawking-predicts-robopocalypse-in-next-century-1622734/

48

http://www.meetup.com/fr-FR/Zeitgeist-Movement-London/?chapter_analytics_code=UA-12837668-1
http://www.meetup.com/fr-FR/Zeitgeist-Movement-London/?chapter_analytics_code=UA-12837668-1
http://www.geek.com/news/stephen-hawking-predicts-robopocalypse-in-next-century-1622734/
http://www.geek.com/news/stephen-hawking-predicts-robopocalypse-in-next-century-1622734/

References

[1] McGraw-Hill Companies. McGraw-Hill Dictionary of Scientific & Technical Terms.
McGraw-Hill, 2003.

[2] Wikipedia. https ://en.wikipedia.org/wiki/mobile_robot, May 2016.

[3] Coleman Benson. http ://www.robotshop.com/blog/en/what-types-of-mobile-robots-are-
there-3652, Mar 2012.

[4] Kavraki L. E., J.-C. Svestka, P. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation 12, 1996.

[5] M.de Berg, M.van Kreveld, M.Overmars, and O.Schwarzkopf. Computational geometry :
Algorithms and applications. Springer-Verlag :Berlin, 2000.

[6] tutorialspoint. http ://www.tutorialspoint.com/data_structures_algorithms/breadth_first_traversal.htm,
Mar 2012.

[7] Steven Skiena. The algorithm design manual. Springer. p. 480, 2008.

[8] C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions on
Electronic Computers, 1961.

[9] Even Shimon. Graph Algorithms (2nd ed.). Cambridge University Press, 2011.

[10] Sedgewick Robert. Algorithms in C++ : Graph Algorithms (3rd ed.). Pearson Education,
2002.

[11] Oussama Khatib. Reat-time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research, 1986.

[12] Miguel A. Padilla Castaneda, Jesus Savage, Adalberto Hernandez, and Fernando Arambula
Cosio. Local Autonomous Robot Navigation using Potential Fields. intechopen, 2008.

[13] Hani Safadi. Local path planning using virtual potential field. apr 2007.

[14] Shmuel Wimer. Bug algorithms. Apr 2011.

[15] Wikipedia. https ://en.wikipedia.org/wiki/d*, May 2016.

[16] Stentz Anthony. Optimal and efficient path planning for partially-known environments. Pro-
ceedings of the International Conference on Robotics and Automation, 1994.

[17] Stentz Anthony. The focussed d* algorithm for real-time replanning. Proceedings of the
International Joint Conference on Artificial Intelligence, 1995.

[18] Hart P., Nilsson N., and Raphael B. A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Syst. Science and Cybernetics, 1968.

[19] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown terrain. Transactions
on Robotics 21, 2005.

49

[20] S. Koenig, M. Likhachev, and D Furcy. Lifelong planning a*. Artificial Intelligence Journal
155, 2004.

[21] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest-
path problem. Journal of Algorithms 21, 1996.

[22] S. Koenig, Smirnov Y., and Tovey C. Performance bounds for planning in unknown terrain.
Artificial Intelligence Journal 147, 2003.

[23] Wikipedia. https ://en.wikipedia.org/wiki/rapidly_exploring_random_tree, May 2016.

[24] David Ferguson and Anthony (Tony) Stentz . Rapidly-exploring random trees : A new tool
for path planning. Technical report, Computer Science Department, Iowa State University,
October 1998.

[25] Matt Greytak. Numerical potential field path planning tutorial. dec 2005.

[26] BELKALEM Jugurtha and ABED Mohamed Amine. Our website : http ://mrobot.netai.net/,
May 2016.

[27] David Salomon. Data Compression The Complete Reference (Third Edition). Springer-Verlag
New York, Inc., 2004.

[28] Saturnino Salas, Einar Hille, and Garrett Etgen. CALCULUS ONE AND SEVERAL VA-
RIABLES. WileyPLUS, 2003.

[29] Rob HAWKES. Foundation HTML5 Canvas for Games and Entertainment. friendsof, 2003.

[30] G. Shanker Rao. Numerical Analysis. New Age International (P) Ltd., Publishers, 2006.

[31] Chris Anley, John Heasman, Felix Linder, and Gerardo Richarte. The Shellcoders Handbook :
Discovering and Exploiting Security Holes(Second Edition). Wiley Publishing, Inc., 2007.

[32] Michael J. Donahoo and Kenneth L. Calvert. TCP/IP Sockets in C : Practical Guide for
Programmers. Morgan Kaufmann Publishers is, 2001.

[33] Michael Sikorski and Andrew Honig. PRACTICAL MALWARE ANALYSIS. No Starch Press,
2012.

[34] Mark Russinovich, David A. Solomon, and Alex Ionescu. Windows Internals (Sixth Edition).
Microsoft Press, 2012.

[35] Eric Cole. Hiding in Plain Sight : Steganography and the Art of Covert Communication.
Wiley Publishing, Inc., 2003.

[36] Sean "Frank2" Taylor. Binary obfuscation from the top down. jul 2009.

[37] Kevin D. Mitnick and William L. Simon. Ghost in the Wires : My Adventures as the World’s
Most Wanted Hacker. Little, Brown and Company, 2011.

50

Appendices

.1 Arduino Mega 2560

FIGURE 17 – Arduino Mega 2560

— Based on Atmega2560 microcontroller
— 4 UARTs
— 54 digital I/O pins 15 of them are PWM
— Voltage input range(Vin pin) : 7-12V

51

.2 Dijisktra’s Algorithm

FIGURE 18 – Dijiktra Algorithm Pseudo-Code

52

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Generalities
	Generalities on mobile robots
	Definition
	Classification Of Mobile Robots

	Environment modeling
	Continuous representation
	Discrete representation

	Path planning
	Road Map Method
	Graph Search
	Potential Field
	Sensor Based Methods

	Uneven Environment and Algorithm discretization
	Uneven Environment
	Algorithm discretization

	Conclusion

	Hardware Implementation
	Mobile robot platform description
	Sensors Description
	Camera
	LADAR
	Infrared Sensors
	Ultrasonic Sensors

	Necessary sensors which must be added to the platform
	LM35 : Temperature Detector

	Wireless LAN Communication Using WIFI
	Wifi Overview
	Interacting With Wifi
	Reprogramming the ESP8266

	Conclusion

	Navigation strategy development
	Environment recognition Using Environment's Map
	Obstacles detection and avoidance(Two Level ODA)
	Computer Level Obstacle Detection(Path Generation)
	Robot Level(Path Execution)

	Path planning algorithms
	Bug0 Algorithm
	Numerical Potential Field
	Local Minima Problem

	Conclusion

	Hardware and software implementation
	Navigation strategy execution
	Circuit Overview
	Path Parsing And Execution
	Master Mode(Web Interface)

	Experimental tests
	Software Optimization
	Numerical Potential Field Computation Complexity
	Adding Software Security
	Real World Results And Discussion
	Future Expansions

	Conclusion

	Final Conclusion
	Appendices
	Arduino Mega 2560
	Dijisktra's Algorithm

