
Registration Number:……..../2016

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘MASTER’

In Electrical and Electronic Engineering

Option: Computer Engineering

Title:

Presented By:

- RAHIL Lillia

- AGGOUNE Khedidja

Supervisor:

 Dr. A.KHOUAS

FPGA-based Arabic LCD Display

Controller IP Design

i

Acknowledgement

First and foremost, we would like to thank Almighty ALLAH for giving us the

courage and the determination, as well as guidance in conducting this project study, despite

the difficulties.

Our sincere thanks and gratitude goes to our supervisor “Dr. KHOUAS”, for

proposing and directing this work.

Next, we owe a special thanks to the members of the jury who have agreed to

evaluate our work.

Finally; we would like to thank all those who helped us accomplish this modest

work, near or far.

RAHIL & AGGOUNE

ii

Dedication

“To the light of my world, my precious dad,

To the apple of my eye, my loving mom,

To my brother and sisters,

To my special friend who has never left my side,

To all the ones who helped me accomplish this work,

To all friends and computer classmates

This work is dedicated.”

R.Lillia

iii

Dedication

“I am deeply grateful to my family, especially my parents, brothers and

sister, you are the light that shows me the way.

 To the memory of my grandmother I dedicate this work, and to all my friends

over the world.”

Khedidja

iv

Abstract

A 2x16 character Liquid Cristal Display (LCD) is one of the most common

Input/Output (I/O) devices. It allows designers to communicate with the outside world.

Alphanumeric LCD can display English and some other special characters. However, Arabic

characters cannot be displayed since the Arabic fonts are not embedded in the LCD

controller, thus there are no corresponding American Standard Code for Information

Interchange (ASCII) codes for it. To allow Arabic display on an LCD module and reduce

designs’ time, we suggest to create an Intellectual Property (IP) core for Arabic character

LCD display controller. The design was done by creating a block diagram of the LCD

controller and interface it to a clock divider module and an IP core memory namely a Block

Random Access Memory (BRAM). The whole design was initialized and tested using

VHDL codes. The LCD initialization is done using some specific commands. These

commands allow Arabic characters to be generated and read from the Character Generator

RAM (CG RAM) which is one of the controller’s memory regions. The complete LCD

module was described and synthesized using Xilinx Integrated Synthesis Environment (ISE)

design suite tools, and implemented and tested using Xilinx Virtex 5 Field Programmable

Gate Array (FPGA) and Digilent Genesys board. After creating the needed design, a

simulation of each component has been made using a test bench VHDL code. However,

Displaying Arabic characters using FPGA couldn’t be achieved due to lack of time and some

problems, mainly changing the FPGA board, wasting time in working on some other Xilinx

tools and lack of the needed documentations. Moreover, once we implemented the design

LCD displayed just a cursor blinking to show clearly that the generated character couldn’t

be displayed .It has not been well introduced in the CGRAM of the controller. What we

suggest is to try to reuse those commands and test it once again since the same method works

once we tested it on a microcontroller.

v

Table of contents
Acknowledgement .. i

Dedication .. ii

Dedication ... iii

Abstract ... iv

List of figures .. vii

List of tables ... viii

Acronyms ... ix

CHAPTER I: Introduction to FPGA ... 3

I.1. Introduction ... 3

I.2. Field Programmable Gate Array ... 3

I.2.1. Overview of general FPGA device .. 3

I.2.2. FPGA‘s applications .. 4

I.2.3. Important Factors for comparing FPGAs ... 4

I.2.4. FPGA Xilinx Virtex 5 LXT family .. 5

I.3. Hardware development platform and tools ... 6

I.3.1. Hardware development platform .. 6

I.3.2. Hardware development tools .. 7

a. ISE design suite ... 7

b. Design flow ... 7

I.4. IP core ... 9

I.4.1. Advantages and Disadvantages of IP cores.. 9

I.4.3. IP cores type ... 9

I.4.4. Core Generator software tool ... 9

a. Overview .. 9

b. Block Memory Generator (BMG) ... 10

I.6. Conclusion ... 12

CHAPTER II: Character LCD Display Background ... 13

II.1. Introduction .. 13

II.2. Character LCD display .. 13

II.2.1. Overview of an LCD ... 13

II.2.2. LCD pins configuration .. 14

II.2.3. LCD controller .. 15

II.2.4. LCD control and display commands... 19

II.2.5. LCD display modes... 22

II.3. conclusion .. 22

CHAPTER III: LCD Controller Design .. 23

III.1. Introduction .. 23

vi

III.2. LCD controller design .. 23

III.2.1. Design of LCD module.. 23

III.2.2. Block memory LCD interfacing .. 26

a. Single port block memory ... 26

b. SDP block memory ... 28

III.2.3. Arabic Character Display .. 31

a. Microcontroller design .. 31

b. FPGA design ... 34

III.3. Conclusion .. 35

CHAPTER IV: Implementation and Experimental Results .. 36

IV.1. Introduction .. 36

IV.2. Experimental results ... 36

IV.2.1. LCD interfacing ... 36

IV.2.2. Block memory LCD interfacing .. 40

IV.2.3. FPGA Arabic characters on LCD .. 41

IV.3. Conclusion .. 42

General Conclusion ... 43

References .. xi

vii

List of figures
Figure I. 1: FPGA structure[1] ... 3

Figure I. 2: Virtex 5 FPGA LXT family members[8]. ... 6

Figure I. 3: Genesys board's architecture [3] ... 7

Figure I. 4: Xilinx FPGA design flow [8]. ... 8

Figure I. 5: BMG signals pinout [8]. .. 12

Figure II. 1: 2x16 LCD module [14]. .. 13

Figure II. 2: Structure of an LCD module [11]. ... 14

Figure II. 3: Xilinx Virtex 5 FPGA interfaced with a character LCD [3]. 15

Figure II. 4: 2 lines by 16 characters display [5]. ... 17

Figure II. 5: The CG ROM patterns used by the ST7066U-0A controller [5]. 17

Figure II. 6: Block diagram of the Sitronix ST7066U LCD controller [5]. 18

Figure III. 1: Transition diagram of LCD module initialization. 24

Figure III. 2: Simulation of the clock divider used. ... 24

Figure III. 3: Block diagram for LCD module... 25

Figure III. 4: Pinout of LCD display. .. 25

Figure III. 5: Simulation of LCD module. ... 25

Figure III. 6: Example of COE file to display “Master students”. 27

Figure III. 7: Single port RAM pinout. .. 27

Figure III. 8: Block diagram of a 16x8 single port RAM interfaced with LCD. 28

Figure III. 9: The simulation of single port RAM using COE file. 28

Figure III. 10: The COE file used for SDP RAM design. ... 29

Figure III. 11: Simple SDP RAM pinout. .. 30

Figure III. 12: Block diagram of a 16x8 SDP RAM interfaced with LCD........................ 30

Figure III. 13: Simulation results for LCD display using COE file. 31

Figure III. 14: Design of a PIC 16F877 interfacing with 2x16 LCD module. 32

Figure III. 15: Example of 5x8 dot matrix representation for an Arabic character (ه). 32

Figure III. 16: Flowchart of LCD custom character display. .. 33

Figure III. 17: Custom characters LCD displays. .. 33

Figure III. 18. Transition diagram of LCD module initialization for Arabic display. 34

Figure IV. 1: Counter Output after (a) one pushbutton's press and (b) three presses. 37

Figure IV. 2: Digital circuit for debouncing a push button. ... 38

Figure IV. 3: Counter output after (a) one push button press and (b) two pressed. 38

Figure IV. 4: LCD module display using a simple VHDL. ... 40

viii

List of tables

Table I. 1: Basic factors for FPGA’s comparison. ... 4

Table I. 2: Memory types included in BMG. ... 10

Table II. 1: Corresponding LCD pins on Genesys board [3]. .. 15

Table II. 2: IR and DR Registers operation. ... 16

Table II. 3: Example of custom character at the first location in CG RAM. 19

Table II. 4: Instructions and codes of some LCD commands. ... 21

Table III. 1: The Content of the CG RAM for an Arabic character display. 35

Table IV. 1: Pins configuration of the LCD display. ... 36

Table IV. 2: Pins configuration for the 16 bit up counter. ... 37

Table IV. 3: ASCII code of the characters to be used. .. 39

Table IV. 4: BRAMs LCD interfacing implementation. .. 40

ix

Acronyms

µC Microcontroller

A/D Analog to Digital converter

AC Address Counter

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

B Blink

BF Busy Flag

BMG Block Memory Generator

BRAM Block Random Access Memory

C Cursor

CAD Computer Aided Design

CG RAM Character Generator Random Access Memory

CG ROM Character Generator Read Only Memory

CLB Configurable Logic Block

CMT Clock Management Tile

COE Coefficient

CPLD Complex Programmable Logic Device

D Display

DB Data Bus

DCM Digital Clock Manager

DD RAM Display Data Random Access Memory

DL Data Length

DLL Delay Locked Loop

DP RAM Dual Port Random Access Memory

DR Data Register

DSP Digital Signal Processing

E Enable

EDA Electronic Design Automation

EDK Embedded Development Kit

FF Flip Flop

FIFO First Input First Output

FPGA Field Programmable Gate Array

FSM Finite State Machine

x

GPIO General Purpose Input Output

HDL Hardware Description Language

I/O Input/Output

IC Integrated Circuit

IOB Input Output Block

IOE Input Output Element

IP Intellectual Property

IR Instruction Register

ISE Integrated Synthesis Environment

ISim Integrated Synthesis Environment Simulator

LAB Integrated Synthesis Environment

LC Liquid Crystal

LCD Liquid Cristal Display

LED Light-Emitting Diode

LUT Look-Up Tables

MIF Memory Initialization File

MSB Most Significant Bit

PC Personal Computer

PIC Programmable Interface Controller

PLL Phase Locked Loop

RAM Random Access Memory

ROM Read Only Memory

RS Register Select

RTL Register Transfer Level

RW Read/Write

SDP RAM Simple Dual Port Random Access Memory

SIMPRIM Simulation Primitive

SoC System on Chip

UCF User Constraints File

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

XST Xilinx Synthesis Technology

General Introduction

General Introduction

1

General Introduction

 In the world of digital design, a major revolution has taken place over the past period.

Field programmable gate arrays (FPGAs) can contain over a million equivalent logic gates

and tens of thousands of flip flops (FFs). This means that it is not possible to use traditional

methods of logic design involving the drawing of logic diagrams when the digital circuit

may contain thousands of gates, traditional integrated circuits design has been replaced by

the design flow based on hardware description languages (HDL) such as VHDL, Verilog,

and tools for logic synthesis. FPGAs can be reprogrammed to desired applications or

functionality requirements after manufacturing. It is integrated inside a specific board to

achieve the required system’s objectives. In fact, Input/output (I/O) devices are very useful

in such system such as Liquid Crystal Device (LCD). The character LCD display is the most

common device which is attached to Genesys Virtex 5 FPGA board, that LCD can display

only English/Japan characters ASCII codes. Due to the systems development Arabic

displaying is needed, however, ASCII codes do not include any Arabic characters.

HDL is used to describe complex logic function, these are included in design suites

such as Xilinx's Integrated Synthesis Environment (ISE) and similar tools. HDL based

design flow offers portability, reduction of the design cycle, independence of technology,

and automatic synthesis and logic optimization. However, if design engineers had to code

commonly used complex digital circuits in large projects, they would end up wasting more

time and money. Because of this, a new generation of methodology, intellectual property

(IP) core is provided. An IP core is a block of logic or data to perform a specific function

that is used in making an FPGA or an application specific integrated circuit (ASIC). IP cores

can be used in a complex design where a designer wants to save time. The CORE Generator

System is suggested as an ISE design tool that delivers parameterized cores optimized for

Xilinx FPGAs. These include Digital Signal Processing (DSP) function, memories, storage

elements, math functions and other basic elements. However, the core library of ISE tool

does not contain a core for character LCD controller.

In our project, mainly we have introduced some designs based on Genesys’ 2x16

character LCD display by using a single port and simple dual port RAM including in the

block memory generator (BMG) which is an existed IP and make comparison with them, in

General Introduction

2

order to allow a later IP design for that LCD. In addition, we displayed Arabic characters on

LCD display using microcontroller and FPGA.

 The main objectives of our project are to display Arabic characters on LCD display in

the Genesys board and suggest a design of IP core for FPGA-based LCD controller to

integrate it with ISE design suite tool.

 Our report is divided into four chapters. Chapter one describes the FPGA’s technology.

Chapter two presents a 2x16 character LCD display. Chapter three explains the design of

LCD controller integrating Arabic characters. Chapter four presents implementation and

experimental results. Finally in the general conclusion, a summary of the work is presented,

with suggestions for future work.

CHAPTER I

Introduction to FPGA

CHAPTER I Introduction to FPGA

3

CHAPTER I: Introduction to FPGA

I.1. Introduction

In today’s digital world, FPGA has become one of the major technologies used to create

sophisticated digital systems based on schematic designs or HDL languages; mainly VHDL or

Verilog languages. Actually, custom hardware functionality can be implemented using FPGA

without need to use a breadboard or soldering iron. Xilinx Virtex 5 FPGA has been used in our

project. In this chapter, some FPGA features will be introduced.

I.2. Field Programmable Gate Array

In the following sections, FPGA is going to be described with details.

I.2.1. Overview of general FPGA device

FPGA is a two dimensional logic array that can be programed and reconfigured by the

user in the field after manufacturing, hence field programmable. It allows the implementation

of complex digital circuits. This device has been around since 1980s. This semiconductor chip

is made up of different logic blocks named Configurable Logic Blocks (CLBs) by Xilinx or

Logic Array Blocks (LABs) by Altera. Each one of these logic blocks; seen in gray in Figure

I.1; is surrounded by reconfigurable interconnections (the spacing between gray blocks) to

allow the routing of all these blocks together. These blocks are surrounded by a configurable

General Purpose Input/Output pins (GPIO). These pins are named as Input/Output Blocks

(IOBs) by Xilinx whereas Altera suggests Input/Output Elements (IOEs) as a name.

Figure I. 1: FPGA structure[1].

CHAPTER I Introduction to FPGA

4

I.2.2. FPGA‘s applications

FPGAs can be reprogrammed to desired application or functionality requirements after

manufacturing. This feature distinguishes FPGAs from ASICs, which are custom manufactured

for specific design tasks. They can cover an extremely wide range of applications including

DSP, speech recognition, defense system, face detection, ASIC prototyping, medical imaging,

industrial applications…etc.

I.2.3. Important Factors for comparing FPGAs

 FPGAs are similar to Complex Programmable Logic Devices (CPLDs). The only

difference is that CPLDs are much smaller in size and compatibility than FPGAs. They are

manufactured by many different companies like Xilinx, Altera, Actel, Lattice, QuickLogic and

Atmel. These companies use some specific factors to distinguish between FPGAs. These factors

are described in Table I.1.

Table I. 1: Basic factors for FPGA’s comparison.

Factor Description

Fabrication process It is clear that more advanced fabrication process brings higher

integration, and thus higher density and/or reduced size of chips.

Logic density The unit used to express the logic capability of an FPGA.

Clock management Clock management comprises two basic functions: removing clock

skew and propagation delay and generating new clock signals with

different frequencies. Generally, this can be done using either Delay

Locked Loops (DLLs), or Phase Locked Loops (PLLs).

On-chip memory As FPGA applications grow in complexity so does their need for

memory. Using Look-Up Tables (LUTs) as registers for storing data

couldn’t possibly provide enough space for serious applications.

Especially if these applications require numerous arithmetical

computations to be performed, and are time dependent. As this is

often the case, the outside memory could not produce desired

efficiency. This is why, with every new generation of FPGAs, more

and more memory gets embedded into FPGA. [8]

DSP capabilities The majority of FPGA applications require some sort of DSP in order

to reduce the time and increase efficiency of computations.

CHAPTER I Introduction to FPGA

5

I/O compatibility As FPGAs continue to grow in size and capacity, the larger and more

complex systems designed for them demand an increased variety of

Input/Output standards. Furthermore, as system-clock speeds

continue to increase, the need for high-performance I/O becomes

more important.

Software support and

other design services

Developing an FPGA-based hardware system is a complex process.

Designers divide this process into different stages (Design flow),

providing a complete software solution for each of them.

 In fact, Xilinx and Altera are the current market leaders and long-time industry rivals.

Both of these two companies provide a proprietary Windows and Linux design software mainly

ISE design suite or Vivado as Xilinx tools and Quartus for Altera to allow the user to design,

analyze, simulate and compile his design in an easy way.

Since FPGA Virtex 5 is the one used in our project, it will be discussed in the following section.

I.2.4. FPGA Xilinx Virtex 5 LXT family

This FPGA family offers an advanced platform that meets the growing need for

programmable systems with higher performance, higher density, lower power consumption,

and lower overall system cost. It is available in -3, -2, -1 speed grades, with -3 having the highest

performance.

Figure I.2 shows a summary of the available resources for different Virtex 5 LXT

FPGAs family. It incorporates LUTs with six independent inputs, with a new diagonal

interconnect structure. In addition, a PLL have been added to each clock management tile

(CMT), which now contains two digital clock managers (DCMs) and one PLL. The CMT thus

offers the best of both worlds: the robust versatility and precise incremental phase shift

capability of a digital clock manager combined with the jitter reduction from the analog PLL.

The largest device in the family has six CMTs capable of generating and manipulating 550-

MHz clocks, supporting the performance of Virtex-5 logic and block functions. Moreover,

synchronous dual-ported block Random Access Memory (RAM) is an important block

memory. The size of each block RAM has been increased to 36 Kb, but you can also use it as

two independent 18-Kb block RAMs. Furthermore, the DSP48Eslice contains a 25x18

multiplier, an adder, and an accumulator, thus it is dedicated to arithmetic operations[8] .

CHAPTER I Introduction to FPGA

6

Figure I. 2: Virtex 5 FPGA LXT family members[8].

 After dealing with all these information about FPGA technology, it is recommended to

describe briefly the hardware development platform and all the needed tools used to for digital

system design.

I.3. Hardware development platform and tools

In our project Xilinx Virtex 5 FPGA integrated with the Genesys board have been used.

This FPGA development board will be presented in the following sections.

I.3.1. Hardware development platform

The Digilent's Genesys board seen in Figure I.3 brings the power of the Xilinx VIRTEX

5 FPGA to a surprisingly uncomplicated design platform. With gigabit ethernet, high speed

memory, high resolution audio and video circuits, and a host of USB connectivity options, the

Genesys board includes proven circuits used in the most demanding designs. From complex

systems to dedicated high performance applications, the Genesys board brings workable

solutions to complex problems. Genesys is fully compatible with all Xilinx Computer Aided

Design (CAD) tools, including ChipScope, Embedded Development Kit (EDK), and the free

WebPack, so designs can be completed with no extra costs. The Virtex5 LX50T is optimized

for high performance logic. It includes Digilent's newest Adept USB2 system that offers device

programming, real time power supply monitoring, automated board tests, virtual I/O, and

simplified user data transfer facilities. A second USB programming port (iMPACT USB2),

based on the Xilinx programming cable, is also built into the board [3].

CHAPTER I Introduction to FPGA

7

Figure I. 3: Genesys board's architecture [3].

Genesys Virtex 5 includes different inputs and outputs that can be used to perform specific

tasks. The major ones are pushbuttons, eight switches, and eight LEDs for basic digital input

and output. It also contains a standard 2x16 character LCD which is of our interest to deal with

it later on.

The upcoming sections will discuss the tool used to program the FPGA device.

I.3.2. Hardware development tools

Xilinx offers different tools to interact with the Xilinx FPGA devices. These tools are

described below.

a. ISE design suite

Some tools are needed to design digital systems so that they perform the required tasks.

In our case, it is necessary to use Xilinx ISE design suite as a tool to program the Virtex 5

integrated in the Genesys board, so that it converts the HDL or Schematic design into bits stream

(machine language). The HDL used in this project is VHDL. Before creating any VHDL

module it is really important to understand the design flow described in the next section.

b. Design flow

Designing a digital system in Xilinx ISE tools goes through different steps before the

designer himself can test the functionality of that system and download it in the FPGA (Virtex

5 in our case). The ISE design flow seen in Figure I.4 comprises the following steps: design

entry, design synthesis, design implementation, and Xilinx device programming. Design

verification, which includes both functional verification and timing verification, takes places at

different points during the design flow[8]. The main steps are described below:

CHAPTER I Introduction to FPGA

8

 Design Entry: is required to create design files using hardware description language (In

our case VHDL) or schematic editor.

 Functional verification: is used to test functionality of the design at different points in the

design flow as follows:

 Before synthesis, run behavioral simulation (also known as Register Transfer Level

(RTL) simulation).

 After Translate, run functional simulation (also known as gate-level simulation),

using the SIMPRIM library.

 After device programming, run in-circuit verification[8].

 Design Synthesis : During synthesis, the synthesis engine compiles the design to transform

HDL sources into an architecture specific design netlist. The ISE software supports the use

of Xilinx Synthesis Technology (XST), which is delivered within it[8].

 Design Implementation : Partition, place, and route to create bit stream file, called bit file.

 Timing verification: is performed during after Map and place & route implementation.

 Xilinx Device Programming : After generating a programming file, it is possible to

configure the used device by generating configuration files and downloading the

programming files from a host computer to a Xilinx device using iMPACT Xilinx tool.

Figure I. 4: Xilinx FPGA design flow [8].

http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_design_entry.htm
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_design_synthesis.htm
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_design_implementation.htm
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_configuration_overview.htm

CHAPTER I Introduction to FPGA

9

The following section explains the IP core in details. In fact, existing IP cores have been

used in our designs.

I.4. IP core

 IP core is a ready-made function that can be inserted in any digital design as a block

diagram with user’s specifications. In other words, it is a block of logic or data that is used in

making a FPGA or ASIC for a product. As essential elements of design reuse.

I.4.1. Advantages and Disadvantages of IP cores

Like any new technologies and tools, IP cores have their advantages and disadvantages.

Although they may simplify a given design, the engineer has to design the interfaces to send

and receive data from this black box. Moreover, many cores are designed for particular parts

but some come free but other cores may cost you thousands of dollars.

I.4.3. IP cores type

IP cores split up into three different categories: soft cores, firm cores and hard ones. The

difference between the three cores is that the soft core is the one which exists either as

a netlist (a list of the logic gates and associated interconnections making up an integrated circuit

(IC)) or HDL code, whereas the hard core is a physical manifestations of the IP design. Hard

core is the best for plug and play applications, and is less portable and flexible than the other

two types of cores. Like the hard core, firm or simply semi-hard core also carry placement data

but is configurable to various applications. As a way to create some IP cores it is suggested to

use the CORE Generator System as an ISE design tool that delivers parameterized cores

optimized for Xilinx FPGAs.

I.4.4. Core Generator software tool

 Some existing IP cores can be generated using a special Xilinx tools described in

details in the next coming sections.

a. Overview

The CORE Generator software is based on the use of the IP catalog. This IP catalog

includes cores that are already defined to perform some specific operations in order to replace

many coding lines. One of these IP cores is the Memory and storage elements used to create

different block memories.

A memory is a storage element used to hold data and programs in a binary format. It

can be found in every electronic device including FPGAs with two main different types:

http://searchcio-midmarket.techtarget.com/definition/field-programmable-gate-array
http://searchcio-midmarket.techtarget.com/definition/ASIC
http://whatis.techtarget.com/definition/design-reuse
http://whatis.techtarget.com/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR
http://searchcio-midmarket.techtarget.com/definition/integrated-circuit
http://searchcio-midmarket.techtarget.com/definition/integrated-circuit
http://searchwinit.techtarget.com/definition/Plug-and-Play

CHAPTER I Introduction to FPGA

10

RAM and ROM. RAM is a volatile memory that can be access randomly at any time in any

order. Its contents are lost when the power is turned off whereas ROM is a non-volatile

memory used to read from it only.

b. Block Memory Generator (BMG)

Memories and storage Elements IP core; included in the Core Generator; contains three

different cores FIFOs, Memory Interface Generators, RAMs and ROMs which contains two

memory Generators, Block and Distributed. What is interesting for us is the BMG.

The Xilinx LogiCORE IP BMG core, found in the Core Generator is an advanced memory

constructor that generates area and performance-optimized memories using embedded block

RAM resources in Xilinx FPGAs [1]. Users can quickly create optimized memories to leverage

the performance and features of block RAMs and ROMs in Xilinx FPGAs. Actually, BMG

provides different types of IP core memories that are described briefly below. Mainly Single

port RAM, SDP RAM, True Dual port RAM, Single port ROM, and Dual port ROM. s

These memories can be explained in the Table I.2 seen below.

Table I. 2: Memory types included in BMG.

Memory type Block diagram Description

Single port ROM

In single port ROM, only one address

port is available for read operation.

Single port RAM

On a single port RAM, the read and

write operations share the same address

at port A, and the data is read from

output port A.

CHAPTER I Introduction to FPGA

11

SDP RAM

In SDP RAM mode, a dedicated address

port is available for each read and write

operation (one read port and one write

port). A write operation uses write

address from port A while read

operation uses read address and output

from port B.

True Dual port

RAM

In true dual port RAM mode, two

address ports are available for read or

write operation (two read/write ports).

In this mode, we can write to or read

from the address of port A or port B, and

the data read is shown at the output port

with respect to the read address port.

Dual port ROM

The dual port ROM has almost similar

functional ports as single port ROM.

The difference is dual port ROM has an

additional address port for read

operation.

Figure I.5 describes the BMG signals. The widths of the data ports (dina, douta, dinb,

and doutb) can be selected in logiCORE tool. The address port (addra and addrb) widths are

determined by the memory depth with respect to each port. The Write enable ports (wea and

web) are buses of width 1 when byte-writes are disabled. When byte-writes are enabled, wea

and web widths depend on the byte size and Write data widths selected.

CHAPTER I Introduction to FPGA

12

Figure I. 5: BMG signals pinout [8].

I.6. Conclusion

In this chapter we presented some backgrounds and features of FPGAs. We examine

Genesys board and gave some needed information about needed tools to be used later on. Also,

we presented the general architecture of the FPGA we’ve used. Moreover, we tried to give brief

ideas about the IP cores and the core generator. This tool will be used in the next coming

chapters in order to create some needed IP cores in digital design world.

CHAPTER II

Character LCD Display Background

 CHAPTER II Character LCD Display Background

13

 CHAPTER II: Character LCD Display Background

II.1. Introduction

 Most digital systems combine hardware design and software design to achieve the

required system’s objectives. Actually, each system contains different input and output ports to

allow the designer to control and communicate with the outside world. One of these I/O devices

is the character LCD display. This chapter introduces the needed information for this module

which is attached to Genesys Virtex 5 FPGA board; that is the LCD display.

II.2. Character LCD display

Genesys board has a 2x16 character LCD display connected to it to allow the designer

to display some data and integrate that module in the design of the digital system as required.

Figure II.1 shows a 2x16 character LCD display with its corresponding pins. These pins will

be explained later on.

Figure II. 1: 2x16 LCD module [14].

For the coming papers, we will describe LCD’s features.

II.2.1. Overview of an LCD

 An LCD is a very basic electronic module; commonly used in various devices and

circuits. This module is preferred over seven segments display and Light-Emitting Diodes

(LEDs). The reasons being: LCDs are economical; easily programmable; have no limitation of

displaying special and even custom character (unlike seven segments), animations and so on[4].

This I/O device consists of a panel of liquid crystal molecules (LC) illustrated in Figure II.2

that can be induced by electrical fields to take certain patterns which block light or allow it

through, hence Liquid Cristal Display. Liquid crystals do not emit light directly.

http://www.engineersgarage.com/content/seven-segment-display
http://www.engineersgarage.com/content/led

 CHAPTER II Character LCD Display Background

14

Figure II. 2: Structure of an LCD module [11].

LCDs are used all over the world in calculators, digital clocks, CD players…etc. In addition,

character LCDs are ideal for displaying text thus alphanumeric LCDs. They can also be

configured to display small icons with no more than 5x7 pixels in size.

 There exist different types of LCDs display mainly the character LCDs display and the

graphical one. Obviously, it is enough to describe the character LCDs display since they are the

needed one in this project. Sometimes it is called alphanumeric LCDs. They are inexpensive

and easy to use. They range in different sizes including 1x8, 2x8, 1x16, 2x16 characters, 4x16

characters plus many more. What is interesting for us now is the 2x16 character LCD displays,

that is, two lines of sixteen characters each.

In fact, it is necessary to understand how a character LCD is configured. The next section

deals with pins configuration.

II.2.2. LCD pins configuration

Genesys board contains a standard 2x16 character LCD, that is, two lines of sixteen

characters each connected as seen in Figure II.3. Each character is represented in 5x8 pixel

dotted matrix (5x7 pixels for character one extra for the cursor). This LCD has sixteen different

pins that are connected directly to specific pins on the Xilinx Virtex 5 FPGA. Two of these pins

are not used due to the fact that they are used for optional backlight. The rest of pins includes

eight data signals D7...D0, three control signals (read and write signal (R/W), Enable signal (E)

and Register Select signal (RS)), and three voltage supply signals. E line is used to allow the

LCD to send or receive data. RS line is used for data and instructions, when it is low the data is

to be treated as a command or special instruction (such as clear screen, position cursor…etc.),

but when it is high, the data being sent is text data which should be displayed on the screen.

R/W line is used to control operation, when it is low, the information on the data bus is being

written to the LCD, and when it is high the program is effectively reading the LCD.

 CHAPTER II Character LCD Display Background

15

Figure II. 3: Xilinx Virtex 5 FPGA interfaced with a character LCD [3].

The Xilinx Virtex 5 FPGA pins assignment is illustrated in Table II.1.

Table II. 1: Corresponding LCD pins on Genesys board [3].

LCD pins Signal FPGA pins Description

1 Vss Ground

2 Vdd 5V Power Supply

3 Vo Contrast Voltage (typically 100mV-200mV at 20C)

4 RS V7 Register select: high for data, low for instructions

5 R/W W6 Read/write signal: high for read, low for write

6 E AA5 Read/write: high for OE; falling edge writes data

7 D0 Y8 Bidirectional data bus 0

8 D1 AB7 Bidirectional data bus 1

9 D2 AB5 Bidirectional data bus 2

10 D3 AC4 Bidirectional data bus 3

11 D4 AB6 Bidirectional data bus 4

12 D5 AC5 Bidirectional data bus 5

13 D6 AC7 Bidirectional data bus 6

14 D7 AD7 Bidirectional data bus 7

II.2.3. LCD controller

The 2x16 character LCD of Genesys board uses a Sitronix ST7066U as a controller

module. It is used to communicate with the FPGA and control the LCD display to perform the

required task. Its block diagram seen in Figure II.6 has two 8 bit registers Instruction Register

(IR) and Data Register (DR) to store information sent from FPGA. The operation and selection

of the two registers are defined by Table II.2. The IR register stores instruction codes, such as

display clear, cursor shift, and address information for display data RAM (DD RAM) and

character generator RAM (CG RAM). The IR can only be written from FPGA. The DR register

temporarily stores data to be written into DD RAM or CG RAM and temporarily stores data

 CHAPTER II Character LCD Display Background

16

read from DD RAM or CG RAM. These memories are going to be explained in the next coming

sections. The Busy Flag (BF) seen in that table gives an indication whether the LCD hass

finished the previous instruction and ready with the next.

Table II. 2: IR and DR Registers operation.

RS R/W Operation

0 0 Instruction Write operation (IR writes an internal operation like clear display.

0 1 Read Busy Flag (DB7) and address counter (DB0 ... DB6).

1 0 Data Write operation to DD RAM or CG RAM (DR to CG RAM or DD RAM).

1 1 Data Read operation from DD RAM or CG RAM to DR.

It also includes an address counter (AC) which receives an initial address through IR

based on a command/instruction code, assigns and updates addresses to both DDRAM and

CGRAM. The DDRAM is used to store the display data represented in 8 bit character codes

and sent from FPGA. Each address of DDRAM corresponds to a position on the LCD [5].

As it has been mentioned earlier, the LCD Controller has three internal memory regions, which

are described in this section. A character generator ROM (CG ROM) with 208 preset 5x8

character patterns, these preset patterns are identified by their American Standard Code for

Information Interchange (ASCII) codes (up through 7F are standard ASCII which includes all

normal alphanumeric characters). In fact, the Sitronix ST7066U uses English / Japan ASCII

table (ST7066U-0A). The leftmost column on Figure II.5 represents CG RAM. CG RAM

custom character pattern is programmed line by line.

 Also has two RAMs, naming DD RAM and CG RAM. CG RAM allows user to define

their eight custom 5x8 characters. The DD RAM can hold up to 80 character codes at a time.

Each byte of DD RAM represents each unique position on the LCD display. The LCD controller

reads the information from the DD RAM and displays it on the LCD screen by mapping the

locations 00H to 0FH to the first display row, and locations 40H to 4FH map to the second row

seen in Figure II.4. Normally, DD RAM location 00H maps to the upper left display corner,

and 40H to the lower left. Shifting the display left or right can change this mapping. The display

uses a temporary data register (DR) to hold data during DD RAM /CG RAM reads or writes,

and an internal address register to select the RAM location. Address register contents, set via

the IR, are automatically incremented after each read or write operation. RAM read/write

requests will be directed to DD RAM or CG RAM, depending on which address register was

most recently accessed [3].

 CHAPTER II Character LCD Display Background

17

 Figure II. 4: 2 lines by 16 characters display [5].

Figure II. 5: The CG ROM patterns used by the ST7066U-0A controller [5].

 CHAPTER II Character LCD Display Background

18

Figure II. 6: Block diagram of the Sitronix ST7066U LCD controller [5].

Moving beyond just displaying text, one awesome feature of this LCD display is the

possibility to build our own characters in flexible way thus user’s defined characters. However,

the number of characters to be added are limited. This can be possible done by using the CG

RAM. In fact, CG RAM provides space for eight custom characters only. Any character can be

made to appear on a 5x8 pixel matrix element without knowledge of its ASCII value. Below in

Table II.3 it can be seen an example of an Arabic character)ب(drawn inside a box of a 5x8

pixel grid. The 1's represent a green pixel and the 0's represent a white pixel. Since the data bus

is 8 bits wide, the upper 3 bits are not used, and should always be set to zero (Don’t care case

x). This is used to encode the desired character to be defined in binary.

 CHAPTER II Character LCD Display Background

19

Table II. 3: Example of custom character at the first location in CG RAM.

 Upper Nibble Lower Nibble

Write Data to CG RAM

A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

Character Address Row Address Don’t care Character Bitmap

0 0 1 0 0 0 x x x 0 0 0 0 0

0 0 1 0 0 1 x x x 0 0 0 0 0

0 0 1 0 1 0 x x x 1 0 0 0 1

0 0 1 0 1 1 x x x 1 0 0 0 1

0 0 1 1 0 0 x x x 1 1 1 1 1

0 0 1 1 0 1 x x x 0 0 0 0 0

0 0 1 1 1 0 x x x 0 0 1 0 0

0 0 1 1 1 1 x x x 0 0 0 0 0

Note: x stands for don’t care case.

The steps to define new custom characters in CG RAM are listed below:

a) Set CG RAM address: sets initial CG RAM Address. This command loads AC with the

value specified in the address field and causes subsequent data to be stored in the

character generator RAM.

b) Write to CG RAM: write binary 8 bit data into the CG RAM memory.

c) Read from CG RAM: this command is used to read the written data and to display it into

the LCD display.

These three steps uses some LCD commands which are explained in the following section.

II.2.4. LCD control and display commands

 The LCD controller uses some commands to drive the LCD. These commands are in an

8 bit format and are delivered on the same Data Bus (DB). Table II.4 resumes the main features

of LCD instructions and codes. These instructions are explained below:

1. Clear Display: This instruction is used to clear all display and returns the cursor to the

home position. It writes space code (20h) into all DD RAM addresses and set the address

Counter to DD RAM location address 0. In other words, the display disappears and the

cursor goes to the left edge of the display (the first line if 2 lines are displayed).

2. Cursor Home: returns the cursor to the home position (Address 0).

 CHAPTER II Character LCD Display Background

20

3. Display ON/OFF Control: Controls display of characters and cursor. Whenever Display

line (D) is ON the LCD display is turned ON and OFF when D = 0. The DD RAM contents

remain unchanged. The Cursor line (C) is displayed when C = 1 and is not displayed when

C = 0. The cursor is displayed as 5 dots in the 8th line when the 5 x 7 dot character font is

selected and as 5 dots in the 11th line when the 5 x 10 dot character font is selected. The

character at the cursor position blinks when the Blink (B) is 1.

4. Entry Mode: This instruction sets the effect of subsequent DD RAM read or write

operations. It specifies whether to increment (I/D = 1) or decrement (I/D = 0) the AC after

subsequent DD RAM read or write operations. If S = 1 the display will be shifted to the left

(if I/D = 1) or right (if I/D = 0) on subsequent DD RAM write operations. This makes it

looks as if the cursor stands still and the display moves when each character is written to

the DD RAM. If S = 0 the display will not shift on subsequent DD RAM write operations.

5. Cursor/Display Shift: moves the cursor and shifts the display without changing DD RAM

contents.

6. Function set: sets interface data length (DL), number of display lines (N) and character

font (F). This command should be issued only after automatic power on initialization has

occurred, or as part of the module initialization sequence. When the 4 bit length is selected,

data must be sent or received in pairs of 4 bits each. The most-significant 4 bits are sent or

received first.

7. Set CG RAM Address: sets the CG RAM address. Subsequent read or write operations

refer to the CG RAM.

8. Read Busy Flag And Address Counter: reads the state of the busy flag (BF) and the

contents of the address counter. BF = 1 indicates that the module is busy processing the

previous command. Whereas BF = 0 indicates that the module is ready to perform another

command. The value of the address counter is also returned. The same address counter is

used for both CG and DD RAM transfers. This command can be issued at any time. It is the

only command which the LCD module will accept while a previous command is still being

processed.

9. Set DD RAM Address: sets the DD RAM address. Subsequent read or writes refer to the

DD RAM.

10. Write Data from RAM: this instruction writes a byte to the CG or the DD RAM. The

destination (CG RAM or DD RAM) is determined by the most recent set RAM Address

command. The location to which the byte will be written is the current value of the address

counter. After the byte is written the address counter is automatically incremented or

 CHAPTER II Character LCD Display Background

21

decremented according to the entry mode. The entry mode also determines whether or not

the display will shift.

11. Read Data from RAM: reads a byte from the CG or DD RAM. The source (CG RAM or

DD RAM) is determined by the most recent Set RAM Address command. The location

from which the byte will be read is the current value of the address counter. After the byte

is read the address counter is automatically incremented or decremented according to the

entry mode.

Table II. 4: Instructions and codes of some LCD commands.

Instruction

Codes

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Clear Display 0 0 0 0 0 0 0 0 0 1

Cursor home 0 0 0 0 0 0 0 0 1 x

Display ON/OFF

Control

0 0 0 0 0 0 1 D C B

Entry Mode 0 0 0 0 0 0 0 1 I/D S

Cursor/Display Shift 0 0 0 0 0 1 S/C R/L x x

Function set 0 0 0 0 1 DL N F x x

Set CGRAM Address 0 0 0 1 CG RAM Address

Read Busy Flag And

Address Counter

0 1 BF DD RAM Address

Set DD RAM Address 0 0 1 DD RAM Address

Write Data to RAM 1 0 Write Data to CG RAM or DD RAM

Read Data from RAM 1 1 Read Data from CG RAM or DD RAM

 x stands for don’t care case

To configure an LCD display, four commands must be sent to LCD in either 4 bit mode,

or in 8 bit mode. These commands are:

 Function set

 Display ON/OFF control

 Display Clear

 Entry Mode Set

 CHAPTER II Character LCD Display Background

22

After talking about the most important LCD commands, it is mainly needed to talk

briefly about the two different display modes of LCD. These modes are given in the next

section.

II.2.5. LCD display modes

 LCD includes two different displaying modes 4 bit or 8 bit mode. The difference

between these two modes is the way data are sent to LCD. In the 8 bit mode, to write an 8

bit character to the LCD module, ASCII data is sent through the data lines D0-D7 and data

strobe is given through the E line. 4 bit mode uses only 4 data lines. In other words, in this mode

the 8 bit ASCII data is divided into two parts which are sent sequentially through data lines D4

– D7 with its own data strobe through the E line. The idea of 4-bit communication is to save as

much pins that used to interface with LCD. The 4 bit communication is a bit slower when

compared to 8 bit. The speed difference is only minimal, as LCDs are slow speed devices the

tiny speed difference between these two modes is not significant. Thus the 4-bit mode data

transmission is most commonly used [13].

II.3. Conclusion

We have mentioned briefly some background parts for a 2x16 character LCD display.

Mainly, we mentioned the LCD integrated with the Genesys board and we presented the needed

configuration and initialization in order to display characters on the LCD display. In the next

coming chapter, designs, simulations and experimental results will be presented.

CHAPTER III

LCD Controller Design

CHAPTER III LCD Controller Design

23

CHAPTER III: LCD Controller Design

III.1. Introduction

 After understanding how a simple 2x16 character LCD display works, in this chapter

we will design and simulate a digital system for later use to test LCD functionality and examine

its performance.

III.2. LCD controller design

Alphanumeric or more simply text LCD module is cheap and easy to interface using a

microcontroller (µC) or FPGA. In the following sections, we designed LCD module in VHDL,

interfaced it with a simple DUAL port memory. Moreover, we defined Arabic characters and

displayed them on that LCD using two different techniques (Xilinx FPGA Virtex 5 and a

Programmable Interface Controller (PIC) 16F877).

III.2.1. Design of LCD module

The Genesys FPGA development board includes a 2x16 character LCD module. This

module can be used to display text and characters by sending appropriate commands from

FPGA chip to that LCD module. To create an LCD module and interface it with Xilinx Virtex

5 FPGA we should create new ISE project and use new VHDL module. This VHDL code;

based on sequential approaches; has two main parts: initialization and text display. The

initialization part seen in Figure III.1 consists of all steps listed in chapter II which are

described blow. After turning on this LCD, power on, at least 40ms must elapse before the

function set instruction code can be written to set the bus width, number of lines, and character

patterns (8 bit interface, 2 lines, and 5x8 dots are appropriate). After the function set instruction,

at least 37µs must elapse before the display control instruction can be written (to turn the display

on, turn the cursor off, and set the cursor to no blink). After another 1.52ms, the entry mode

instruction sets address increment mode and display shift mode on. After this sequence, data

can be written into the DDRAM to allow the display of characters.

CHAPTER III LCD Controller Design

24

Figure III. 1: Transition diagram of LCD module initialization.

Before initializing the LCD module, it is recommend to connect it to a clock divider

module to reduce the Virtex 5 internal clock of 100MHz because there is a maximum speed

after which LCD display can no longer be able to receive and send data. The clock or frequency

divider is a simple component implemented through the use of the scaling factor and a counter.

The scaling factor is found by dividing the input frequency (FPGA internal frequency 100MHz)

and the desired output frequency (400Hz). Therefore, the counter of the frequency divider

generates an output signal of 400Hz each 250000 cycles. The clock divider module has been

designed depending on those data. It generates the 400Hz signal by using a counter from 1 to

124999 because a clock signal is a square wave with a 50% of duty cycle (same time active and

inactive); for this case, 125000 cycles active and 125000 cycles inactive. Since the counter

begins at zero, the superior limit is 125000 - 1. This clock divider has been mentioned in every

part on our designs. Figure III.2 shows a simulation of that clock divider.

Figure III. 2: Simulation of the clock divider used.

CHAPTER III LCD Controller Design

25

Seven I/Os pins are used to design our LCD module. Five of them are outputs used to

control the LCD module, say, Clear, RS, RW, En and LCD[7. .0]. The rests are used as inputs

one for the clock Clk and another one for the eight bit input data Data_in[7. .0]. The clock is

the output of a clock divider module used to reduce the high frequency of the internal clock.

This design allows user to enter data and display it directly in the LCD module. Figure III.3

shows the block diagram of LCD module whereas Figure III.4 shows the module pinout.

Figure III. 3: Block diagram for LCD module.

Figure III. 4: Pinout of LCD display.

To test the functionality of our design, we tried to display “ Hello world” on LCD screen.

The inputs are initially zero because we tried to send direct commands using VHDL codes.

Figure III.5 gives the simulation result.

Figure III. 5: Simulation of LCD module.

CHAPTER III LCD Controller Design

26

After designing a system with an LCD module, we move to interface it with two

different block RAMs. This is explained in the next sections.

III.2.2. Block memory LCD interfacing

 As it has been mentioned earlier in chapter I, the core generator is one of the Xilinx tools

used to create an existing IP cores such as BRAMs. The BRAM Block is a configurable memory

module created using the Core Generator tool (part of ISE design flow). In the following

sections two BRAMs (single and dual BRAMs) have been used for LCD module design.

a. Single port block memory

The single port block memory module is generated based on the user specification width

and depth. When this single BRAM is enabled, all memory operations occur on the active edge

of the clock input (clk). The Block Memory can be configured to be active on the rising edge

and the falling edge. When the block memory is disabled (enable inactive), the memory

configuration and output value remain unaltered. During a write operation (wea asserted), the

data presented at the port’s data input is stored in memory at the location selected by the port’s

address input. The Virtex implementation supports a single write mode option, Read-After-

Write. This write mode causes the data being written to the addressed memory location to be

transferred to the data output port when a write operation occurs[8].

In this part, we have created a 16x 8 single port RAM with 16 bit as memory size and an 8 bit

as a width size for the word we want to display later on our module.

 Eight bit width due to the fact that the LCD displays characters 8 bit each. So we need it to

hold the ASCII code of each character on one memory location. As another specification for

that memory is the operating mode which was the Write First mode. A last specification is the

memory initialization option which was used to initialize the memory content. This can be done

by specifying the desired information to be initialized in a separate text file called a COE file.

In our design, we used a simple COE file given in Figure III.6 that contained the ASCII codes

in binary format (taking in to consideration the ASCII code of space (00100000)) for the

“Master students” sentence.

When specifying the initial contents for our memory in a COE file, the keywords

MEMORY_INITIALIZATION_RADIX and MEMORY_INITIALIZATION_VECTOR were

used. The MEMORY_INITIALIZATION_VECTOR takes the form of a sequence of comma

separated values, one value per memory location, terminated by a semicolon. Any amount of

white space, including new lines, can be included in the vector to enhance readability.

CHAPTER III LCD Controller Design

27

The format of an individual value in the vector will depend on the

MEMORY_INITIALIZATION_RADIX value (in our case it is a binary format 2). The vector

must be consistent with the MEMORY_INITIALIZATION_RADIX value and must fall within

the range of 0 to 2DATA_WIDTH -1, that is 0 to 15. Values must not be negative. Note that

the first entry in the COE file corresponds to the lowest block memory address. To support

HDL simulations, Memory Initialization Files (MIFs) containing the initialization values are

generated. These files must be copied to the active simulation directory for a successful

simulation of a single port block memory core [8].

Figure III. 6: Example of COE file to display “Master students”.

All other non-mentioned specifications are used as default. The pinout of the desired

single port RAM can be seen in Figure III.7. This memory has five I/O pins, one of them is

eight bit vector used for the output data (douta [7. .0]), the others are inputs: the addra signal is

used as a four bit length to specify the address for read or a write operation vector . The wea

signal is used to enable the read and the write operations. Also, the dina signal used as 8 bit

input data to allow users to enter data (dina). Without forgetting the clock signal.

 Figure III. 7: Single port RAM pinout.

CHAPTER III LCD Controller Design

28

 After creating that block memory, we interfaced it with the 2x16 character LCD by

connecting the BRAM output to the LCD controller that was generated in section II.2.1s and

the clka signal to the clock divider module. Also, the dina single port BRAM’s pin is connected

to the Data_in signal and the addra pin is connected to the fourth MSB of Data_in (7 downto 4)

as it can be seen in Figure III.8. This design was performed to display the content of the COE

file in LCD module first. As a next step, memory content was changed by allowing the user to

enter different 8 bit content (using Data_in signal that is connected to the dina of single port

RAM) respecting the fact that those code must be included within the ASCII code table.

Figure III. 8: Block diagram of a 16x8 single port RAM interfaced with LCD.

The simulation given in Figure III.9 shows the initialized COE file displayed on LCD module

with its corresponding address.

Figure III. 9: The simulation of single port RAM using COE file.

After designing that system, we went one step further to examine another BRAM type that is

the simple dual port BRAM memory.

b. SDP block memory

SDP RAM can read and write different memory cells simultaneously at different addresses.

In other words, it has two different ports port A and port B. As a result independent Read and

Write operations can occur simultaneously, where port A is the primary Write port and port B

CHAPTER III LCD Controller Design

29

is the primary Read port. When the Read and Write port access the same data location at the

same time, it is treated as a collision. This is the main difference between dual port RAM (DP

RAM) and single port RAM, as single port RAM can only be accessed at one address at a time.

Therefore, single port RAM allows only one memory cell to be read/write during each clock

cycle. In this part, we design a digital circuit such that the LCD module is interfaced with a

SDP RAM. This BRAM has the following specifications:

1. The read/write width is 8 bit.

2. The read/write depth is 16 bit.

3. The clock used for the read and the write ports are common.

4. Port A is with Write First mode (The data input is stored in memory and mirrored on

the output) whereas port B is specified to be in Read First Mode. In this mode, data

previously stored at the write address appears on the output latches.

5. The content of that memory was initialized using a COE file seen in Figure III.10. This

COE file contains the ASCII codes in a binary format of the sentence we want to display

“Welcome to IGEE“.

Figure III. 10: The COE file used for SDP RAM design.

The pinout of our 16x8 SDP RAM can be seen in Figure III.11. It has seven pins, one

of them is an eight bit output vector. The inputs are two bus addresses for port A and port B,

say addra and addrb with four bit length each to specify the address for read and write operation.

It has also an eight bit vector for the input data (dina), one vector for write enable to force that

memory to write the entered data. Without forgetting the clock of each ports to drive that

memory clka and clkb. To resume, port A has its corresponding I/O pins which are addra for

address , dina for input data , wea for write enable and clka for the clock. Port B has a clock

clkb , addrb for address and doutb for the output of that memory.

CHAPTER III LCD Controller Design

30

Figure III. 11: Simple SDP RAM pinout.

 After creating that block memory, we interfaced it into a 2x16 character LCD. The input

data (dina) to the SDP RAM are connected to some inputs data say data_in (8 bit) and the port

A address (addra) is the fourth MSB of that data_in (7 downto 4) whereas the addrb is

connected to the fourth LSB of the same input data as it can be seen in Figure III.12. The clock

of that memory is drives by a simple clock divider to minimize the speed of the internal clock

with frequency of 100 MHz. This clock is connected to both ports’ clock (clka and clkb). The

output to that memory is connected to the LCD module generated previously. By using the COE

file we can display directly the initial memory content to the LCD module without need to send

input data to it first.

Figure III. 12: Block diagram of a 16x8 SDP RAM interfaced with LCD.

The simulation part should be mentioned to see clearly the LCD output after it is been

initialized and received data. The waveform seen in Figure III.13 is for the COE file only. As

it can be seen LCD module takes few time till it is initialized and once initialization is completed

the LCD displays the data given in its corresponding address.

CHAPTER III LCD Controller Design

31

Figure III. 13: Simulation results for LCD display using COE file.

III.2.3. Arabic Character Display

In this part, we have described the method used to create Arabic characters and

displayed them on LCD display by using both a PIC 16F877 and FPGA. In fact, we design the

µC system first due to the fact that this PIC is one of the most advanced microcontroller from

Microchip. It is widely used for experimental and modern applications because of its wide range

of applications, high quality, and ease of availability.

a. Microcontroller design

This design was done using two different software the mikroC PRO for PIC and ISIS

Proteus. The former was used to write the C code to drive the LCD module and the later was

used for hardware design to connect the PIC 16F877 to a 2x16 character LCD module.

As it has been mention earlier, LCD display can operate in two different modes. In fact, it

is preferable to use 4 bit mode with the microcontroller PIC 16F877 instead of 8 bit mode. This

is because the 4 bit data transfers use 4 I/O lines less than 8 bit data transfers.

As it can be seen in Figure III. 14 the MSB bidirectional LCD data bus was used D4

through D7 the rest was connected to ground. PORTB is being used as data bus for the LCD.

Also, RB0 pin is used as RS (Register Select for LCD) and RB1 pin is used as E (Enable pin

for LCD).

CHAPTER III LCD Controller Design

32

Figure III. 14: Design of a PIC 16F877 interfacing with 2x16 LCD module.

After connecting the needed digital circuits, it is recommended now to use a software

design to test the functionality of that digital circuit using the same previous procedures to

define an Arabic character. Figure III.15 shows a simple Arabic character which has been

tested by trying in our design. After determining the 5x8 dot matrix values (5x7 dot matrix+

cursor line), we have made an array of these values to transmit it to the CGRAM of LCD.

Figure III. 15: Example of 5x8 dot matrix representation for an Arabic character (ه).

The same procedures must be repeated to in the case the user wants to display other characters.

LCD works with the same principle within a system designed with PIC or FPGA. It needs some

commands, initialization and some cursor’s operation to obtain the required results. This can

be done using simple functions that are already defined in mikroC libraries. The flowchart seen

in Figure III. 16 describes the algorithm used to test the functionality of that digital circuit. At

the beginning an initialization function is needed in order to initialize the LCD Module

connected to the PIC pins. This initialization includes two line display, 5x8 dots and a 4 bit

mode. Next, a clear display and turn OFF cursor functions are also needed to provide a pure

display with no overlap with cursor once it is blinking or with previous display. Then a function

to create the desired character is defined. It uses the 5x8 dot matrix values in an array to translate

CHAPTER III LCD Controller Design

33

it to an Arabic character and display it in one memory location. Since CG RAM can hold only

eight characters, program must check if a valid address.

Figure III. 16: Flowchart of LCD custom character display.

We try to print the custom characters created previously. In order to do that we programed

the hex file in our PIC16F877 and run it. The displays can be seen in Figure III.17. Once the

dot matrices are loaded into the CGRAM, the data will stay there unless the LCD module is

power cycled. So our custom character now resides at character location (CG RAM address).

If we want to display the newly created custom character, it is as simple as is displaying any

other character, just send the character location to the LCD and it shows up.

Figure III. 17: Custom characters LCD displays.

Only eight Arabic character has been introduced due to the fact that CG RAM can hold only

eight bytes only.

Once we designed that digital system in a PIC and tested. We were sure that such system

could be designed using FPGA tools too.

CHAPTER III LCD Controller Design

34

b. FPGA design

By using the same digital design seen in section III.2.1 and the same steps we could

design another new system to allow users to displays Arabic characters on the LCD module.

However, the used commands differ in some bits with the previous system. There is a need to

set CG RAM to the location we want to display our Arabic character say address 00h, write to

it and read from it after initializing it. These commands can be seen in Figure III.18.

The CG RAM write command is used to identify the dot matrix used to define the character. It

use eight different bits depending on the character we’re about to display. A simple Arabic

character was been tested by trying to generate it, first we made a box of 8 by 5 dots. Then filled

the dots required to make the custom character we want to display.

After filling the dots, we found out the value of each line. For example, the first line has a value

of 0b00000. Similarly, the second, the third, the sixth and the eight line has the same value

0b00000. The fourth line has a value of 0b10001 and fifth line has a value of 0b11111. Finally,

the eight line has one dots to be displayed, so it has the value of 0b00100. After finding out

these values, we have used them in the required 8-bit commands to transmit them to the

CGRAM of LCD.

Figure III. 18. Transition diagram of LCD module initialization for Arabic display.

The dot matrix is resumed in Table III.1. It shows the CG RAM content once LCD

initialization is done and the address of the CG RAM has been set. The figures shown there

were obtained using one of LCD simulator software.

CHAPTER III LCD Controller Design

35

Table III. 1: The Content of the CG RAM for an Arabic character display.

CG RAM content Description

The data “00000000” is sent to CG RAM to define the first row

of the dot matrix going from top to bottom. AC will increment

to the next CG RAM address. The figure shown to the right

represents the content of the CG RAM. The data written to CG

RAM has been entered three time defining the three rows

content, hence AC=2. So CG RAM is at address 2.

The next data to be written is “00010001” and AC=4. This data

will occupy the address 4 in CG RAM memory.

The data to be written is “00011111” on row 5 and AC=5.

The next data to be written is “00000100” and AC=7. It can be

seen in the next figure.

The last entered data is “00000000” and AC=8. After defining

the eight locations this how would an Arabic letter display

looks like inside the CG RAM and on LCD display.

Once these commands are modified they can be added to the VHDL module to test the

functionality of the design system.

III.3. Conclusion

 At the end of this chapter, LCD module has been examine by presenting the needed

LCD configuration and initialization. We have interfaced two different BRAMs (the simple

port RAM and SDP RAM) to LCD module in order to test them through the use of our designs.

Moreover, Arabic character LCD display system was designed.

CHAPTER IV

Implementation and Experimental Results

ICHAPTER IV Implementation and Experimental Results

36

CHAPTER IV: Implementation and Experimental Results

IV.1. Introduction

In this chapter we show the implementation of the LCD module and the experimental

results found.

IV.2. Experimental results

 After dealing with the design part, we are going to specify the obtained results and

discuss them.

IV.2.1. LCD interfacing

The designed system discussed in chapter III section III.2.1 allow connection between

the LCD module and the Virtex 5 FPGA development board. In fact, this module is connected

to it using eleven pins (for more details go back to section II.2.2 and Table II.1). The whole

design has twenty one pins. Eleven of them are for the LCD module. The rest pins are described

in Table IV.1. This table shows the port name, a description of what it physically corresponds

to clock, switch or push button, and the Genesys pin number that it is connected to. Those pins

are assigned using a PlanAhead Xilinx tool and a User Constraint File (UCF).

Table IV. 1: Pins configuration of the LCD display.

PORT NAME Genesys’ pins Descriptions

Clear Push button G6 BTN0 used for reset signal

Clk Internal clock AG18 100 MHz oscillator used for timing

Data_in

Slide sw0 J19 Data input 0

Slide sw1 L18 Data input 1

Slide sw2 K18 Data input 2

Slide sw3 H18 Data input 3

Slide sw4 H17 Data input 4

Slide sw5 K17 Data input 5

Slide sw6 G16 Data input 6

Slide sw7 G15 Data input 7

 The slide switches have been connected to the Data_in 8 bit input vector. The Virtex 5

internal oscillator is connected to the input signal of the clock divider.

ICHAPTER IV Implementation and Experimental Results

37

Pushbuttons often generate spurious open/close transitions when pressed, due to

mechanical and physical issues. These transitions may be read as multiple presses in a very

short time fooling the program. Because we have used a pushbutton we have to go through the

process used to debounce it.

 One solution would be to add an RC hardware filter. But a simpler solution is suggested.

A digital hardware solution (digital circuit) can be used. To see the effect of the bouncing

phenomena, a 16 bit up counter (from 0000 up to 1111) has been implemented and downloaded

to the Genesys board. This design has six pins. Table VI.2 shows pin definitions for that

counter with a description.

Table IV. 2: Pins configuration for the 16 bit up counter.

PORT NAME Genesys’ pins Descriptions

clr Slide switch 0 J19 Used for reset signal

clock Pushbutton G7 Used as clock for the 16 bit counter

Q

LEDs0 AG8 Q(0) Data output 0

LEDs 1 AH8 Q(1) Data output 1

LEDs 2 AH9 Q(2) Data output 2

LEDs 3 AG10 Q(3) Data output 3

We have used a push button pin for a clock, a slide switch for clr input and the fourth

LSBs LEDs to display the content of the 16 bit counter. Figure IV.1 (a) shows the output

displays on LEDs of a 16 bit counter after one clock cycle and Figure IV.1 (b) show the output

after three clock cycles. In fact the output of the counter should be 0011 but not 1000. This was

due to the fact that the push button used for the clock signals is bouncing.

Figure IV. 1: Counter Output after (a) one pushbutton's press and (b) three presses.

To debounce any pushbutton the following a digital circuitry must be used. Figure IV.2

shows one of these circuits. The circuit continuously clocks the button’s logic level into FF1

and subsequently into FF2. So, FF1 and FF2 always store the last two logic levels of the

ICHAPTER IV Implementation and Experimental Results

38

button. When these two values remain identical for a specified time, then FF3 is enabled, and

the stable value is clocked through to the result output. The XOR gate and N-bit counter

accomplish the timing. If the button’s level changes, the values of FF1and FF2 differ for a

clock cycle, clearing the N-bit counter via the XOR gate. If the button’s level is unchanging

(i.e. if FF1 and FF2 are the same logic level), then the XOR gate releases the counter’s

synchronous clear, and the counter begins to count. The counter continues to increment in this

manner until it reaches the specified time and enables the output register or is interrupted and

cleared by the XOR gate because the button’s logic level is not yet stable. The counter’s size

determines the time required to validate the button’s stability. When the counter increments to

the point that its carry out bit is asserted, it disables itself from incrementing further and enables

the output register FF3. The circuit remains in this state until a different button value is clocked

into FF1, clearing the counter via the XOR gate.

Figure IV. 2: Digital circuit for debouncing a push button.

To check the functionality of this problem, an implementation design has been made. After

compiling and running the program, we could notice that by pressing the same pushbutton clock

(say G7) the counter starts the count and display a 1 in LEDs. Once we press it for second time

the counter will be at value 2 (0010) .The result was displayed on LEDs and can be seen in

Figure IV.3.

Figure IV. 3: Counter output after (a) one push button press and (b) two pressed.

ICHAPTER IV Implementation and Experimental Results

39

 However, Xilinx offers direct solution to eliminate it by enabling a pull-up or

pull-down resistors via the UCF file.

After debouncing the push button used for the Clear signal in our design, connecting the

Virtex 5 internal clock to the clock diver module, assigning pins and compiling the program,

we tried to implement the design into the LCD module integrated with the Genesys board. The

input data (connected to the Genesys eight slide switches) is going to be displayed into the LCD

module are introduced by the user. As an example, “Hello World” was displayed in the first

LCD module line. The corresponding ASCII code of each character is given in Table IV.3.

 Table IV. 3: ASCII code of the characters to be used.

Character ASCII code in binary

H 01001000

e 01100101

l 01101100

o 01101111

W 01010111

r 01110010

d 01100100

Space 00100000

The next stage involves going through the Synthesize, Translate, Map and Place and Route

Steps. These steps are carried out by the Project Navigator software (ISE), and are briefly

described as follows:

 Synthesize: generates netlists for each source file.

 Translate: merges multiple files into a single netlist.

 Map: the design is mapped to slices and I/O blocks.

 Place and Route: works out how the design is to be placed on the chip and components

connected.

The last step was to generate the program file, and download it to the Genesys board. Figure

IV.4 shows the LCD displays after generating the program file, and downloading it to the

Genesys board using iMPACT Xilinx tool.

ICHAPTER IV Implementation and Experimental Results

40

Figure IV. 4: LCD module display using a simple VHDL.

The use of Genesys switches allows the user to display any character he would like to

display within the existing ASCII code table seen earlier. It is necessary to know the different

commands and the sequence of operation to be able to write letters on the LCD. These

commands require some microseconds and sometimes more than 1 millisecond as a time delay

to offer a clear displays. In the digital circuit, a clear signal (Clear) has been introduced since

it is an essential part in any digital system and its function in this component is to restart the

LCD controller; reinitialize it an retest the display once again.

One step further is to discuss and analyze the obtained results using an existing IP core

interfaced with an LCD.

IV.2.2. Block memory LCD interfacing

 In this part, we tried to implement the designed digital system of both sections III.2.2 a

and b. That is interfacing the LCD module with both single port RAM and SDP RAM. The

design of single port BRAM seen in Figure III.6 and the one for the SDP RAM seen in Figure

III.9 are discussed in the table Table IV.4.

Table IV. 4: BRAMs LCD interfacing implementation.

Single port RAM SDP BRAM

The system has 22 I/O pins to be connected

to the Genesys board (8 pins for input data

(data_in) connected to the 8 board switches,

1 pin for clear connected to one of the

pushbutton, 1 pin for Virtex 5 internal clock

(100MHz), 1 pin for the write enable signal

and the rests are outputs we have the LCD

pins seen previously.

Same thing about the pins number with the

single port RAM.

The connection of those pins to the designed

RAM and LCD module have discussed

previously so we mentioned here how these

pins are interfaced to the Genesys board only.

ICHAPTER IV Implementation and Experimental Results

41

Repeating the same procedure described

in section IV.2.1 in order to test the

functionality of our design. The content of

the COE file was displayed first “Master

Students “. After that we overwrite data in

some memory locations by specifying the

need address to display “LCD display”.

The LCD of the Genesys board after

downloading the program into it. It displays

the content of the COE file “Welcome to

IGEE “. However, once we clear the content

of the LCD and write on our Dual port

memory one of the existing ASCII codes; the

previous content at the desired address will

be overwritten to display “Lily & DIDja”.

Activating the write enable pin enables

writing to the memory locations. When

active, the contents of the dina bus is written

to memory at the address pointed to by the

Addra bus. The output are loaded (Write First

operating mode). When wea is inactive, a

read operation occurs, and the contents of the

memory addressed by the addra bus are

driven on the doutb bus.

The SDP RAM can read and write different

memory cells simultaneously at different

addresses. This is why, we used different

address for port A and B the four MSB

switches for port A and the four LSB ones for

port B. Once “we” is enabled by setting it to

1, a write operation (entering data using

switches) can be performed in port A

simultaneously with another read operation

(display memory content to LCD module)

with the different memory address.

 A simple comparison between single and DP RAM can be made in this level. A single port

memory has one data/address port to read or write at a time whereas the SDP RAM has two

data/address ports. It can read and write at the same time using both ports.

 If we wanted to send multiple commands at once, the En signal must not be one all the time.

It is recommended to switch between one and zero sate before sending data to LCD module.

One step further is to comment the obtained results once creating custom Arabic characters.

IV.2.3. FPGA Arabic characters on LCD

This part dealt with the implementation and experimental results once trying to create

Arabic characters in LCD. The design seen in section III.2.1 with the same pins. Once we set

the CG RAM address and set RS signal to 1 data will be sent to CG RAM instead of the DD

RAM. Eight characters are available, and they reside in the ASCII codes 0 through 7. The dot

matrix values discussed previously are sent in the 8 bit bytes from the top row to the bottom

row and is left justified, meaning that only the bottom 5 bits matter(it is a 5x7 dot matrix). After

that a read command was needed to display the content in to the LCD module.

ICHAPTER IV Implementation and Experimental Results

42

Since the CG RAM address has been set to 00000000 the AC will start at value 0 and keep

incrementing till it reached the value 8. This means that the first character has been created and

saved in the first location in CG RAM memory. We didn’t succeed to display the Arabic

character, it is just blinking the cursor. First of all, we didn’t have enough time to do a full

troubleshooting to the designs since we started to work with Virtex II pro FPGA. We didn’t

find the necessary resources to work on this board, thus we decided to use the Genesys Virtex

5 development board for which we took too much time to get familiar with it.

IV.3. Conclusion

In this chapter we presented our implementation of LCD module interfaced with a

Xilinx FPGA development board, then we described the method used to create an Arabic

character. Also, we discussed the obtained results. IP cores were used and block diagrams of

LCD component has been made in order to develop the idea of creating an LCD custom IP core.

General Conclusion

General Conclusion

43

General Conclusion

In this project, we have examined a 2x16 character LCD module, interfaced it with two

different block memories. Moreover, we defined Arabic characters and displayed them on that

LCD using two different techniques (Xilinx FPGA Virtex 5 and Programmable Interface

controller (PIC) 16F877). Our work is done by presenting features of FPGAs. We learned the

general architecture of FPGAs then we examined in detail the specific architecture of Xilinx

Virtex 5 LXT family. After that we presented our hardware platform which is a Genesys board

and its associated development tools, we learned that any hardware design passes through

different steps in the design flow before it can be loaded to the FPGA. Moreover, we tried to

give brief ideas about the IP cores and the core generator in order to create some needed IP

cores. We examined one of the most common device which is attached to Genesys Virtex 5

FPGA board; that is the LCD display by presenting the needed configuration and initialization

in order to display characters on it. A very important LCD aspect has been introduce that is the

Arabic character display. IP cores were used and block diagrams of LCD component has been

made in order to develop the idea of creating an LCD custom IP core.

 This work was done to show benefits and importance of such modules in the digital world.

Actually, once designers build a real life/real world electronics based projects, they need a

medium device to display output values and messages. The most available electronic display is

the character LCD module with its different size and specifications. LCD module forms a very

important part in many digital designs. So the knowledge on interfacing this module to FPGA

is very essential in designing embedded systems and other digital systems.

Our objectives was about integrating Arabic characters in FPGA and make a design to

reuse it in the creation of a custom IP core, we didn’t reach the point of displaying Arabic

character. Because we didn’t have enough time to do a full designs since we started working

with the Virtex II Pro Xilinx FPGA which does not include an interfaced LCD module. Thus

we used Virtex 5 FPGA instead.

We can use the BMG design and the created block diagrams of a character LCD to create

custom LCD IP core for future work. The development of this idea gives user chance to select

different options for LCD displays including the LCD mode, size (2x16, 4x16, 4x20 …etc.) and

to generate a VHDL or Verilog code even more to create its schematic block diagram for LCD

display depending on the users specifications.

References

xi

References

[1] S.Brown and J.Rose. “Architecture of FPGAs and CPLDs: A Tutorial”. Presented in

Department of Electrical and Computer Engineering, University of Toronto, in 2000.

[2] Core technologies. “FPGA Architectures Overview”. 02 May 2016. [Online]. Available:

https:// www.pdx.edu.nanogroup/files/FPGA-architecture.pdf

[3] “Genesys board reference manual”. 22 March 2016. [Online]. Available:

https://reference.digilentinc.com/_media/genesys:genesys_rm.pdf

[4] “16x2-lcd-module-datasheet”. 15 April 2016. [Online].Available:

http://www.engineersgarage.com/electronic-components/16x2-lcd-module-datasheet,

[5] “Dot LCD Controller/Driver”. 15 April 2016. [Online]. Available:

http://www.newhavendisplay.com/app_notes/ST7066U.pdf

[6] “IP core”. 07 March 2016. [Online]. Available:

http://whatis.techtarget.com/definition/IP-core-intellectual-property-core.

[7] “CORE Generator Guide”. 22 April 2016. [Online]. Available:

http://www2.informatik.huberlin.de/~fwinkler/psvfpga/synthese/ISE-

Dokumentaion/docs/cgn/cgn.pdf,

[8] http://www.xilinx.com. [Online].

[9] “Character LCD Module Controller (VHDL)”. May 2016. [Online]. Available:

https://eewiki.net/pages/viewpage.action?pageId=4096079

[10] “FPGA Comparative Analysis”. 25 April 2016. [Online]. Available:

https://eewiki.net/pages/viewpage.action?pageId=4096079

[11] “LCD”. 15 April 2016. [Online]. Available:

http://www.birnboim.com/nyu/pcomp/techresearch/howlcdswork.html

[12] “Architecture-Specific Packing for Virtex-5 FPGAs”. 30 March 2016. [Online].

Available: http://janders.eecg.toronto.edu/pdfs/fpga45-ahmed.pdf

[13] “LCD interfacing with PIC Microcontroller”. 12 April 2016. [Online]. Available:

https://electrosome.com/lcd-pic-interfacing/

 [14] “HD44780 Character LCD Displays”. 23 May 2016. [Online]. Available:

http://www.protostack.com/blog/2010/03/character-lcd-displays-part-1/

https://reference.digilentinc.com/_media/genesys:genesys_rm.pdf
http://www.engineersgarage.com/electronic-components/16x2-lcd-module-datasheet
http://www.newhavendisplay.com/app_notes/ST7066U.pdf
http://www.xilinx.com/publications

