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Abstract 

Speaker recognition is the process of identifying a person based on its voice 

characteristics.  

A text-independent speaker recognition system using a Gaussian mixture model (GMM) 

for a set of 10 speakers, selected from TIMIT database, is developed in this project. 

The design of an optimum speaker recognition focuses on the selection of parameters that 

increase the identification rate and minimize false acceptance (FA) and false rejection (FR) 

errors.  

Speaker identification and speaker verification experiments were conducted to evaluate 

the performance of the system. A variation in the number of GMM components and the 

dimension of Mel-Frequency Cepstral Coefficients (MFCC) features were studied to select the 

optimum parameters.  

But most importantly the effect of preprocessing the speech signal, using short-time 

energy and zero crossing rate, at the input of the speaker recognition system have been 

investigated and compared to the use of a raw speech signal input.   

In the training phase an Expectation- maximization (EM) algorithm that is initialized by a 

K-mean clustering method, was used to estimate the speaker model’s parameters. 

Finally the speaker recognition decision is based on a maximum likelihood test that is 

performed in both tasks of speaker identification and speaker verification.    

Keywords: GMM, TIMIT, false acceptance (FA), false rejection (FR), MFCC, Identification 

rate EM algorithm, K-mean. 
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1.1.     Introduction  

 Biometrics refers to the automatic identification of a living person based on 

physiological or behavioral characteristics [1]. Biometric identification is preferred over 

traditional identification methods that involve password and pins, because they are more 

intuitive to the user which makes them more convenient. 

     Various types of biometric systems are being used for real time identification; 

the most popular are based on face recognition and fingerprint matching. Furthermore, 

there are other biometric systems that utilize iris and retinal scan, face, hand geometry 

and voiceprint. [1] 

    Voiceprint is one of the most unique forms of identification that a person can 

produce, it’s far more complex than any other biometric component since it contains a 

combination of information, Figure 1.1, like a person’s accent, inflexion and rhythm as 

well as physical factors related to the size and shape of person’s vocal tract [2]. 

    The process of authentication using a voiceprint is known as voiceprint 

recognition or more commonly used speaker recognition. 

 

Figure 1.1 Information contained in a speech signal [3] 
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1.2. Definition of Speaker Recognition 

     Speaker recognition is the process of automatically recognizing a speaker’s 

identity based on specific information carried through its produced speech waveform. 

    We distinguish two main tasks in speaker recognition, speaker identification and 

speaker verification, Figure 1.2 .Speaker identification aims to identify an input speech 

by matching it to one model from a set of known speaker models, whereas speaker 

verification aims to identify whether an input speech corresponds to a claimed identity 

which is considered as biometric authentication where the voice is used as password [4] 

 

Figure 1.2 speaker recognition process, (a) speaker identification, (b) speaker 

verification [5] 

 

    The speaker recognition system passes through enrollment and verification 

phase. The enrollment phase consist of recording a speaker’s voice and extracting 

important information that characterize it to form a model, Figure 1.3. During 

verification a speech sample (utterance) is compared against the created models in the 
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enrollment phase such that in identification task the comparison is made against multiple 

models to find the best match ,whereas the verification task include a comparison against 

only one model . [6] 

Speaker recognition systems can be classified to two categories including text 

dependent and text independent recognition. Text dependent speaker recognition implies 

that a speaker must utter specific key words or sentences having the same text in 

enrollment and verification phase. Text independent recognition in the other hand can 

identify the speaker regardless of what is being said.    

 

Figure 1.3 Block diagram of training and testing phase of speaker recognition [7] 

1.3. History of Speaker Recognition 

   Research in automatic speech and speaker recognition has now spanned five 

decades and their progress can is summarized as follows [8]: 

 1960s and 1970s: 

1960 announced the first attempt for automatic speaker recognition after a 

being preceded by a decade of speech recognition research. Pruzansky at Bell Labs 

[9] was among the first to initiate research by using filter banks and correlating two 
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digital spectrograms for a similarity measure, then it has been developed by 

Doddintgon [10] at Texas Instruments (TI) replacing filter banks by formant analysis 

and TI built the first fully automated large scale speaker verification system providing 

high operational security. Endres et al. [11] and Furui [12] had also investigated on 

intra speaker variability a major problem in speaker recognition systems. 

 1980s 

      During this decade the Hidden Markov Model (HMM) method, [13]was 

introduced as an alternative to the template-matching approach used previously for text-

dependent speaker recognition and it remarkably increased its performance. This 

technique used speaker models derived from a multi-word sentence, a single word, or a 

phoneme.  

     For text independent recognition nonparametric and parametric models were 

investigated during this decade .As a non-parametric model Vector Quantization (VQ) 

[14] was introduced it was based on the compression of a short time training vectors to a 

small set of points called VQ codebook.As parametric model Pritz proposed to use 

ergodic HMM while Rose et al. [15] proposed to use a single state HMM which is now 

called Gaussian mixture model (GMM) and is considered as state of the art in text 

independent speaker recognition.  

 1990s: 

     Research on increasing robustness became a central theme in the 90’s and 

different methods have been investigated like the Text-prompted method proposed by 

Matsui et al. [16] Where the key sentences are changed each time the system is used 

meaning that the system accepts the input utterance only when it determines that the 

registered speaker uttered the prompted sentence. The score normalization has also been 

investigated to normalize the variation of likelihood that result from the same speaker 

(intra-speaker variation) using Likelihood ratio- and a posteriori probability-based 

techniques. 
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 2000s: 

     New normalization techniques have been proposed in which the scores are 

normalized by subtracting the mean and dividing over the standard deviation that have 

been estimated from the imposter score distribution. High level features have also been 

successfully used in text independent speaker verification, basically this method takes 

high level features like word idiolect, pronunciation or prosody and   produces a sequence 

of symbols from the acoustic signal to perform recognition using the frequency and the 

co-occurrence of symbols. [8] 

1.4. Applications of Speaker Recognition 

      The general area of speaker recognition is authentication, surveillance and 

forensics. The authentication is mostly used in security application, like credit cards 

transaction where speaker authentication is combined with other biometric techniques to 

reinforce the security of transactions. Speaker recognition is also used as a mean of 

surveillance in security agencies to find relevant information about target speakers of 

interest for the service. But the most important application of speaker recognition is the 

forensic which is very helpful when a speech sample is recorded during a crime, so that 

a suspect’s voice can be compared to detect similarities between the two voices [17] 

1.5. Report Organization 

This first chapter introduced the basic concepts of speaker recognition and its 

evolution through history, showing that it’s a field that is still evolving and still need 

some improvement especially the text -independent recognition and since Gaussian 

mixture model is a powerful method for that task, this thesis will go through the mains 

steps to develop a text-independent speaker recognition system using Gaussian mixture 

model (GMM). 

   For that purpose, the 2nd chapter will discuss about speech signal, how it is 

produced, how it is perceived and how it processed by computers. The goal is to gain an 

understanding of the speech in general. 
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    Chapter 3 will present the idea of feature extraction and show some of the 

common used method, then the extraction of Mel-frequency cepstrum coefficients will 

be developed in more details to be further used for the project. Chapter 4 will explain the 

concept of speaker modeling using Gaussian mixture model (GMM) and how different 

of its parameters are estimated by the EM algorithm that is initialized by a Kmean 

classifier. The algorithm and the initialization procedure will also be encountered in this 

chapter  

      Chapter 5 will describe the experimental sets up utilized, like the database and 

the different trainings and testings that were performed before each experiment, the 

results of each experiment will be summarized in a table and discussed, and finally 

chapter 6 will contain the conclusion of the thesis and further research that can improve 

the recognition system. 
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2.1.    Introduction  

 To plan a speech-based interface system, it is important to comprehend the working 

of the human auditory system [18]. At the linguistic level of communication, an idea is 

first formed in the mind of the speaker, and then produced in the form of speech. The 

idea is transformed into words, phrases, and sentences according to the grammatical rules 

of the language. Finally, when the idea reaches the listener’s linguistic level, the brain 

performs speech recognition and understanding. 

      This chapter will encounter the basics of speech signal, how it is produced, how 

it is perceived and how it is proceed by computers. 

2.2. Speech Production 

2.2.1. Speech Production Mechanism 

      The speech signal represent a sequence of sounds .Theses sounds and the 

transition between them carry the information that need to be conveyed. [19] 

     The sequence of sounds follows certain rules, Linguistics is the study of such 

rules, whereas the study of the classification of the basic sounds is called phonetics.  

      In order to come up with a model of speech production, we need to have an 

understanding of the human vocal system. It consists of two main parts: the vocal cords 

(or glottis), and the vocal tract see Figure 2.1. The vocal tract in turn consists of three 

main parts: 

• The pharynx – connection from the esophagus to the mouth.  

• The oral cavity – the mouth.  

• The nasal tract – begins at the velum and ends at the nostril 

      The source of energy comes from the air pressure exerted by the lungs, bronchi 

and trachea. Speech is produced when an acoustic wave is radiated from this vocal system 

when air is expelled from the lungs and the air flow is perturbed by constrictions 

somewhere in the vocal tract. When the velum is lowered, the nasal tract is acoustically 

coupled to the vocal tract to produce nasal sounds. 
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Figure 2.1 Upper respiratory tract diagram 

2.2.2. Classification of sounds  

     The basic units of speech sounds in the English language are called phonemes. 

There are two main types of phonemes: vowels and consonants. More detailed 

classifications are also available. But we shall assume only these two types of sounds. 

Vowels are produced when the vocal tract is excited by pulses of air caused by the 

vibration of the vocal cords. The vibration is periodic in nature and the period is the pitch 

of that sound. The shape of the vocal tract determines the resonant frequencies of the 

tract, called formants. For vowels, there are typically three formants between the 

frequencies 200 Hz and 3 kHz. The exact frequencies of the formants vary from person 

to person. Figure 2.2 shows a typical frequency spectrum of a vowel  

 

Figure 2.2 Spectrum of a vowel [19] 
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      In the production of consonants, the vocal cord is totally relaxed in general, 

although there are exceptions. In this way, air flows into the vocal tract without the 

periodic excitation generated by the vocal cord. Consonants can be broadly classified 

into: 

 • Nasals: are produced when the vocal tract is totally constricted at some point 

along the oral cavity. The velum is lowered and the air flows through the nasal tract, 

radiating through the nostrils. 

 • Fricatives: are produced when the steady air flow becomes turbulent in the region 

of a constriction in the vocal tract.  

• Stops: are transient sounds produced by building up pressure behind a total 

constriction somewhere in the oral tract, and suddenly releasing the pressure. 

2.2.3. Speech Production Model 

      In order to synthesize speech sounds artificially; we need a model of the speech 

production system described above. Figure 2.3 shows a more detailed model. 

 

Figure 2.3 Speech Production Model [19] 

      The glottal pulse model, the vocal tract model, and the radiation model are linear 

discrete-time systems. They are therefore essentially discrete-time filters. In order to 

synthesize speech, the voiced/unvoiced switch will switch to the source for the sound at 

that particular time. The vocal tract parameters will also need to vary with time. One of 

the most successful glottal pulse models is the Rosenberg model. Its impulse response is 

given by: 
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g(n)=

{
 

 
1

2
[1 − cos (

𝜋𝑁

𝑁1
)]  for 0 ≤ n ≤ N1           

cos [
𝜋(𝑛−𝑁1)

2𝑁2
]   for  N1 ≤ 𝑛 ≤ N1 + N2

0                              otherwise

                             ( 2.1)                          

      The vocal tract model is usually a linear predictive model. It is called so because 

the current speech sample is generated from a number of past samples plus the current 

excitation. This can be described in equation form: 

                                  s (n) =∑ 𝑎𝑘𝑠(𝑛 − 𝑘) + 𝑢(𝑛)
𝑝
𝑘=1                                       ( 2.2) 

     Such that: 

     𝑎𝑘: is the coefficient for the model and it changes from one phoneme to another. 

     u (n): is the input sample to the vocal tract model.  

      p: is the prediction order and typically ranges from 10 to 12. [19] 

2.3. Speech Perception 

      Hearing is the well-known process that allow us to perceive the vibrations that 

can cause a sound, however, perception is not just a mode of hearing, rather it is how the 

sound is interpreted and made sense of. This implies that the same sound could be 

perceived differently by two listeners. [20] 

     The process of perceiving a sound begins at the level of the sound signal that 

reaches the listener’s ear and trigger the process of audition. 

      The ear is related to the brain by three main parts: the outer ear, the middle ear 

and the inner ear, see Figure 2.4 .Each part plays a role in extracting the information 

carried by the heard sound.    
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Figure 2.4 Anatomy of the ear [21] 

      The outer ear includes the pinna and the ear canal such that the perceived sound 

travels through the pinna down to the canal ear, the pinna is also responsible of detecting 

the direction from which the sound came from. 

     At the end of the ear canal the eardrum is found and this announce the start of 

the middle ear. This part include three bones called ossicles and they form a chain from 

the eardrum to the inner ear. When the sound hits the eardrum it makes it move back and 

forth and depending on the nature of the sound and its pitch the movement will differ and 

will make the small bones move producing a signal that will be received by the inner ear. 

     The inner ear helps both with the hearing and the balance .The cochlea is the 

hearing part whereas the semicircular canals helps us keep our balance. [21] 

     The cochlea has a bony structure and looks like a snail, it comprises a fluid and hair 

cells .When the middle ear bones move, the fluid of the inner ear moves to and causes 

the movement of some hair cells, since not all hair cells are receptive to the same type of 

sound.  

      The hair cells transform the movement into electrical signals that passes through the 

auditory nerve to reach the brain that will process it to understand the meaning of the 

sound and how it should respond. 
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2.4.  Speech Processing 

      Speech processing is the study of speech signals and processing methods. The 

signals are usually processed in a digital representation, so speech processing can be 

regarded as an intersection of digital signal processing and natural language processing, 

applied to speech signals. Aspects of speech processing include the acquisition, 

manipulation, storage, transfer, and output of speech signals [18, 22] 

       Speech processing technologies are used for digital speech coding, spoken 

language dialog systems, text-to-speech synthesis, and automatic speech recognition. 

Information (such as speaker gender, or language identification, or speech recognition) 

can also be extracted from speech. [18] 

2.4.1.  Speech Processing Acquisition 

      Speech processing extracts the desired information from a speech signal and 

process it by a digital computer, thus the signal must be represented in digital form so 

that it can be used by the computer. Devices such as microphones and telephone handsets 

can be used to convert a received acoustic wave to an analog signal .The obtained signal 

is conditioned with antialiasing filtering that limits the bandwidth of the signal to 

approximately the Nyquist rate that represent half of the sampling rate. The analog signal 

is sampled and passed to the analog to digital (A/D) converter. [23] 

   Today’s A/D converters for speech applications typically sample with 12–16 bits 

of resolution at 8000–20000 samples per second. Oversampling is commonly used to 

allow a simpler analog antialiasing filter and to control the fidelity of the sampled signal 

precisely. In local speaker-verification applications, the analog channel is simply the 

microphone, its cable, and analog signal conditioning. Thus, the resulting digital signal 

can be very high quality, lacking distortions produced by transmission of analog signals 

over long-distance telephone lines. [23] 

2.4.2. Speech Processing Techniques 

Dynamic Time warping and hidden Markov model are the most widely used 

techniques for speech processing and their brief description is presented below: 



Chapter 2                                                                         Speech Signal    

 

 

14 

 

2.4.2.1. Dynamic Time Warping (DTW) 

     During the last decade this technique became widely used in speech processing 

[22]. DTW is an algorithm that measures similarities between two temporal sequences 

which may vary in time or speed. [24] 

   Dynamic Time Warping (DTW) was originally designed to treat automatic speech 

recognition such that when a word is recorded and needs to be matched to another one, 

the two signals appear to be very similar ,however  their length and their features look 

different, thus to measure the similarity of the two signals DTW algorithm is performed 

[24] . 

    In general DTW is a method that calculates an optimal match between two given 

sequences. It focuses on matching two sequences of feature vectors by repetitively 

shrinking or expanding the time axis following certain restrictions until an exact match 

is obtained [25, 26].  

2.4.2.2.   Hidden Markov Model (HMM) 

     Hidden Markov Models (HMMs) are a class of probabilistic graphical model 

that allow us to predict a sequence of unknown (hidden) variables or states from a set of 

observed variables, see Figure 2.5. It can be viewed as a Bayes Network unrolled through 

time with observations made at a sequence of time steps being used to predict the best 

sequence of hidden states. [27] 

    The application of HMM in speech recognition assumes that the hidden variables 

are the produced phonemes whereas the observed data are the small frames of audio 

signal that are represented by feature vectors. So given a set of feature vectors HMM is 

used to predict the produced sequence of phonemes that are interpreted to words using 

phoneme to word dictionary. [28] 
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Figure 2.5 Probabilistic parameters of hidden Markov model (example) [27] 

2.4.2.3. Neural Network  

      The Generalization is the strength of artificial neural network. It provides a 

processing to simulate information that is analogues to the human nervous system. 

Multilayer feed forward network with back propagation algorithm is commonly used in 

classification and pattern recognition which makes it suitable in speaker recognition 

applications. 

      The neural network is structured into input layer, hidden layer and output layer, 

Figure 2.6. Such that each layer is composed of a certain number of neurons. 

    The number of input neurons is chosen to be the same as the total number of 

features whereas the output layer has the same number of neurons as the speakers that 

need to be recognized, however this number need to be set in the hidden layer after 

performing multiple tests by varying the number of neurons, then choose the one that 

gives the best results.  

 

Figure 2.6  Neural network structure 
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2.4.3. Speech Segmentation 

     Many speech processing systems require segmentation of speech signal into its 

basic acoustic units, thus, segmentation can be defined as the process of breaking down 

a speech signal into smaller units and it represent a primary step in any voiced activated 

system like speech recognition. [29] 

   Before segmenting a speech into smaller units, an understanding of some of its 

characteristics is needed   

2.4.3.1. Speech Signal characteristics 

    A continuous speech signal comprises two parts, the part that carries the speech 

information and the second part that carries silence and noise, holding useless 

information. The informative section of speech can further be classified to voiced and 

unvoiced speech. The Voiced sound is generated when the air flows through the larynx 

and the vocal cords are semi closed, see Figure 2.1, whereas unvoiced sound are 

produced when the vocal cords are open. [29] 

     Voiced speech signal is approximated by a slow changing periodic signal with a 

frequency caused by the vibration of the vocal cords and which is different from one 

speaker to another. This frequency is known as the pitch and usually male’s pitch ranges 

from 50Hz to 250Hz while the female’s contribute with a pitch between 120Hz and 

500Hz.This suggests that  the energy of  voiced speech is  concentrated at low frequencies 

, below about 3 kHz. [30, 29] 

   Unvoiced speech signals in the other hand does not exhibit any periodic 

components and appears to have some similarities with a noisy signal. Most of their 

energy is concentrated at high frequencies [29, 30] 

     Therefore a speech signal can be considered as a sequence of voiced and 

unvoiced sounds that are smoothly connected, in addition to that silence regions represent 

an integral part of speech that determines the separation between different utterances and 

which is considered as a background noise.   

2.4.3.2. Types of Features in Speech Segmentation 

     Different features can be extracted from a speech signal to help us in its 

segmentation, we distinguish mainly time domain features and frequency domain 
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features. Two time domain features techniques will be further presented, the short time 

signal energy and the zero crossing rate, two techniques that are easy to implement and 

which can be combined to perform an efficient segmentation that separate a signal to 

voiced/unvoiced parts. 

 Short-Time Signal Energy 

     Short time energy is the simplest feature that can be extracted from a speech 

signal. Speech signal energy is computed on a short-time basically by windowing the 

signal at a particular time, squaring the obtained quantity and computing their average. 

[29] 

 The square root of the result is an engineering quantity known as the Root Mean 

Square (RMS). 

The short-time energy function of a speech frame with length N is defined as: 

                           𝐸𝑛= 
1

𝑁
 ∑ [𝑥(𝑛 − 𝑚)𝑤(𝑚)]2∞
𝑚=−∞                                                  (2.3) 

The short-term root mean square (RMS) energy of this frame is given by:  

𝐸𝑛(𝑅𝑚𝑠) = √
1

𝑁
 ∑ [𝑥(𝑛 − 𝑚)𝑤(𝑚)]2∞

𝑚=−∞                                                         (2.4) 

Such that: x (n) is the discrete-time audio signal and w (n) is rectangle window 

function of length N: 

                                      𝑤(𝑛) = {
1, 0 < 𝑛 < 𝑁 − 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                            (2.5) 

     In general the amplitude of unvoiced speech segment is much lower than the 

amplitude of voiced segment and the energy of speech signal is representative of such 

amplitude variations making this method efficient at detecting the voiced sounds in a 

speech signal which tend to have higher short time energy compared to the unvoiced and 

silence segments. 

 Short-Time Average Zero-Crossing Rate  

      The average zero-crossing rate refers to the number of times speech samples 

change algebraic sign in a given frame [29]. The  rate  at  which  zero  crossings  occur  
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is  a  simple measure of the frequency content of a signal , Since high frequencies imply 

high zero crossing rates, and low frequencies imply low zero-crossing rates. [30]It 

measures the number of times in a given time interval or frame the amplitude of the signal 

passes through a value of zero and it is represented by the following equation: 

       𝑍𝑛=
1

2
 ∑ [sgn[x(n − m)] − sgn[x(n − m − 1)]]w(m)∞
m=−∞                    (2.6) 

     Such that: sign is the signum function defined in equation (2.7) and w (m) is the 

rectangular window, equation (2.5). 

                                    Sgn [x (n)]= {
1, x(n) ≥ 0
−1, x( n) < 0

                                                (2.7) 

   Since there is a correlation between the zero crossing rate and the energy 

distribution with frequency we can conclude that unvoiced segments of a speech signal 

are characterized by a higher zero crossing rate than its voiced parts [30]. 

2.4.4. Segmentation Algorithm: 

       Each time domain feature presented above can be used to segment the speech 

into voiced, unvoiced and silent parts therefore by combining short time energy with zero 

crossing rate we can develop a segmentation algorithm . 

    As mentioned previously short time energy classify high energy frames as voiced 

segments and the remaining parts are unvoiced .The zero crossing rate in the other hand 

considers that high ZCR in a segment indicate an unvoiced part of the speech. Therefore 

segments that record high energy and low zero crossing rate will be set as voiced 

segments of speech. 

    The proposed algorithm is going to be used as a preprocessing step in the 

experimental part of the project. It is summarized in Figure 2.7 and explained below: 

 Step1: we divide the signal into N  non overlapping frames , with 256 samples in 

each frame  

 Step2 :calculate the energy E and zero crossing rate ZCR for each frame 

 Step3: compare the obtained results with energy threshold (Eth) and zero crossing 

rate threshold (ZCRth)  

 Step4: Verify the condition : 
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For i=1,…, N 

if {
E(i) > Eth
and

ZCR(i) < ZCRth

              Then save the frame i as a voiced segment  

           Else repeat from step1 by dividing frame i to two frames of 128 samples  

 

Figure 2.7 Block diagram of voiced, unvoiced classification [30] 

 

 

 



 

20 

 

 

 

 

 

 

 

 

 

Chapter 3  

Feature extraction 

 



Chapter 3                                                           Feature Extraction 

 

 

21 

 

3.1. Introduction  

An automatic speaker recognition system (ASR) is a biometric system that needs to 

identify the distinctive attributes of each speaker, these attributes are referred to as 

features and the process of identifying them is known as feature extraction.  

Features are informations extracted from the speech waveform and are represented 

in the form of numerical data. For an effective recognition algorithm the features must 

be informative, discriminative and independent [31]. 

Different techniques of feature extraction are used, some of them will be presented 

briefly in this chapter, however the most prevalent and dominant technique for speech 

and speaker recognition applications is the MFCC that have been chosen for this project 

and will be presented in more details through the upcoming sections.    

3.2. Feature extraction description 

The main goal of this step is the computation of a sequence of feature vectors which 

provide a compact representation of the speech signal. 

3.2.1. Types of features 

A variety of features have been developed for speaker recognition purpose and they 

can be divided to the following classes: [32]  

 Spectral features  

 Dynamic features  

 Source features  

 High-level features  

Spectral features describe the short-term speech spectrum that hold more or less 

information about the physical characteristics of the vocal tract .Dynamic features reflect 

the time evolution of the spectral features .Source features captures the glottal voice 

source characteristics. Finally the high-level features describe features that have a 

symbolic type of information like characteristic word usage.   

In our application only spectral features will be considered and are explained below: 
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 Spectral feature extraction  

     The performance of feature extraction goes through three main stages: [33] 

1) The first stage is speech analysis or the acoustic front-end, it performs spectra-

temporal analysis of the speech signal and generates raw features describing the 

envelope of the power spectrum of short speech intervals. 

2) The second stage extend the feature vector by combining static and dynamic 

features.  

3) The last stage transforms the extended feature vectors into more compact and 

robust vectors that are then supplied to the recognizer. 

3.2.2. Feature Extraction Methods 

  The most widely used features for speaker recognition are described below: 

3.2.2.1. Linear Predictive Coding (LPC): 

 LPC is a technique used for low or medium rate coder that are usually found when 

transmitting a speech signal through a wireless media and where it is desirable to 

compress the signal for efficient storage and transmission. It is one of the most powerful 

speech analysis techniques and it has gained popularity as a formant estimation 

technique, i.e. concentration of acoustic energy around a particular frequency in the 

speech wave. 

When the speech signal is passed through a filter that remove the redundant bits it 

generate the residual error that need to be suppressed and obviously this error is quantized 

by a smaller number of bits than the original signal. So instead of transmitting the entire 

signal we can transmit the residual error and some speech parameters to be able to 

reconstruct the original signal at the destination. These parameters constitute a parametric 

model that is computed based on the least mean squared error theory known as the linear 

prediction (LP) method. [33] 

The LPC analyses the speech signal by estimating the formants, then remove them 

to estimate the intensity and frequency of the residue. Such that it will synthesize the 

original speech signal by reversing the process using the residue parameters to create a 

source signal and the formants to create a filter [34]. Both combined yield the original 

signal. 
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The main idea of LPC method is to predict the value of the current sample by a 

linear combination of previous already reconstructed samples, [35] see equation (3.1) 

And then to quantize the difference between the actual value and the predicted value 

equation (3.2) . 

                       𝑠𝑛̂= - ∑ 𝑎𝑘𝑠𝑛−𝑘
𝑝
𝑘=1                                                        (3.1) 

Such that p is the order of LPC analysis and {a1, a2,…, ap} are the LPC coefficients  

The error between the actual value and the predicted one can be computed as  

                                            en = 𝑠𝑛-𝑠𝑛̂                                                                  (3.2)         

    Or:                                   en  =𝑠𝑛+∑ 𝑎𝑘𝑠𝑛−𝑘
𝑝
𝑘=1                                                 

Since {en} is obtained by subtracting {𝑠𝑛̂} from {𝑠𝑛}, it is called the residual signal. 

3.2.2.2. Perceptual Linear Prediction (PLC)  

The Perceptual Linear Prediction PLP model developed by Hermansky in 1990 

[37], models the human speech based on the concept of psychophysics of hearing. PLP 

discards irrelevant information of the speech and thus improves speech recognition rate. 

PLP is similar to LPC except that its spectral characteristics have been transformed to 

match characteristics of human auditory system. [34] 

 PLP approximates three main perceptual aspects namely: the critical-band 

resolution curves, the equal-loudness curve, and the intensity-loudness power-law 

relation, which are known as the cubic-root. Shown in Figure 3.1 

 

Figure 3.1 Block diagram of PLP Processing [34] 

To better represent the human hearing resolution, PLP method wraps the spectrum 

of the speech signal into the Bark scale. To find the bark frequency corresponding to an 

audio frequency equation (3.3) is used. 
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(ω) = 6ln [
𝜔

1200𝜋
+ [(

𝜔

1200𝜋
)2 + 1]0.5]                                          (3.3) 

3.2.2.3. Mel Frequency Cepstral Coefficients (MFCC) 

Mel frequency cepstral coefficients (MFCCs) are features widely used in ASR, they 

were first introduced by Davis and Mermelstein in the 1980's [36], and have been state-

of-the-art ever since.  

To know more about the MFCC’s we need to expand our notions concerning the 

Mel scale and the cepstral domain. 

The Mel scale is a perceptual scale that was named by Stevens, Volkmann and 

Newman in 1937 [37].It’s a scale that relates the perceived frequency of a tone to the 

actual measured frequency [38] based on a led experiments on human subjects. This 

experiment showed that we are much better at discerning small frequency changes at low 

frequencies which are smaller than 1 kHz than at higher frequencies, therefore the Mel 

scale is represented linearly below 1 KHz and follows a logarithmic scale for higher 

frequencies as shown in Figure 3.2.  

We can illustrate this concept by taking a tone at 300Hz and another one at 400Hz, 

we will notice that our brain can detect that the distance between the two is small, 

however if we hear a tone at 900Hz and another one at 1KHz we perceive a higher 

distance than in the first case even if they are actually the same [39]. The Mel scale was 

developed to capture such differences and including this scale makes the extracted 

features match more closely what humans hear 

The Mel scale is related to the linear frequency scale by the equation:  

                                       M=2596𝑙𝑜𝑔10(1 +
𝑓

700
)                                                (3.4) 
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Figure 3.2 Mel Scale versus linear frequency 

In the other hand, the word cepstral in the acronym of MFCC is the word spectral 

with ‘spec’ reversed and the reason behind this is that when doing Fourier transform on 

a time signal we obtain a spectrum that is its representation  in the frequency domain , 

however when we take the magnitude of this spectrum and apply a cosine transformation 

on its logarithm , the resulting spectrum is neither in frequency nor in time domain , 

hence bogert et al [40] decided to call this domain  quefrency  , and the spectrum of the 

log of the spectrum of the signal in time domain is what is called cepstrum [39] . 

3.3.   MFCC Extraction Procedure  

To compute the MFCC parameters six major steps need to be followed and they are 

illustrated in Figure 3.3. The first one consist of dividing the speech signal into small 

frames such that the speech waveform appears to be stationary with respect to time and 

we choose frames of 25ms with overlapping between two adjacent frames of about 

50%(±10%) then to minimize the discontinuities caused by the framing we apply a 

hamming window at each frame, the third step consist of applying a discrete Fourier 

transform (DFT) for the frames and take their magnitude. We apply to this result a Mel 

frequency filter bank which transform the signal from frequency to the Mel scale and 

then we take its logarithm to finally apply a discrete cosine transform (DCT) which result 

in Mel frequency cepstrum coefficients. 
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Figure 3.3 Block Diagram of MFCC Processor 

3.3.1. Frame blocking  

Let x[n] be a continuous speech signal sampled at a frequency  fs . 

x[n] is a signal that varies constantly with respect to time so for simplicity we 

assume that on short time scales of 20ms to 40ms x[n] is stationary and divide it into P 

frames, each having a duration of 25ms that corresponds to N samples with an overlap 

of N/2 samples shown in figure3 .Now we can represent x[n] in matrix notation as    

                              χ=[ x1⃗⃗⃗⃗  ⃗,  x2⃗⃗⃗⃗  ⃗,  𝑥3⃗⃗⃗⃗  ⃗,..., xl⃗⃗⃗⃗ ,…, xP⃗⃗⃗⃗  ⃗ ] 

Such that  𝑥𝑙⃗⃗⃗⃗  represent the 𝑙𝑡ℎ frame of of the speech signal x[n] of size Nx1 yields 

the matrix χ with dimension N x P [41]. 

      Note that MFCC coefficients are computed for each frame. 
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Figure 3.4 Framing an audio signal to overlapping frames [42] 

3.3.2. Windowing and DFT  

To minimize the signal discontinuities we apply a hamming window to each frame. 

The hamming window equation is given by: 

                        W[n] = 0.54 -0.46 cos (
 n π

N
 )                                                 (3.5) 

Taking the 𝑙𝑡ℎ frame  𝑥𝑙⃗⃗⃗⃗  we multiply it by the hamming window followed by a 

discrete Fourier transform DFT yields: 

                Xl(k) =∑ xl[n]w[n]
n=N−1
n=0 e

−j2πkn

N                                                   (3.6) 

Such that k=0…N-1, so a DFT is computed for each sample in the frame l, and the 

corresponding frequency of the 𝑘𝑡ℎ sample is f (k) =k 
fs

N
 . 

Computing the DFT points of the N samples in frame l result in a vector 𝑋𝑙⃗⃗  ⃗ of sizeN: 

                            𝑋𝑙⃗⃗  ⃗=[Xl(0), Xl(1), Xl(2),… Xl(N − 1)]
T 
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This represent the DFT of the windowed  𝑙𝑡ℎ frame 𝑥𝑙⃗⃗  ⃗  of the speech signal x[n], 

however, these operations are performed on each of the P frames and we obtain a vector 

of size N for each one, so the DFT of the matrix χ is a matrix of size NxP  

                                        X= [𝑋1⃗⃗⃗⃗  , 𝑋2⃗⃗⃗⃗ , 𝑋3⃗⃗⃗⃗ ,…, 𝑋𝑙⃗⃗  ⃗ …, 𝑋𝑝⃗⃗ ⃗⃗ ] 

The operation of dividing a time varying signal into equal frames and computing 

their Fourier transform separately to determine its overall Fourier transform is known as 

short time Fourier transform or STFT and in our study X is an STFT matrix that is 

complex with phase and magnitude but we are only concerned about the information 

carried in its magnitude which is extracted from the modulus of the DFT and represented 

by |X| [41] 

3.3.3. Mel frequency filter bank: 

 The magnitude spectrum |X| is a matrix of size N x P that is represented on a linear 

frequency scale. In this step we will wrap this spectrum  according to the Mel scale and 

to do so we need to divide |X| into critical bands using the Mel filter bank that  consist of 

a series of overlapping  band pass filters that have a triangular shape(see Figure 3.5) and 

are defined by :  

 The central frequency 𝑓𝑐 

 The number of filters used F 

 The minimum frequency 𝑓𝑚𝑖𝑛 

 The maximum frequency 𝑓𝑚𝑎𝑥 

 

 

Figure 3.5 Mel filterbank with 10 filters 



Chapter 3                                                           Feature Extraction 

 

 

29 

 

  At first we compute the frequency resolution in the Mel scale using this equation:  

 δɸf = 
ɸfmax−ɸfmin

F+1
                                                  (3.7) 

Where ɸfmin and ɸfmax  are the Mel frequencies corresponding to the linear 

frequencies 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 respectively. 

Using the frequency resolution in the Mel scale we can compute the center 

frequencies of the triangular filters in the mel scale using equation: 

ɸfc (𝑚)=m.δɸf                                                    (3.8) 

Such that m=1…F  

The next step is to find the triangular center frequencies in the linear scale using the 

inverse of equation 1 which is: 

 fc=700(10ɸfc (m)/2595 -1)                                    (3.9) 

Now that we have the central frequencies we can write the equation of the Mel filter 

bank  

M (m,k) =

{
 
 

 
 

0                    for      f(k)  <  f(m − 1)          
𝑓(𝑘)−𝑓𝑐(𝑚−1)

 𝑓𝑐(𝑚)−𝑓𝑐(𝑚−1)
     for  𝑓𝑐(𝑚 − 1)   ≤ f(k)  < 𝑓𝑐(𝑚)

𝑓(𝑘)−𝑓𝑐(𝑚+1)

 𝑓𝑐(𝑚)−𝑓𝑐(𝑚+1)
     for  𝑓𝑐(𝑚)  ≤ f(k) < 𝑓𝑐(𝑚 + 1)

0                      for               f(k)  ≥  f(m + 1)

                       (3.10) 

 The mel filter bank is an F x N matrix                         

3.3.4.  Mel Frequency Cepstrum  

The output of the filter bank corresponds to the product of the magnitude spectrum 

|X| with the Mel filter bank M (m,k) .The logarithm operation on this output result in the 

Mel cepstrum 𝐿𝑃(𝑚, 𝑘) of the speech signal x[n] such that :  

               𝐿𝑙(𝑚, 𝑘)=ln {∑ M(m, k) ∗ |Xl(k)|
k=N−1
k=0 }                                         (3.11) 

Where m =1, 2,. . ., F and  l=1, 2, . . . ,P   
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 So for one frame we obtain a mel cepstrum value for each of the F filters and since 

we have P frames , 𝐿𝑙(𝑚, 𝑘)  is a matrix of dimension F x P . 

Finally the MFCC parameters are computed by a discrete cosine transform DCT 

of 𝐿𝑙(𝑚, 𝑘) using this equation:  

ɸl
r{x[n]}=∑ Ll(m, k)COS{

r(2m−1)π

2F
F
m=1 }                       (3.12) 

Such that r= 1, 2,…,F where ɸl
r{x[n]} represent the rth MFCC of the lth frame  

The MFCC’s of all the P frames of the speech signal x[n] is obtained as:  

ɸ{χ}=[ ɸ1, ɸ2,. . . ,ɸl , . . . , ɸP ]                                                   (3.13) 

Each column in the matrix ɸ{χ}corresponds to the MFCC coefficients of one frame 

of the speech signal[n] so it has a dimension of Fx P . 

The MFCC data sets represent cepstral acoustic vectors and they are used as feature 

vectors in our project, however, it is possible to obtain more details about speech features 

using a derivation on the MFCC. This approach permits the computation of the delta 

MFCC (DMFCCs), as the first order derivatives of the MFCC. Then, the delta-delta 

MFCC (DDMFCCs) are derived from DMFCC, being the second order derivatives of 

MFCCs. [43] 

3.4. Delta and Delta-Delta cepstral coefficients: 

 Delta and delta-delta cepstras are also known as differential and acceleration 

coefficients respectively, they are evaluated based on MFCCs.  

The motivation behind adding these two features to the already existing MFCCs is 

that it seems that this later captures only the power spectral envelope of a single frame, 

nevertheless it has been shown that speech contains also some informations in the 

dynamics (the trajectories of the MFCC coefficients over time) And it turns out that 

computing the time derivatives of the standard static MFCC that have been found 

previously increase the speaker recognition performances. [38] 

The delta cesptral coefficient is calculated using the formula: 
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dt =
∑ ci+θ−ci−θ
Θ
θ=1

∑ θ2Θ
θ=1

                                                             (3.14) 

Where dt is the delta coefficient at time t, computed in terms of the corresponding 

static coefficients ci−θ to ci+θ and Θ is the size of delta window. [43] 

The delta-delta coefficients are computed with the same formula but are applied to 

the delta coefficients rather than the MFCCs 
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4.1. Introduction  

The previously extracted features will be used to create a model for each speaker.  

The model is essential in capturing the gradual changes of a speaker’s voice, since it is 

unrealistic to ask the user to utter all the possible utterances across different sessions, 

especially for text-independent based authentication.  

The solution is to build speaker models using a small amount of data and whenever an 

utterance of an unknown speaker is inputted to the system, it will be compared with each 

speaker’s model and the closest match will determine the identity of the speaker. 

Depending on the application of the speaker recognition system, different modeling 

techniques are used, but broadly they are classified into generative and discriminative 

models. 

The generative models use training data samples from a target speaker and estimate 

its feature distribution to form a statistical or a non-parametric model, it includes models 

like Gaussian Mixture Model (GMM), Hidden Markov Model (HMM), and Vector 

Quantization (VQ). 

However the discriminative models use training data of target and non-target 

speakers to learn how to optimally separate between each speaker and model the 

boundaries between them, it includes models like Artificial Neural Networks (ANNs) 

and Support Vector Machines (SVMs). [44] 

In this project we choose to use a statistical generative model which is the Gaussian 

Mixture Model (GMM) that outperforms the other generative models in text-independent 

speaker recognition application like it has been demonstrated by Reynolds and Rose 

experiment [15] 

4.2. Gaussian Mixture Model (GMM) 

4.2.1. Motivations  

The Gaussian mixture model is a statistical model used to represent a normally 

distributed subpopulations within an overall population, such that the different 

subpopulations are unknown and can be learned automatically. [45] 
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There is two main motivations behind choosing this model to represent a speaker’s 

identity.  

The first one is that a speaker’s voice is characterized by a set of acoustic classes 

where each class can be seen as a representation of a phonetic event like vowels, nasals, 

or fricative. These classes hold information about the vocal tract configuration of the 

speaker, which is useful to its identification and each class has a spectral shape that can 

be represented by a mean µ and a covariance matrix Ʃ, however, these classes are 

unknown and need to be learned to be able to classify  the feature vectors into phonetic 

events, therefore it has been shown that by assuming independent feature vectors, their 

density drawn from this hidden classes is considered as a Gaussian mixture. [15] 

The second motivation is the ability of GMM to form smooth approximations for 

arbitrarily-shaped densities (features) using a discrete set of Gaussian functions, each 

with its own mean and covariance matrix which allow a better modeling capability. In 

some sense it can be seen as hybrid between the unimodal Gaussian that represent a 

speaker’s feature by position (mean vector) and an elliptic shape(covariance matrix) and 

the VQ model that represent speaker’s distribution by a discrete set of characteristic 

templates. [15] 

4.2.2. Gaussian Mixture Model description: 

A Gaussian mixture model is parameterized by three types of values, the 

mixture component weight, the mean and the variance.  

 

Figure 4.1 Univariate Gaussian mixture model with two components 
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For a Gaussian mixture model with M mixtures the kth component has a mean 

µk and a variance 𝛔k for the univariate case, Figure 4.1. However, multivariate 

mixtures are represented by a mean vector µ𝑘⃗⃗⃗⃗  and a covariance matrix  Ʃ𝑘 .The 

mixture weight for the kth component is represented by a value pk with the constraint 

that ∑ 𝑝𝑖
𝑘
𝑖=0  =1 such that it evaluate the probability that a data point x was generated 

by the kth component of the Gaussian mixture and when it is learned it constitute   the 

a-posteriori probability of the component given the data. 

The univariate Gaussian mixture model density: 

P(x)=∑ pi
M
i=0  N (x|µi, σi)                                           (4.1) 

Such that: 

N (x|µi, σi) = 
1

2σi√2π
exp (

−(x−μi)
2

2σi
2 )                               (4.2) 

And:                                  ∑ pi
M
i=0  =1                                                            (4.3) 

D-Multivariate Gaussian mixture model density: 

P (x⃗ ) =∑ piN(x⃗ |μi,⃗⃗⃗⃗ 
M
i=0 Ʃi)                                     (4.4) 

Such that: 

N(x⃗ |μi,⃗⃗⃗⃗ Ʃi)= 
1

√(2π)D|Ʃi|
exp (

−1

2
(x⃗ − μi⃗⃗  ⃗)

TƩi
−1(x⃗ − μi⃗⃗  ⃗) )               (4.5) 

And:                                     ∑ 𝑝𝑖
𝑀
𝑖=0  =1   

Since our data (features) is multidimensional we will be concerned only with the 

multivariate case, therefore the complete Gaussian mixture density is parameterized by a 

mean vector a covariance matrix and mixture weights, Figure 4.2, which are represented 

by the notation: 

λ= {pi,𝜇𝑖⃗⃗  ⃗, Ʃi}             i=1,2,…,M 

For speaker identification purpose, each speaker is represented by its model λ, and 

depending on the type of parameters selected for the model, different results are obtained. 
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We can choose to use a nodal covariance which means a covariance matrix for each 

component of the GMM, or a grand covariance, one covariance matrix for all the 

Gaussian components. We can also choose a full or diagonal covariance. [15] 

In our project the selected covariance is nodal and full. 

 

Figure 4.2 Gaussian mixture model parameters 

To obtain an optimum model for each speaker a good estimation of the GMM 

parameters need to be computed and the most popular technique is the maximum 

likelihood estimation (ML). 

Maximum likelihood is used on a training set to estimate the parameters that 

maximizes the probability (likelihood) of the observed data given the model parameters, 

see equation (4.6). 

P(X|λ)=∏ P(xi⃗⃗⃗  |λ)
T
i=0                                                     (4.6) 

 Such that {𝑥1⃗⃗  ⃗, 𝑥2⃗⃗⃗⃗ ,…,𝑥𝑇⃗⃗⃗⃗ } is a sequence of T training vectors. [46]  

 Unfortunately, this is a nonlinear function of the parameters λ and finding the 

maximum likelihood estimation solution analytically is not possible. 

The solution is to estimate the ML parameters iteratively using a special case of 

expectation- maximization algorithm (EM). 
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4.3. Expectation-maximization EM 

The Expectation maximization algorithm is a method used to find maximum 

likelihood estimate of parameters having a certain distribution when the data is 

incomplete or has a missing value. [47] 

 An application of the EM algorithm generally begins with the observation that the 

likelihood function L (λ; X) can be optimized if a set of additional variables is known, 

this set is referred as missing ‘. 

 By assuming that the observable data X is ‘incomplete data’ and by adding the 

missing variables Z we obtain a ‘complete data’, Y ,the probability that links the missing 

variables to the actual data is written as P(y,z|x,λ) . 

Applying the logarithm to the density of P yields the ‘complete-data likelihood’ 

Lc (λ; Y) (which is a random variable due to Z), whereas the original likelihood L (λ; X) 

is the ‘incomplete-data likelihood’. 

 The first ‘E’step of the EM algorithm aims to estimate the expected value of the 

‘complete-data likelihood’ giving the observed data X and the current model λ as: 

Q (λ; λ (i)) =E (Lc (θ; Y) |X)                                           (4.7) 

 Such that λ (i) represent the estimated parameters at the ith iteration and are 

computed with respect to the parameter λ (i-1) 

Q is a deterministic function that is maximized through the second ‘M’step of the 

EM algorithm, to find the new parameters λi+1   such that: 

                                                   𝜆(𝑖+1)=arg max
λ
Q(λ; λ(i+1))                                              (4.8) 

The aim of this process is to improve the complete likelihood, therefore, from an 

iteration to the next we retain the parameters that increase the value of Q, however our 

interest is to improve the likelihood of our given data which has been referred to as the 

‘incomplete likelihood’ [48]. The relationship between this two likelihoods has been 

demonstrated by Dempster, et al. to be proportional and an increase in Q implies an 

increase for the likelihood of the given data, meaning that at each iteration the obtained 

model is improved: 
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L (λ (i+1); X)≥ L (λ; X) 

Equality is reached only for stationary point of L, making the likelihood increase 

monotonically and in practice this means convergence to a local maximum. [48]   

4.3.1. Application of EM algorithm in GMM: 

In our project, the observed data are the extracted features but this is considered as 

an incomplete data, since they are generated by acoustic classes which are unknown. 

 Briefly the application of the EM algorithm to a GMM consist at first, to estimate 

to which mixture (class) Ck ,  each training vector( x⃗ iϵ X)  belongs , using an initial model 

λ (0), then, this expectation is maximized and a new model λ is obtained  . 

More precisely the two steps consist of:  

4.3.1.1. The expectation step (E)  

This step uses initial parameters p0 , μ0⃗⃗⃗⃗  , Ʃ0  to compute the expectation component 

assignments Ck of each x⃗ i. 

For every mixture component Ck the following computation is performed: 

For ∀ i, k: 

𝛾𝑖𝑘̂=P (Ck| xi⃗⃗⃗  , λ
(0)) =

pk N(xi⃗⃗ |μk ̂ ,𝜎̂k)

∑ piN( xi⃗⃗ |μĵ,𝜎̂j)
k
j=1

                          (4.9) 

Such that 𝛾𝑖𝑘̂ is the a posteriori probability for the acoustic class Ck. 

4.3.1.2. The maximization step (M) 

The purpose here is to maximize the expectations computed in the first step and this 

yields new parameters 𝑝1⃗⃗⃗⃗  ⃗, μ1⃗⃗⃗⃗  and Ʃ1 that constitute a new model λ1 

For each mixture component Ck and each training vector x⃗ i we have: 

Mixture weight:  

                          𝑝𝑘̂=
1

𝑇
∑ 𝛾𝑖𝑘̂
𝑇
𝑖=1                                                                     (4.10) 
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Mean vector:  

                         μ̂k⃗⃗⃗⃗ =
∑ γik ̂T
i=1  xi⃗⃗  ⃗

∑ γik̂
T
i=1

                                                                      (4.11)  

Variance   

                     σk
2̂=

∑ γik̂
T
i=1 (xi⃗⃗  ⃗−μ̂k)

2

∑ γik̂
T
i=1

                                                                (4.12) 

The new model is used as an initial model for the first step in the next iteration and 

the process is repeated until convergence is achieved. 

From an algorithmic perspective, the dominant practical method for estimating 

GMMs is the Expectation-Maximization (EM) algorithm [49] , but this method is only 

guaranteed to converge to a stationary point of the likelihood function which can be local 

instead of a global maxima.  

To guarantee convergence to a near globally optimal solution. It is required for the 

EM algorithm be provided with a reasonable initialization parameters. 

There are many different clustering algorithms that can be used in initialization, but 

so far the most popular algorithm is the K-mean, that is also known to be a suitable 

candidate for the starting configuration of the EM algorithm.  

4.4.       Initialization of EM by K-mean clustering 

The basic idea behind K-mean clustering is to partition the data into clusters, such 

that all the data points that have similar attributes are grouped into the same cluster 

whereas dissimilar data are classified in different groups. 

More precisely K-mean clustering assumes that each cluster in the data can be 

represented by a cluster center, and the data from a cluster will be closer to their cluster 

centers .Based on this assumption, the goal of K-mean clustering is to find the cluster 

labels li that minimize the ‘within cluster sum of squares’ (WCSS). [50] 

Given a set of observation {x1, x2,…,xT}. K-mean partition the T observations into 

K sets S= {s1,s2,…,sK} : 

WCSS=∑ ∑ ƶik‖xi − μk‖
2T

i=1
K
k=1                                       (4.13) 
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Such that:   μk=
∑ ƶikxi
T
i=1

∑ ƶik
T
i=1

  and ‖ . ‖ denotes the Euclidian distance. 

The solution to this equation is hard to find, even when K=2, therefore an 

approximate algorithm is used and the standard one for the K-mean clustering is the 

Lloyd’s algorithm which is also known as the K-mean algorithm. It is an iterative 

algorithm that update the data cluster’s assignments at each iteration, until WCSS stops 

improving [50]. 

4.4.1.  Lloyd’s Algorithm (K-means): 

Input:  

 Data X 

 Number of clusters K 

 Initial cluster centers (centroids): {µ1
[0]

, µ2
[0]

,…, µ𝐾
[0]

} 

Condition:  While WCSS increases at each iteration n do:  

 

       Cluster Assignment: 

Assign each data point to its closest cluster center: 

ƶik
[n]

=1 if ‖xi − μk
[n]
‖=min

1≤j≤K
‖xi − μj

[n]
‖ 

Update cluster centers: 

The cluster centers are updated based on the assignments: 

μk
[n+1]

=
∑ ƶik

[n]
xi

T
i=1

∑ ƶ
ik
[n]T

i=1

                                                   (4.14) 

Output:  

 Cluster indicator vectors for each data point:z1⃗⃗  ⃗, z2⃗⃗  ⃗,…, zT⃗⃗⃗⃗  

The cluster indicator vectors will then be used as an initialization for the EM 

algorithm.  

Some of the motivations behind using this algorithm is that it’s guaranteed to 

converge to a local minimum of WCSS, it runs very efficiently and it does not require a 
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lot of input parameters, Moreover, the K-mean clustering is considered as a special case 

of GMM that has a spherical covariance matrix that is the same for every component, 

which makes sense to choose K-mean algorithm as an initialization configuration for an 

EM algorithm fitting a GMM.  [50]  

4.5. Speaker modeling algorithm 

Now we can use our theoretical background to set an algorithm that create a model 

for each speaker. 

 As described previously the optimal model is obtained by first using the k-means 

algorithm that will then serve as an initialization parameters to the EM algorithm which 

finally will estimate the Gaussian mixture model’s parameters. 

The upcoming steps will describe the algorithm used for this task   :  

1. Collect the data : 

 Extract the MFCC feature vectors from all the spoken utterances of one speaker 

and choose the ones to use as training and testing.  

 The training feature vectors {𝑥1⃗⃗  ⃗, 𝑥2⃗⃗⃗⃗ ,…,𝑥𝑇⃗⃗⃗⃗ }will be concatenated and used as input 

data  

In this project 10 speakers from TIMIT data base [see chapter5] have been selected, 

8 of their utterances were used for training and 2 for the testing.  

2. Choose the desired sets up for training : 

 Number of the mixtures  

 Number of dimensions  

 Nodal and full covariance matrix    

The number of mixtures that give the best performance is hard to choose, that’s why 

we train our model with three different number of mixtures [16, 20, 24] and see how it 

affects the performance of the system. 

The number of dimensions determine the number of the feature vectors. By adding 

the delta and delta-delta coefficients to the 13 MFCC’s we end up with 39 dimensions in 

total. 
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3. Set a function for the training : 

A loop is created to run the following process 20 times and compute the negative 

log-likelihood in each iteration to finally take GMM parameters that obtained the smallest 

value of negative log likelihood which is equivalent to the maximization of the 

likelihood. 

 Run the K-mean algorithm on the input data and save the results  

 Set up the maximum iteration number to 500 for the EM trainer  

 Perform the EM algorithm on the output of the K-mean  

The statistics and machine learning toolbox in matlab provide a function that fit a 

GMM using EM algorithm and compute in each operation the negative log likelihood 

which need to be saved.  

4. Choose the best model : 

 compare  the negative log likelihood of all the iterations  

 save the GMM parameters 𝜆1that minimize the negative log likelihood  

5. Train other speakers : 

 The same process is repeated for each of the 10 selected speakers to find λi for 

i=1, 2,…, 10. 

6. Final output  

 Save all the obtained model {λ1, λ2,…, λ10} to be used further in the 

identification and verification experiments .  

This chapter explained the basics of speaker modeling and its importance in speaker 

recognition application, different methods were introduced and we decided to use 

GMM’s in our project. 

A brief description about GMM’s showed how its parameters are used to create 

speaker models λi and how EM algorithm is used to ease their estimation, we also showed 

the tendency of this algorithm to converge to local maximum and how we can avoid this 

using good initialization parameters computed through the K-means clustering 

algorithm. 

Following these steps a speaker modeling algorithm was presented to train a GMM 

and to choose the best output parameters. 
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5.1. Introduction  

This chapter will cover the performed speaker identification and speaker 

verification experiments, the used sets up will be explained and, the obtained [49] results 

will be developed for each experiment. 

The identification and verification systems will be described and the performance 

of the proposed algorithm in the previous chapter will be evaluated.   

5.2. System Description 

5.2.1. Database description 

 The TIMIT database will be used for all the upcoming experiences. 

TIMIT corpus of read speech was designed by Texas Instruments, Inc. and MIT to 

provide speech data for acoustic phonetic studies and for the development of automatic 

voice-based recognition systems. [51] 

TIMIT database contains speech recordings of 630 speakers from eight American 

regions representing the eight major dialects of American English, each speaker has 10 

recording sentences, each with a duration that varies from  2 to 5 seconds .The first 2 

sentences named SA are read by all the speakers and are meant to expose their dialectal 

variants. The 5 other sentences named SX are phonetically-compact sentences and were 

designed to give a good coverage of pairs of phones and each seven speakers read the 

same phonetically compact sentences, Finally the last 3 sentences are phonetically-

diverse sentences named SI, chosen from existing text sources to add diversity in 

sentence type and phonetic context .Each of the 3 sentences were different and read by a 

single speaker. 

Each sentence is saved in a speech waveform file with a sample frequency of 

 16 kHz. 

5.2.2. Implementation Issues  

5.2.2.1. Model order: 

The choice of the number of  Gaussian mixture components is not easy to make,  

because it has a major effect on the performance of the speaker identification system such 



Chapter 5                                                       Experiments & Results 

 

 

45 

 

that when only few components are used the model can’t cover all the phonetic events 

that are produced by the speaker and an under-fitted model is created.   

However, choosing a high order GMM will result in an over-fitted model which 

means that the present noise in the training data will be taken into consideration and will 

be represented as a phonetic event of the speaker.  

5.2.2.2. Dimension of MFCC features: 

 The other factor that plays a major role in speaker identification performance is the 

number of MFCC features that are used. Knowing that the lower order coefficients 

contain most of the information about the vocal cords and vocal tract shape of the 

speaker, choosing 13 cepstral coefficients (including the o th coefficient that represent the 

average power of the input signal) seems to be a good choice, however taking into 

consideration the time variation of these coefficients which are the delta and delta-delta 

coefficients is proved to give better results, [38] with the constraint of increasing the 

feature’s dimension from 13 to 39 resulting in more complex models that need higher 

training duration. 

5.3. Speaker identification experiment 

This section will develop the followed procedure in the evaluation of a text-independent 

speaker identification system that uses MFCC features and GMM.  

The experimental phase will contain three main parts that will evaluate the identification 

system by varying different parameters like GMM order and MFCC dimension to optimize 

the identification rate. 

5.3.1. Speaker identification procedure   

The first step in any speaker identification experiment is to choose a set S of N 

speakers S= {1, 2,… ,N} such that each speaker has a set of speech recordings 

represented by samples at a sampling frequency fs.  

For a speech signal of duration t a set of feature vectors {𝑥1⃗⃗  ⃗, 𝑥2⃗⃗⃗⃗ ,…..,𝑥𝑡⃗⃗  ⃗} is extracted  

The third step consist of creating a GMM model for each speaker using the extracted 

features, this results in a set of N models {λ1, λ2,…, λN} 
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The final step in speaker identification, also called the testing phase is to identify 

the speaker’s identity 𝑠̂ whose model has the maximum posterior probability from an 

input feature-vector sequence. 

The minimum-error Bayes rule for this problem is:  

ŝ=arg max
1≤s≤S

Pr (λs|X)= argmax
1≤s≤S

P(X|λs)

P(X)
 Pr (λs)                                 (5.1) 

Assuming equal prior probabilities of speakers Pr(λs) = 1/S  and  P(X) are 

constant for all speakers then they can be ignored in the maximum. Using 

logarithms and assuming independence between observations, the decision rule for 

the speaker identity becomes [5]: 

     ŝ=arg max
1≤s≤S

 ∑ logT
t=1 p (xt|λs)                                                  (5.2) 

Such that p (xt|λs) is given in equation (4.6)  

 

5.3.2. Experiments description: 

First experiment: 10 speakers from TIMIT database were chosen randomly 

such that one male and one female were selected from five different regions. 8 

sentences from each speaker were used as a training data comprising an average 

duration of 20 seconds, whereas the testing phase use 2 utterances from each speaker 

with a total duration of 6 seconds. 

The MFCC features are extracted directly from the raw speech signal without any 

segmentation .The identification rate is measured for different values of MFCC 

coefficients (13 and 39) and for three varying number of Gaussian mixture 

components (16, 20, and 24). 

 Second experiment: The 10 speakers of TIMIT that have the longest utterances 

were selected for this experiment in order to increase the duration of the training data 

from an average of 20 seconds to 35 seconds. The set of speakers is constituted of 3 

females and 7 males randomly spread over 6 different regions. The identification rate 

is evaluated by varying the number of MFCC coefficients and mixture components as 

in the first experiment. 
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Third experiment: The dataset of the 2nd experiment is used and a preprocessing 

of data is performed before the feature extraction phase such that the speech was 

segmented to silent, unvoiced and voiced parts. Only the voiced parts were used as 

training and testing data. The identification rate is measured following the same 

procedure as the previous experiments.  

5.3.3. Experiment evaluation  

The evaluation of the previously described experiments is based on a frame by 

frame evaluation. Since a feature vector is extracted from each frame, the identification 

system considers each frame as a testing utterance and compares it with all the speaker 

models to determine the closest speaker match. 

The identified speaker at the frame level is compared to the actual speaker of the 

test utterance and the number of frames that have been correctly identified are recorded 

to determine the identification rate. See equation (5.3). 

Identification rate (%) =  
number of correctely identified frames 

total number of frames 
 × 100         (5.3) 

This procedure is repeated for all the set of speakers and their average is tabulated 

in the experiment results. 

 Evaluation Algorithm: 

The main goal of speaker identification algorithm is to calculate the likelihood of a 

given test utterance with respect to each speaker model and the one that registered the 

maximum likelihood is identified as the actual speaker. 

Given a test utterance, a sequence of T feature vectors is extracted: 

X = {𝑥 1, 𝑥 2, 𝑥 3,… … , 𝑥 𝑇}  

Choosing a group S of 10 speakers 10 variables need to be declared and initialized 

to count the number of times a speaker has been identified :  

𝑛1=𝑛2 = ….. = 𝑛10= 0 

Step 1: The likelihood of a feature vector is computed with respect to each 

speaker’s model as follows:  
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𝑙1=log P (𝑥 1| 𝜆1) 

 

𝑙2 = log P (𝑥 1| 𝜆2) 

.      .         .         . 

.        .       .          . 

.        .       .           . 

𝑙10 = log P (𝑥 1| 𝜆8) 

𝐒𝐭𝐞𝐩 𝟐 : Compare the 10 likelihoods, the maximum one will determine the 

identity of the speaker: 

l= max (𝑙1,𝑙2,…… , 𝑙10) 

Step3: 

If l=𝑙1  , speaker 1 has been identified so 𝑛1=𝑛1+1  

If l =𝑙2 , speaker 2 has been identified and 𝑛2=𝑛2+1 

The same incrementation method is applied for all the 10 speakers  

Step 4: 

Repeat the previous steps for all the T feature vectors  

Step5: 

For all the test utterance the identification rate (%) is computed for each speaker  

𝑖𝑑𝑟1=
𝑛1

𝑀
×100% 

𝑖𝑑𝑟2=
𝑛2

𝑀
×100% 

.    .     .    .     . 

.    .     .     .     . 
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𝑖𝑑𝑟10=
𝑛10

𝑀
×100% 

5.3.4. Results and discussion  

This section describes the three conducted experiments  

5.3.4.1. Experiment 1: 

Purpose: Demonstrate the effect of varying the Gaussian model order and the 

dimensionality of feature vectors on the speaker identification performance. 

The results of the first experiment are shown in Table1 such that the measurement 

are evaluated on a raw speech signal that didn’t submit any preprocessing. Random 

speaker set were selected from TIMIT.  

 

Model order 

Identification rate (%) 

13 MFCC 39 MFCC 

16 57.83 61.95 

20 57.48 59.54 

24 56.85 57.64 

                             Table 1 Results of the first speaker identification experiment 

Different observations are drawn from the tabulated results in Table1. 

The first one is the effect of varying the number of mixture components has on the 

identification rate such that a 16 order model seem to give the best results compared to 

the 20th and 24th order, However the difference is 0.35% and 0.98%  respectively which 

is not really significant  .      

The second observation concerns the dimensionality variation of the feature vectors 

which registered an increase up to 4.12% in the identification rate, for higher dimension 

features. 
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5.3.4.2. Experiment2:   

Purpose: This experiment intends to reveal the effect of increasing the duration of 

the training data by optimizing the chosen set of speakers available on TIMIT, taking the 

ones who recorded the longest utterances. 

Model order 

Identification rate (%) 

13 MFCC 39 MFCC 

16 60.74 63.42 

20 59.86 62.10 

24 59.70 60.57 

Table 2 Results of the second speaker identification experiment 

Table 2 confirms the observations of the previous experiment, such that the 16 

component GMM gives the best identification rate and 39 MFCC outperforms the 

13MFCC for all the model orders that have been selected .A comparison of experiment 

1 and experiment 2 results will be found in Table 5. 

The best result obtained from the second experiment which is the 16 GMM that 

uses 39MFCC features, is developed in a confusion table, Table3, with the objective to 

reveal the detailed computations that led to the final results of the identification 

experiments. 
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Actual Speaker index 
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 1 2 3 4 5 6 7 8 9 10 

                                               Identification rate (%) 

1 70.80 8.63 3.40 1.60 2.10 3.36 1.27 2.89 1.45 0.78 

2 9.13 68.14 8.51 3.20 1.45 2.04 2.08 2.98 3.23 1.34 

3 5.14 6.86 71.06 1.39 1.58 2.16 1.36 1.80 0.22 1.57 

4 1.35 1.86 2.78 52.24 1.58 3.96 8.60 6.11 5.91 1.57 

5 3.38 1.76 1.70 4.06 74.90 8.15% 4.34% 5.33 10.03 5.03 

6 3.72 1.76 2.24 8.76 4.73 59.35 4.25 4.78 5.80 15.88 

7 0.78 0.49 3.41 6.94 3.15 5.76 61.99 6.97 8.69 3.69 

8 4.28 9.22 4.12 11.00 3.15 7.55 10.41 63.12 6.24 5.37 

9 0.45 0.69 1.97 7.59 4.21 5.04 4.89 4.62 54.40 6.60 

10 0.68 0.59 0.81 3.21 3.15 2.64 0.81 1.41 4.01 58.17 

Table 3 Confusion table of 16 order GMM and 39 MFCC coefficients 

This table explains the procedure of speaker identification task. For example by 

selecting a test utterance that belongs to the first speaker (actual speaker) it shows that 

the system identifies speaker1 (hypothesized speaker) with a percentage of 70.80% 

whereas the remaining 9 speakers are identified with small percentages such that the 

highest one recorded is 9.13% which identifies speaker2.  

This is an important observation, because it shows that if the measurements were 

performed on the whole test sentences instead of a frame by frame evaluation, the speaker 

identification system will take in consideration the highest percentage obtained across 

the ten speakers and presume that it’s the actual speaker . 

The diagonal values of table 3 record the highest percentages, meaning that if the testing 

was evaluated along the whole test sentence, the identification rate will be of 100%. 

5.3.4.3. Experiment 3: 

Purpose: The objective of this experiment is to evaluate the performance of the 

speaker identification system by taking into consideration only the voiced part of the 

speech signal, removing silence and the unvoiced segments from both training and testing 

data. An investigation about decreasing the number of GMM components is also 
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conducted since it has been observed from the previous experiment that the lowest model 

order gave the best results.  

The results of the experiment are tabulated in Table 4 such that the measurements 

on (12, 16, 20) GMM components are performed. 

 

 

Model order 

Identification rate (%) 

13 MFCC 39 MFCC 

12 72.58 74.09 

16 73.01 78.21 

20 70.47 67.77 

Table 4 Results of the third speaker identification experiment 

 

The first remark of this table is that the 16 order GMM with 39 features still 

outperforms the other model orders even for the 12th components GMM that has been 

introduced in this experiment, which confirms that the best identification rate is achieved 

for a 16 order GMM. 

The second observation is that increasing the dimension of MFCC didn’t have the 

same effect on the 20th component this time, since it decreased the performance of the 

system from 70 to 67% which is not the case for the 16 and 12th model orders which 

keeps their good performance for higher feature dimensions. 

The final remark suggest that lower model orders seem to give better results than 

the higher ones such that 12 components is preferred to the 20 components GMM.   
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5.3.4.4. Comparison and interpretation of the results:  

   

Model 

order 
Experiment 

Training 

duration 
Speech signal 

Identification rate (%) 

13 MFCC 39 MFCC 

12 3 30sec Segmented 72.58 74.09 

16 

1 20 sec Non segmented 57.83 61.95 

2 30 sec Non segmented 60.74 63.42 

3 30sec Segmented 73.01 78.21 

20 

1 20 sec Non segmented 57.48 59.54 

2 30 sec Non segmented 59.86 62.10 

3 30 sec Segmented 70.47 67.77 

24 
1 20 sec Non segmented 56.85 57.64 

2 30 sec Non segmented 59.70 60.57 

Table 5 Comparison of the identification experiments results 

 

This table compares the experimental results obtained in all the speaker 

identification experiments and summarize all the important information that need to be 

retained.  

The optimal speaker identification system is obtained using 16 components GMM 

with 13 MFCC dimensions for a training and testing data that have been subjected to 

preprocessing or a segmentation that kept only the voiced segments of the speech. 

The results suggest clearly that preprocessing the data before the feature extraction 

phase in training and testing, increases significantly the identification rate especially for 

the 16th component GMM that registered and increase of almost 15%. 

Another important observation is the impact of MFCC dimension on the results. In 

exception to the 20 component GMM, all the results indicate an improvement in the 

identification rate when using higher dimension (39) MFCCs, however the highest 

increase recorded is 5.2% for the 16 order GMM, which is not significantly high. 

A comparison between the 1st and 2nd experiment shows with no surprise that 

increasing the training duration plays an important role in improving the identification 
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rate of the system .The results indicate that increasing the training duration by 10 seconds 

improved the performance of the system by an average of 3%. 

Finally the last observation that can be drawn from the table is that lower order 

GMMs tend to give better identification rates, such that 12th order GMM outperforms the 

20th order which by its turn performs better than the 24 components GMM. 

For the verification experiments the segmented and non-segmented data with 39 

MFCC will be used and compared. 

5.4. Speaker verification: 

In this part of this project, the speaker GMMs that have been evaluated in the 

speaker identification experiments will be used for a text-independent speaker 

verification task. 

Two main experiments will be performed and compared to see the effect of speech 

segmentation on the verification task.  

The next section will give a brief introduction on the speaker verification task, and 

then the experiments description and evaluation will be covered. 

5.4.1. Speaker verification overview:  

Speaker verification task consist mainly of a system that takes a binary decision, 

whether an input utterance belong to the claimed speaker or not. 

So for a given input utterance and a claimed identity, the choice becomes:  

H0: if X is from the claimed speaker  

H1:if  X is not from the claimed speaker  

The general procedure in any speaker verification task is to apply a likelihood-ratio 

test to an input utterance and determine if the claimed speaker is accepted or rejected. 

The likelihood-ratio test is computed with respect to two GMM models. The first 

model is the model of the claimed speaker𝜆𝑐, whereas the second one models a set of 

possible imposter (non-claimant) speakers and it is known as the background model𝜆𝐶̅. 
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The likelihood-ratio is:  

                     
Pr (X is from the claimed speaker )

Pr (X is not from the claimed speaker)
  =  

Pr (λc|X)

Pr (λC̅|X)
               (5.4) 

By applying the Bayes’ rule and discarding the constant prior probabilities for 

claimant and impostor speakers, the likelihood ratio in the log domain becomes:  

                               Λ (X) =log P(X|λc)-log P(X|𝜆𝐶̅)                                          (5.5) 

such that : P(X|λc) : The likelihood that X belongs to the claimed speaker 

                 P(X|λC̅) : The likelihood that X does not belong to the claimed speaker 

                                                   

The likelihood ratio Λ is compared with a threshold value θ and the decision becomes:  

             If  {
Λ(X) ≥ θ    Accept the claimant speaker 

Λ (X) < θ    Reject the calimant speaker
                                     (5.6) 

The decision threshold θ selection is very important, because a high threshold will 

increase the percentage of false acceptance (FA) error whereas a small threshold imply a 

higher percentage of false rejection (FR) error, so an adjustment between the trade-off 

that exist between FA and FR need to be found by optimizing θ. 

The terms of the likelihood ratio are computed as follows:  

                                      log P(X|λc) = 
1

T
 ∑ log p(x|λc)
T
t=1                                    (5.7) 

The 
1

T
 factor is used to normalize the likelihood for the utterance duration. 

The likelihood of imposter speakers is formed by using a set of B background-

speaker models, {𝜆1, 𝜆2, … , 𝜆𝐵} and P(X|λC̅) is the joint probability density that the 

utterance [5] comes from a background speaker if we assume equally likely speakers : 

                                      log P(X|λC̅) = log {
1

𝐵
∑ 𝑝(𝑋|𝐵
𝑏=1 𝜆𝑏) }                           (5.8) 

Such that 𝑝(𝑋|𝜆𝑏)  is computed as in Equation (5.7) by omitting the factor 
1

𝑇
  

From this overview it is concluded that any speaker verification system face the 

problem of background speakers selection and threshold selection, such that the 
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background speakers need to represent the characteristics of all the possible imposters 

that can be presented to the system. 

5.4.2. Speaker verification algorithm: 

 For this project the speaker verification task is applied on the same set of speakers 

that as Experiment 2 and 3 of speaker identification, such that the speaker that recorded 

the highest identification rate is taken as the claimed speaker, whereas the others are 

selected as background speakers. 

A likelihood estimation with respect to the claimant speaker model and background-

speakers model is performed on each frame of the input utterance. 

Given a sequence of T feature vectors for the claimant test utterance:  

X= {𝑥 1, 𝑥 2,… 𝑥 𝑇} 

Step 1:  

Compute the likelihood of a feature vector with respect to the claimant and imposter 

models as follows  

𝑙1= log P (𝑥 1|𝜆𝐶) 

𝑙2=log {
1

9
 ∑ P(𝑥 1|𝜆𝑏)
9
𝑏=1 } 

Step2: 

Compute the likelihood ratio: Λ(X) = 𝑙1-𝑙2 and select a threshold value θ 

Step 3:  

Compare the likelihood ratio and the threshold value:  

If {
Λ(X) ≥ θ    n1 = n1 + 1
Λ (X) < θ    n2 = n2 + 1

                                      

Step 4: 

Repeat the procedure for all the feature vectors  

Step 5: 
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Compute FA and FR percentage error: 

 If the test utterance belongs to the claimant speaker then:  FR=
n2

T
× 100 

 To compute FA, a test utterance from each of the background speakers is taken 

and for each one a false acceptance percentage is computed as FAb =
n1b

T
× 100  

 the total false acceptance is computed as their average : FA =
1

9
∑ FAb
9
𝑏=1   

Step 6: 

Repeat the procedure for different values of θ until ( 
FA+FR

2
 ) is minimum  

5.4.3. Experiments description and evaluation  

First experiment: 

The optimized dataset of the speaker identification experiment will be used for 

the verification task, such that a test utterance of the first speaker will be used as the 

claimed speaker, whereas the 9 other speakers will be considered as background 

speakers. 

The experiment will be conducted on raw speech signals without any preprocessing 

and an optimized threshold value will be estimated to minimize the false rejection (FA) 

of the claimed speaker and the false acceptance of an imposter speaker (FR) 

Second experiment 

This experiment will follow the same procedure as the first one except that the 

speech signal will be segmented and only the voiced parts will be considered.   

5.4.4. Results and discussion  

5.4.4.1. Experiment 1 

The results of the first experiments are tabulated in Table 6 where multiple threshold 

values were tested to obtain the optimum one and the speech signal is non- segmented  

 

 



Chapter 5                                                       Experiments & Results 

 

 

58 

 

θ FR (%) FA (%) (
𝐅𝐀+𝐅𝐑

𝟐
) (%) 

0.1 25.03 4.77 14.90 

0.5 25.48 4.26 14.87 

1 26.83 3.73 15.28 

1.5 27.85 3.15 15.50 

2 29.09 2.69 15.89 

Table 6 First speaker verification experiment 

 As expected it is observed in Table 6 that FR and FA are inversely proportional 

such that when the threshold increases FR increases and FA decreases.  

Another important observation is that(
FA+FR

2
) is minimum for θ=0.5, and this value 

is surrounded by a smaller and higher threshold that registered a higher average error. 

This suggest that the optimal θ can be found in this range:  0.1 < 𝜃𝑜𝑝𝑡𝑖𝑚 < 1 

Another range of threshold is selected in Table7 to see if a better threshold can be 

found. 

θ FR (%) FA (%) (
𝐅𝐀+𝐅𝐑

𝟐
) (%) 

0.2 25.14 4.64 14.89 

0.3 25.25 4.52 14.89 

0.4 25.48 4.37 14.93 

0.6 25.70 4.21 14.96 

0.7 26.27 4.13 15.20 

0.8 26.38 4.01 15.20 

0.9 26.49 3.86 15.18 

Table 7 Threshold selection for the first speaker verification experiment 
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The smallest average error that is measured in Table7 is 14.89% for a two different 

threshold values of 0.2 and 0.3 ,However the obtained result in Table 6 shows a slightly 

smaller error percentage of 14.87 for θ= 0.5. So even if we took a smaller range to 

determine more accurately the optimum threshold, it is confirmed that the first result of 

Table 6 assures a minimum average error. 

5.4.4.2. Experiment 2 

In this part, the data-set of speakers is unchanged and the same procedure as the 

previous experiment is followed, however the speech signal has been segmented before 

the feature extraction and only the voiced parts are kept. The results are shown in Table 

8 

θ FR (%) FA (%) (
𝐅𝐀+𝐅𝐑

𝟐
) (%) 

0.1 6.86 2.67 4.77 

0.5 7.07 2.49 4.78 

1 7.9 2.27 5.09 

1.5 8.73 2.05 5.38 

2 9.56 1.83 5.70 

                          Table 8 Second speaker verification experiment 

Taking the same threshold values as in the first experiment, the smallest average 

error shown in Table 8, is recorded for the first value of θ = 0.1 meaning that another 

range should be taken into consideration and smaller values should be investigated.  

Table 9, aims to find an optimum threshold value: 
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θ FR (%) FA (%) (
𝐅𝐀+𝐅𝐑

𝟐
) (%) 

0.2 6.86 2.59 4.73 

0.3 7.07 2.56 4.82 

0.4 7.07 2.52 4.80 

                Table 9 Threshold selection for the second speaker verification experiment   

This table suggest that the optimum threshold value for the segmented speech signal 

is θ=0.2 with a minim error of 4.73% 

5.4.4.3. Comparison and interpretation: 

                          

θ Speech signal  FR (%) FA (%) (
𝐅𝐀+𝐅𝐑

𝟐
) (%) 

0.1 Non-segmented 25.03 4.77 14.90 

Segmented  6.86 2.67 4.77 

0.2 Non -segmented 25.14 4.64 14.89 

Segmented 6.86 2.59 4.73 

0.3 Non-segmented 25.25 4.52 14.89 

Segmented  7.07 2.56 4.82 

0.4 Non -segmented 25.48 4.37 14.93 

Segmented 7.07 2.52 4.80 

0.5 Non -segmented 25.48 4.26 14.87 

Segmented 7.07 2.49 4.78 

1 Non -segmented 26.83 3.73 15.28 

Segmented 7.9 2.27 5.09 

1.5 Non -segmented 27.85 3.15 15.50 

Segmented 8.73 2.05 5.38 

2 Non -segmented 29.09 2.69 15.89 

Segmented 9.56 1.83 5.70 

Table 10 Results comparison of speaker verification experiments 
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Table 10 summarize the obtained results in speaker verification experiments. 

From the 1st experiment, the optimum threshold θ=0.5 had recorded a minimum error of 

14.87%, whereas the 2nd experiment recorded a minimum error of 4.73% for a smaller 

optimum threshold of θ=0.2. 

Another important observation that is seen in Table 10 is that the main 

improvement concerns the minimization of the false rejection error that has been 

reduced by almost 20% when the speech signal was segmented. 

These results demonstrate clearly that preprocessing the speech signal improve 

significantly the performance of the speaker verification system such that it minimized 

the false acceptance (FA) and false rejection (FR) error average by 10% . 

It is important to notice that the speaker verification results were based on a frame 

by frame basis and since the minimum average error is 4.73%, this means that the claimed 

speaker has been accepted with a percentage of 95% and if the system takes the whole 

testing utterance sentence it will apply a majority rule over all the number of frames and 

the verification will be of 100%. 
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6.1. Conclusion  

  This project presented a text-independent speaker recognition system that uses 

GMM to model a set of speakers from the TIMIT database. The speaker identification 

and speaker verification experiments had the objective to show the important parameters 

that can improve the system’s recognition performance.  

  For that purpose different components GMMs have been modeled and two distinct 

feature’s dimension have been used. The results suggest that the optimum GMM order is 

16 and 39 MFCC improve slightly the performance of the identification task compared 

to the 13MFCC coefficients. 

   The other important observation that is drawn is the importance of preprocessing 

(segmenting) the speech signal before the feature extraction phase, such that by  using a 

simple segmentation method that is based on short-time energy estimation and the zero 

crossing rate , the identification rate of the system increased by 15%. 

  It is also important to notice that TIMIT database provide a small duration 

utterances for each speaker and all the obtained results were based on a training that uses 

a maximum of 30seconds speech data, which is a quite small duration for a speaker 

recognition system. Nevertheless satisfactory results have been obtained from the 

multiple experiments.  

6.2.    Suggestion for further research: 

   To improve the performance of the developed speaker recognition system, the 

most obvious work that need to be done is to to invest more on the preprocessing phase 

of the speech signal, such that using powerful preprocessing method will contribute to 

significant increase of  the identification rate . 

  To get better results we can also try to combine different types of features that can 

capture different characteristics of a speaker’s voice, leading to more optimized speaker 

models  

Finally we can think of using different speaker based database that have longer 

durations of speaker recordings like VoxCeleb [54] and YOHO [55, 5] database, 

specially designed for speaker recognition tasks.
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