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Abstract—In this paper, robust controllability and observability 
problem of linear time-delay systems with parametric 
uncertainties is considered. A functional-based transformation is 
first presented, which transforms the system with delayed 
measurements into a system without delay formally. Based on the 
transformed system, we develop an effective method for checking 
the robust controllability and observability tests of the uncertain 
system using interval analysis. 

Index Terms— Functional transformation, Interval analysis, 
Linear time-delay systems, Parametric uncertainties, Robust 
controllability test, Robust observability test, Uncertain system.  

I. INTRODUCTION 

   Solutions have been made to the problem of parametrical 
uncertainties affecting a linear time invariant (LTI) system 
without taking into account  delays in [1] and [2] for the robust 
controllability and observability tests using interval analysis. 
Indeed, in most situations, the uncertainties are poorly known 
but not totally unknown. In general, the upper and lower limits 
are known. So it would  be interesting to take advantage of this 
partial knowledge for the structural controllability and 
observability tests of uncertain systems by using intervals for 
the reformulation of the parametrical uncertainties of an LTI 
system. For instance in [1], the controllability and 
observability tests are verified using a particular geometric 
form of interval linear systems, known as “complete 
generalized antisymmetric stepwise configuration” 
independently of the bounds of the uncertain system.  In [2], 
necessary and sufficient condition has been established for the 
controllability of single-input/multi-output LTI systems with 
interval plants and the observability for multi-input/single 
output LTI systems with interval plants.  The robust 
controllability and observability tests in this case depend 
completely of the bounds of the uncertainties.  In [3] and [4], 
necessary and sufficient condition based on interval division 
method has been provided for multi-input/multi-output LTI 
systems. The robust controllability and un-controllability 
problems of uncertain interval systems are solved in [5] using 
linear independency condition of interval vectors.   
   Actually, in practical engineering, time-delay phenomena are 
common by the sensor measurement, such as component 
analysis nearing instruments have biggish delayed 
measurement and it is well known that robust observability 
under parametrical uncertainties and delay affecting the output 
measurements plays a crucial role in stabilization of systems in 
control theory as well as in observer design.  
 
 
 
 
 

   To the best of the authors’ knowledge, the condition for 
robust observability where both parametrical uncertainties and 
measurement time-delay are present has not yet been derived.  
The case where the uncertain system can be delayed is of our 
interest. 
   In this work, where delay can affect the linear uncertain 
system, we develop a method to overcome this obstacle by 
using a functional based-transformation which transforms the 
system with delayed measurements into a system without 
delay formally. Based on the transformed system, we use the 
interval arithmetic technique to enclose the parametrical 
uncertainties using interval matrices with a priori known upper 
and lower bound.  Since an LTI system with parametrical 
uncertainties can be represented by interval matrices, it can 
also be considered as a set of column interval vectors. We will 
see that suggesting a linear independency of these interval 
vectors contributes thereafter to the verification of the 
controllability and the observability tests of the uncertain 
interval system. This paper can be considered as a 
development of the ideas discussed in [5] within addition the 
delay affecting the output measurements for the robust 
observability test of the transformed system. 
   The paper is organized as follows: In Section II, we give 
some definitions about interval analysis ([6], [7], [8]) and its 
application to enclose parametrical uncertainties using interval 
vectors and interval matrices. In Section III, we consider a 
nominal delayed system without considering any uncertainties 
and a functional based-transformation [9] to overcome the 
delay affecting the output measurements. In section IV, we 
develop the linear independency condition of interval vectors 
[5]. To the transformed system, we include parametric 
uncertainties and we apply the technique of linear 
independency of interval vectors in order to verify the 
controllability and observability tests of the uncertain 
transformed system, then we describe the method through an 
example of an uncertain delayed system, all is discussed in 
section V. The method is developed in Matlab environment 
using Intalab toolbox for interval analysis ([10], [11]). 
Conclusions are given in Section VI. 

II. PRELIMINARIES  

Throughout the paper, we need the following definitions. 
   Definition 2.1: The spectral radius 𝜌 of square matrix 𝐹 is 
defined as the maximum of the absolute value of its 
eigenvalues 𝜌(𝐹) = max(|𝜆(𝐹)|) 

Definition 2.2: An uncertain parameter 𝑥 is called interval if 
it can be enclosed between an upper and lower boundary 
value. So a real interval scalar 𝑥  is defined as 𝑥 =  𝑥 , 𝑥 , 
where 𝑥 and 𝑥 are the lower and upper bound respectively. An 
interval matrix 𝑋 ∈ 𝐼𝑅 ×  is defined as a set of 𝑛 interval 
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vectors of 𝐼𝑅 , 𝑋 = (𝑥 , 𝑥 , … … , 𝑥 )  with   𝑥 ∈ 𝐼𝑅  are 
interval vectors.  
   Definition 2.3: An interval matrix can also be seen as an 
uncertain matrix which can be enclosed between an upper and 

lower bound as follows: 𝑋 = 𝑋 𝑋  with 𝑋 =

𝑥 , 𝑥 , … … , 𝑥 and  𝑋 = [𝑥 , 𝑥 , … … , 𝑥 ] are the lower and 

upper bound of the interval matrix respectively. As we can 
also define an interval matrix with its center matrix and its 
radius 𝑋 = [𝑋 − ∆𝑋, 𝑋 + ∆𝑋], where 𝑋  = 𝑚𝑖𝑑(𝑋) =

  
 and ∆𝑋 = 𝑟𝑎𝑑(𝑋) =

 
 are the center matrix and 

the radius matrix respectively. 
   Definition 2.4: For non empty closed intervals, the addition 
of two real interval scalars  𝑥  and 𝑦  is defined and calculated 
as: 𝑥 ⊕ 𝑦 = [𝑥 + 𝑦, �̅� + 𝑦], the subtraction is defined as: 

𝑥 ⊖ 𝑦 = [𝑥 − 𝑦, �̅� − 𝑦],   the multiplication is defined as:  

𝑥 ⊗ 𝑦 = min 𝑥𝑦, 𝑥𝑦, �̅�𝑦, �̅�𝑦 , max 𝑥𝑦, 𝑥𝑦, �̅�𝑦, �̅�𝑦 . The 

division of two interval scalars is defined and calculated 

as: 𝑥 ⊘ 𝑦 =  𝑥 ⊗   , where   is defined in [6] as follows: 

= ∅ iff 𝑦 = [0,0] 

    = ,  iff 0 ∉ 𝑦  

                                       =  , ∞  iff 𝑦 = 0 and 𝑦 > 0 

                                       = (−∞,   iff 𝑦 < 0 and 𝑦 = 0 

                                       = (−∞, ∞) iff 𝑦 < 0 and 𝑦 > 0 

The intersection between two non empty closed intervals is 
defined as  𝑥 ∩ 𝑦 ≔ {𝑧|𝑧 ∈ 𝑥  𝑎𝑛𝑑 𝑧 ∈ 𝑦  } and the union is 
defined as 𝑥 ∩ 𝑦 ≔ {𝑧|𝑧 ∈ 𝑥  𝑜𝑟 𝑧 ∈ 𝑦  } 
   Definition 2.5: The ratio between two interval 
vectors 𝑥 , 𝑦 ∈ 𝐼𝑅  is defined as: 𝜇 = 𝑥 ⊘ 𝑦 =

𝑥 ⊘ 𝑦 , 𝑥 ⊘ 𝑦 … , 𝑥 ⊘ 𝑦 , where 𝑥 ⊘ 𝑦  is the 

division of two interval scalars. 
   Definition 2.6: Two 𝑚 dimensional LTI interval vectors 𝑥  
and 𝑥  are said linearly independent if there exist only trivial 
solution 𝑎 = 𝑎 = 0 such that  

𝑎 𝑥 ⊕ 𝑎 𝑥 = 0                           (1) 
   Definition 2.7: To generalize definition 2.6, the 𝑚 
dimensional interval vectors 𝑥   , 𝑥 , … , 𝑥   are linearly 
independent if there exist only trivial solution 𝑎 = 𝑎 =
⋯ 𝑎 = 0 such that 

𝑎 𝑥 ⊕ 𝑎 𝑥 ⊕ … ⊕ 𝑎 𝑥 = 0                (2) 
   Definition 2.8: we call sub-matrices 𝑆 = { 𝑆 , 𝑖 =  1, . . . , 𝑘} 
of an (𝑚 × 𝑛) interval matrix 𝑋   as square set and 𝑆  as sub-

square matrices and 𝑠 = {𝑠 , 𝑖 =  1, . . . , 𝑘}  where 𝑘 =
𝑚
𝑛

 

is called index set and 𝑠  is called   index. 
   Definition 2.9: The rank of an (𝑚 × 𝑛) interval matrix 𝑋  is 
the maximum rank of its sub-matrices 𝑆 , that is, 𝑟𝑎𝑛𝑘(𝑀)  =
 𝑚𝑎𝑥{𝑟𝑎𝑛𝑘(𝑆 ), 𝑖 =  1, . . . , 𝑘}. 
   Definition 2.10: For a square set 𝑆  and its corresponding 
index set 𝑠   of an (𝑚 × 𝑛) interval matrix 𝑋 , we define the 
center and radius square matrices 𝑆  and ∆𝑆  respectively as 
follows: 

𝑆 ≔ 𝑆 =
  

, 𝑖 = 1, … , 𝑘  and ∆𝑆  ≔ ∆𝑆 =

  
, 𝑖 = 1, … , 𝑘  

III. SYSTEM FORMULATION AND THE NONDELAYED 

TRANSFORMATION OF THE SYSTEM 

Consider the linear interval system with delayed measurements 
described by: 

�̇�(𝑡) = 𝐴 𝑥(𝑡) +  𝐵 𝑢(𝑡)

𝑦(𝑡) = 𝐶  𝑥(𝑡 − 𝜏)
                     (3) 

where 𝑥 ∈ 𝐼𝑅 , 𝑢 ∈ 𝐼𝑅 , 𝑦 ∈ 𝐼𝑅  are the state vector, input 
vector and measurement vector respectively . 𝐴, 𝐵 and 𝐶 are 
interval matrices given as 𝐴 ∈ 𝐴 = 𝐴 𝐴 ∈ 𝐼𝑅 × , 𝐵 ∈

𝐵 = 𝐵 𝐵 ∈ 𝐼𝑅 × and 𝐶 ∈ 𝐶 = 𝐶 𝐶 ∈ 𝐼𝑅 ×    
respectively; with 𝑟𝑎𝑛𝑘(𝐵)  = 𝑟  and 𝑟𝑎𝑛𝑘(𝐶)  = 𝑃. 𝜏 > 0 is 
a measurement delay assumed to be known .  
   To check the controllability and the observability test for 
system (3), we transform the delayed system into a non-
delayed system by following the steps below: 
Step1: let us first, consider system (3) without parametrical 
uncertainties   i.e. 

�̇�(𝑡) = 𝐴 𝑥(𝑡) +  𝐵 𝑢(𝑡)

𝑦(𝑡) = 𝐶  𝑥(𝑡 − 𝜏)
                    (4) 

where 𝐴 , 𝐵  and 𝐶  are constant matrices and 𝜏 > 0 known 
measurement delay. 
Step 2: Let us introduce the following functional 
transformation [9] 

𝑦(𝑡) = 𝑦(𝑡) − 𝐶  𝑒 ∫ 𝑒 ( ) 𝐵  𝑢(𝑟)𝑑𝑟         (5) 
System (4) by using equation (5) is transformed into the 
equivalent system without time-delay as follows: 

�̇�(𝑡) = 𝐴 𝑥(𝑡) +  𝐵 𝑢(𝑡) , 𝑡 > 0

𝑦(𝑡) =  𝐶̅  𝑥(𝑡)                              
                  (6) 

where  𝐶̅ = 𝐶  𝑒  and 𝑦 ∈ 𝐼𝑅  is called the equivalent 
output vector of non-delayed system. 

IV. LINEAR INDEPENDENCY OF INTERVAL VECTORS 

A.  Linear independency of two interval vectors 

   To clarify the concept of linear independency of interval 
vectors, let us introduce the following theorem: 
   Theorem 4.1[5]: Two 𝑚 dimensional LTI interval vectors 
𝑥  and 𝑦  with 0 ∉ 𝑥 ∩ 𝑥 … ∩ 𝑥  , 0 ∉ 𝑦 ∩ 𝑦 … ∩ 𝑦  , 
are linearly independent iff, from the ratio  𝜇  of  𝑥  and 𝑦  
the following inequality holds: 

𝜇 ∩ 𝜇 ∩ … ∩ 𝜇 = ∅                 (7) 

Proof: Sufficiency: from  𝑎 𝑥 ⊕ 𝑎 𝑦 = 0 , we have                        
𝑎 [𝑥 , 𝑥 … , 𝑥 ] ⊕ 𝑎 [𝑦 , 𝑦 … , 𝑦 ] = 0  

that we can simplify as 
𝑎 𝑥 ⊕ 𝑎 𝑦 = 0 , 𝑖 = 𝑘, 𝑛 

             𝑎 𝑥 =⊖ 𝑎 𝑦  , 𝑖 = 𝑘, 𝑛                       (2) 
let us define the ratio 𝜇  for each element: 

𝜇 = 𝑥 ⊘ 𝑦  

𝜇 =  𝑥 ⨂                                 (3) 
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by multiplying each side of (3) by 𝑦 ,  we obtain: 

𝜇 ⨂𝑦 =  𝑥                                  (4)  

let us replace (4) in (2): 
𝑎 𝜇 ⨂𝑦 =⊖ 𝑎 𝑦  , 𝑖 = 𝑘, 𝑛 

      𝜇 =⊖  , 𝑖 = 𝑘, 𝑛 

therefore, we can write 

𝜇 , 𝜇 , … , 𝜇 =⊖                  (5)  

from (5), we have: 

𝜇 ∩ 𝜇 ∩ … ∩ 𝜇 =⊖
𝑎

𝑎
 

So, if 𝜇 ∩ 𝜇 ∩ … ∩ 𝜇 = ∅  than   = ∅    and 

this is verified only for 𝑎 = 0  and from equation (2) , 𝑎 = 0  
as long as 0 ∉ 𝑦 ∩ 𝑦 … ∩ 𝑦  . 
Thus, from the solution  𝑎 = 𝑎 = 0 , the linear independency 
condition of definition 2.6 for the 𝑚 interval vectors 𝑥  and 𝑦   
is verified. 
Necessity: let us suppose that  

𝜇 ∩ 𝜇 ∩ … ∩ 𝜇 =⊖
𝑎

𝑎
≠ ∅ 

then we can have 𝑎 = 0  and 𝑎 ≠ 0  or  𝑎 ≠ 0  and 𝑎 ≠ 0 . 
Thus, by definition 2. 6 𝑥  and 𝑦  are not linearly independent. 
The proof is completed                

B. Linear independency of  𝑛 interval vectors 

   Supposing that we have  𝑚 dimensional LTI interval vectors 
given by : 𝑥   , 𝑥 , … , 𝑥   . The interval vectors are said 
linearly independent iff they satisfy definition 2.7. Apparently, 
it is hard to solve equation (2) but it is possible to use anther 
writing for the interval vectors using an interval matrix form  
𝑋 = (𝑥   , 𝑥 , … , 𝑥 )  which is an (𝑚 × 𝑛) interval matrix. 
To check the linear independency of the 𝑚 dimensional LTI 
interval vectors of the interval matrix 𝑋 , we address the 
following lemma from the results of [12]: 
   Lemma 4.1:  For interval sub-square matrix 𝑆  of 𝑋 , let its 
center matrix 𝑆   be nonsingular (invertible) and the spectral 
radius 𝜌(|(𝑆 ) ∆𝑆|) < 1, then  𝑆  is nonsingular1.  
   Remark 4.1: It is to notice that the spectral radius 
𝜌(|(𝑆 ) ∆𝑆|) is calculated using definition 2.1. 
   By using Lemma 4.1 and definition 2.9, we give the theorem 
below, to check the linear independency of the 𝑚 dimensional 
interval vectors. 
   Theorem 4.2: For 𝑆 ∈ 𝑆 , if there exists at least one 
corresponding center matrix  𝑆 ∈ 𝑆  and a radius 
matrix ∆𝑆 ∈ ∆𝑆   such that 𝑆  is nonsingular (invertible) 
and 𝜌(|(𝑆 ) ∆𝑆|) < 1, then the interval vectors 
𝑥   , 𝑥 , … , 𝑥 are linearly independent. 
Proof: Let us consider an interval matrix form of the 𝑚 
dimensional interval vectors  𝑥   , 𝑥 , … , 𝑥  given as                               
𝑋 = (𝑥 , 𝑥 , … … , 𝑥 ) which is an (𝑚 × 𝑛) interval matrix 
and let us suppose that 𝑚 > 𝑛 (the demonstration for the case 
where 𝑚 < 𝑛 is equivalent). The column interval vectors of  
𝑋  are said linearly independent if 𝑋  has full rank, that is, 

 
 
1 Nonsingular in this case means that 𝑆𝑖 has full column rank  

 𝑟𝑎𝑛𝑘(𝑋  ) = 𝑛 and relying on the fact that the row rank is 
equal to column rank and the full rank condition is equivalent 
to linear independency condition. Therefore, by using 
definition 2.9, if any sub-square matrix 𝑆 ∈ 𝑆  has row rank 
𝑛, then 𝑋  has 𝑛 column rank and by using lemma 4.1, for 𝑆   
and ∆𝑆  corresponding to the sub-matrix 𝑆 ,  if 𝑆  is 
nonsingular (invertible) and 𝜌(|(𝑆 ) ∆𝑆|) < 1, then 𝑋  has 
full rank, that is,  the 𝑚 dimensional interval vectors  
𝑥   , 𝑥 , … , 𝑥  are linearly independent, the proof is 
completed.         

V. LINEAR INTERVAL SYSTEMS WITH BOTH DELAY MEASUREMENTS 

AND PARAMETRICAL UNCERTAINTIES 

A.   Robust controllability test 

      A.1 Case without interval parameters 

   Let us first study the case without interval uncertainties.  The 
transformed system (6) is said completely controllable if the 
controllability matrix given by: 

𝒞 = [𝐵 𝐴 𝐵 𝐴 𝐵   … 𝐴 𝐵 ] 
has always full rank i.e. 𝑟𝑎𝑛𝑘(𝒞 ) = 𝑛  
Let us now, consider a sub-matrix (𝒞 )  constructed from 𝒞  
given as: 

(𝒞 )  = [𝐵 , 𝐴 𝐵 , 𝐴 𝐵 , … … , 𝐴 𝐵 ] where 𝑞 ≥ 1 
and let us assume that  it has full rank i.e. 𝑟𝑎𝑛𝑘((𝒞 )  ) =
𝑟𝑎𝑛𝑘(𝒞 ) = 𝑛     

A.2 Case with interval parameters 

   In this case, we introduce parametric uncertainties into 
system (6). The latter one is rewritten and given by the 
dynamic interval system below: 

�̇�(𝑡) = 𝐴 𝑥(𝑡) +  𝐵 𝑢(𝑡),       𝑡 > 0

𝑦(𝑡) = 𝐶̅𝑥(𝑡)                                       
          (8) 

where 𝐴, 𝐵 are interval matrices given by 𝐴 ∈ 𝐴 =

𝐴 𝐴 ∈ 𝐼𝑅 × , 𝐵 ∈ 𝐵𝐼 = 𝐵 𝐵 ∈ 𝐼𝑅𝑛×𝑟 with 𝑟𝑎𝑛𝑘(𝐵) = 𝑟 

and �̅� ∈ �̅� = �̅� 𝐶̅ ∈ 𝐼𝑅 ×   is an interval matrix given by   

�̅� = 𝐶 ⨂𝑒  for  ∀𝐴 ∈ 𝐴 = 𝐴 𝐴 ∈ 𝐼𝑅 × and ∀𝐶 ∈ 𝐶 =

𝐶 𝐶 ∈ 𝐼𝑅 ×  with 𝑟𝑎𝑛𝑘(𝐶̅) =  𝑟𝑎𝑛𝑘(𝐶) = 𝑝   
The controllability interval matrix in this case is given as: 

𝒞 = 𝐵 , 𝐴 ⊗ 𝐵 , 𝐴 ⊗ 𝐴 ⊗ 𝐵 , … , 𝐴 ⊗ 𝐴 … ⊗ 𝐴 ⊗ 𝐵                        

(10) 
which is of dimension (𝑛 × 𝑚) = 𝑛 × (𝑛 − 𝑟 + 1) ∙ 𝑟 . The non-

delayed interval system (8) is controllable if  𝑟𝑎𝑛𝑘(𝒞) = 𝑛  
∀𝒞 ∈ 𝒞 .  But, since 𝒞  is of dimension (𝑛 × 𝑚), it is not easy 
to find the rank of 𝒞 .  However, we can check the rank of 𝒞  
using its sub-matrices (𝒞 ) .  
As in the case without interval parameters, let us consider a 
sub- matrix (𝒞 )  from the interval matrix 𝒞 , given as: 
(𝒞 ) = [𝐵 , 𝐴 ⊗ 𝐵 , 𝐴 ⊗ 𝐴 ⊗ 𝐵 , … , 𝐴 ⊗ … ⊗ 𝐴 ⊗ 𝐵 ] 

   Corollary 5.1: If sub-matrices (𝒞 )  constructed from 𝒞   
satisfy the linear independency condition of theorem 4.2 then, 
the LTI interval system (8) is controllable. 
Proof:  The proof here is immediate, from the fact that the 
interval system is controllable if its controllability matrix has 
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rank 𝑛 and the full rank condition is equivalent to the linear 
independency condition. 
 
     B. Robust observability test 
       B.1 Case without interval parameters 
   The observability test for the transformed system (6) is 
formulated as follows: 
   Corollary 5.2: If the pair (𝐴 , 𝐶 ) is completely observable 
i.e.the rank of the observability matrix given by 

𝒪 = [𝐶 𝐶 𝐴 𝐶 𝐴   … 𝐶 𝐴 ]  
 has full rank, then the pair (𝐴 , 𝐶̅ ) of system (6) has the same 
observability without need to calculate  𝐶̅  (�̅� = 𝐶  𝑒 ) 
Proof: 𝑒  is a nonsingular matrix and noting that 
𝑒 𝐴 = 𝐴   𝑒   , so 

𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎡

𝐶̅

�̅� 𝐴

𝐶̅ 𝐴
⋮

𝐶̅ 𝐴 ⎦
⎥
⎥
⎥
⎥
⎤

=  𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎡

𝐶
𝐶 𝐴

𝐶 𝐴
⋮

𝐶 𝐴 ⎦
⎥
⎥
⎥
⎤

𝑒 =  𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎡

𝐶
𝐶 𝐴

𝐶 𝐴
⋮

𝐶 𝐴 ⎦
⎥
⎥
⎥
⎤

 

and as in the controllability test, let us consider a sub-matrix  
(𝒪 )  given as: 
(𝒪 ) = [𝐶 𝐶 𝐴 𝐶 𝐴   … 𝐶 (𝐴 ) ] , where 𝑞 ≥ 1  
and let us assume that  it has full rank i.e. 𝑟𝑎𝑛𝑘((𝒪 )  ) =
𝑟𝑎𝑛𝑘(𝒪 ) = 𝑛     

       B.2 Case with interval parameters 

   In this case, the dynamical interval system (8) is considered.  
The observability interval matrix is calculated as follows: 
 

        𝒪 =

⎣
⎢
⎢
⎢
⎢
⎡

𝐶̅

𝐶̅⨂𝐴

�̅�⨂𝐴⨂𝐴
⋮

𝐶̅⨂ 𝐴⨂𝐴 … ⊗ 𝐴
⎦
⎥
⎥
⎥
⎥
⎤

, with �̅� = 𝐶 ⊗ 𝑒  

which is an (𝑚 × 𝑛)interval matrix with 𝑚 = (𝑛 − 𝑝 + 1). 𝑝 
   Corollary 5.3: The observability test of the transformed 
interval dynamic system (8) depends on the observability test 
of the pair (𝐴, 𝐶) for ∀𝐴 ∈ 𝐴  and ∀𝐶 ∈ 𝐶 . 
Proof: it is obvious that the observability test of the pair (𝐴, 𝐶̅) 
for ∀𝐴 ∈ 𝐴  and ∀ 𝐶̅ ∈ 𝐶̅  has the same observability test of 
the pair  (𝐴, 𝐶) for ∀𝐴 ∈ 𝐴  and ∀𝐶 ∈ 𝐶 , without need to 
calculate the exponential interval matrix of 𝐴 (𝐶̅ ∈
𝐶̅  = [𝐶 ⊗ 𝑒 ]) because   the interval matrices 𝐶 and 𝐶̅ 
have the same rank. 
Henceforth, we check the observability test for the pair (𝐴, 𝐶) 
instead of the pair (𝐴, �̅�). The interval observability matrix is 
then given as follows: 

𝒪 =

⎣
⎢
⎢
⎢
⎢
⎡

𝐶
𝐶⨂𝐴

𝐶⨂𝐴⨂𝐴
⋮

𝐶⨂ 𝐴⨂𝐴 … ⊗ 𝐴
⎦
⎥
⎥
⎥
⎥
⎤

                       (11) 

Which is also an (𝑚 × 𝑛)interval matrix with 𝑚 =
(𝑛 − 𝑝 + 1). 𝑝 . Therefore, the non-delayed interval system (8) 
is observable if    𝑟𝑎𝑛𝑘(𝒪) = 𝑛, ∀𝒪 ∈ 𝒪  .  
The demonstration adopted here is the same as the one adopted 
in the controllability test. Since 𝒪  is of dimension (𝑚 × 𝑛), it 

is not easy to find the rank of 𝒪 .  For this reason, we check 
the rank of 𝒪  using its sub-matrices (𝒪 ) .  
As in the case without interval parameters, let us consider a 
sub- matrix (𝒪 )  from the interval matrix 𝒪 , given as: 

(𝒪 )  =

⎣
⎢
⎢
⎢
⎢
⎡

𝐶
𝐶⨂𝐴

𝐶⨂𝐴⨂𝐴
⋮

𝐶⨂ 𝐴⨂𝐴 … ⊗ 𝐴
⎦
⎥
⎥
⎥
⎥
⎤

 

   Corollary 5.4: If sub-matrices (𝒪 )  constructed from 
𝒪 satisfy the linear independency condition of theorem 4.2 
then, the interval LTI system (8) is observable. 
The proof is the same as the one adopted in the controllability 
test (section V.A.2) 
Example: 
Consider the transformed LTI interval system with free delay 
described by 

�̇�(𝑡) = 𝐴 𝑥(𝑡) +  𝐵 𝑢(𝑡)

𝑦(𝑡) = 𝐶̅𝑥(𝑡)
 

 
where 𝑥 ∈ 𝐼𝑅 , 𝑢 ∈ 𝐼𝑅 , 𝑦 ∈ 𝐼𝑅 (𝑛 = 3, 𝑟 = 2, 𝑝 = 2). 𝐴, 𝐵 
and �̅� are interval matrices given as follows: 

 
𝐴 ∈ 𝐴  

=

[ 0.9, 1.1001]  [ 1.8, 2.2001] [−1.1001, −0.9]
[ −2.2001, −1.8] [ 0.9, 1.1001] [0.9, 1.1001]

[ 0.4498, 0.5502] [ −2.2001, −1.8] [3.6, 4.4001]
∈ 𝐼𝑅 ×  

𝐵 ∈ 𝐵 =

[0.9, 1.1001] [−0.09, −0.0898] 

[0.0898, 0.1102] [    0.0898,    0.1102] 
[−0.1102, −0.0898]  [ 0.9, 1.1002]

∈ 𝐼𝑅 ×  

�̅� ∈ �̅� = �̅� 𝐶̅ ∈ 𝐼𝑅 ×  ,  𝐶̅ = 𝐶 ⨂𝑒  ∀𝐶 ∈ 𝐶  with the 

interval matrix  𝐶 is given as 𝐶 ∈ 𝐶 =
[0.98,1.02] 0 0

0 0 1
∈ 𝐼𝑅 ×  .  𝑟𝑎𝑛𝑘(𝐵) = 𝑟 = 2 and 

𝑟𝑎𝑛𝑘(�̅�) =  𝑟𝑎𝑛𝑘(𝐶) = 𝑝 = 2 . 𝜏 = 0.6 is the measurement 
delay. 
Robust Controllability test: 
The controllability matrix calculated using (10) is as follows: 
𝒞 ∈ 𝒞  

[0.9000, 1.1001] [−0.0900, −0.0898] [1.0266, 1.5734]

[0.0898, 0.1102] [0.0898,    0.1102] [−2.4621, −1.5379]
[−0.1101, −0.0899] [ 0.9000,    1.1001] [ −0.3311, 0.1311]

 

 
[−1.1514, −0.6286]

[ 1.0309, 1.5291]
[ 2.8682,4.6423]

∈ 𝐼𝑅 × = 𝐼𝑅 ×  

which is an (𝑛 × 𝑚)  interval matrix with  𝑚 = (𝑛 − 𝑟 + 1) ∙
𝑟 is equal to 4. Here, we have the number of rows 𝑛 is less 
than the number of columns 𝑚 (𝑛 < 𝑚) . Therefore, the 
number of square sub- matrices  𝑆  that can be formed from  

𝒞  is given by 𝑘 =
( )( )……..( )

!
, 𝑘 is then equal to 

4. The column index set is given as 𝑠𝒞 = 𝑠 , 𝑖 = 1, 𝑘   = 

{𝑠 , 𝑠 , 𝑠 , 𝑠 } and the square set as 𝑆𝒞 = 𝑆 , 𝑖 = 1, 𝑘   = 
{𝑆 , 𝑆 , 𝑆 , 𝑆 }. The square sub-matrices, their center and their 
radius calculated are given below: 
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For the index 𝑠 = {1   , 2   , 3} , corresponding to the 1st, 2nd 
and 3rd column, we have sub-matrix 𝑆   
𝑆 = 

[0.9000, 1.1001] [−0.0900, −0.0898] [ 1.0266, 1.5734]

[ 0.0898, 0.1102] [0.0898, 0.1102] [−2.4623, −1.5377]
[−0.1102, −0.0898] [0.9000, 1.1002] [−0.3318, 0.1318]

 

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
1 −0.0899    1.3

0.1 0.1 −2
−0.1 1.0001 −0.1

, 

∆𝑆 =
0.1 0.0001 0.2733

0.0101 0.0101 0.4622
0.0101 0.1001 0.2318

 

For the index 𝑠 = {1   , 2  ,   4} , corresponding to the 1st, 2nd 
and 4th column, we have sub-matrix 𝑆  : 
𝑆 = 

[0.9000, 1.1001]  [−0.0900, −0.0898] [−1.1514, −0.6286]
[0.0898, 0.1102]  [0.0898, 0.1102] [1.0306, 1.5293]  

[−0.1102, −0.0898] [0.9000, 1.1002] [2.8682, 4.6423]   
 

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
1 −0.0899    −0.89

0.1 0.1 1.28
−0.1 1.0001 3.7552

, 

∆𝑆 =
0.1 0.0001 0.2613

0.0101 0.0101 0.2493
0.0101 0.1001  0.8870

 

For the index 𝑠 = {1  , 3  , 4} corresponding to the 1st, 3nd and 
4th column, we have sub-matrix 𝑆  : 
𝑆 = 

[0.9000,    1.1001] [1.0266,1.5734] [−1.1514, −0.6286]
[0.0898,    0.1102] [−2.4623, −1.5377] [1.0306,1.5293]

[−0.1102, −0.0898] [−0.3318, 0.1318] [ 2.8682, 4.6423]
 

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
1.0000 1.3000       −0.8900

0.1000 −2.0000 1.2800

−0.1000 −0.1000 3.7552

, 

∆𝑆 =
0.1000    0.2733 0.2613

0.0101 0.4622 0.2493

0.0101 0.2318 0.8870

 

For the index 𝑠 = { 2   , 3    , 4} corresponding to the  2nd, 3rd 
and 4th column, we have sub-matrix 𝑆  : 
      𝑆 = 

     

[ −0.0900, −0.0898]  [ 1.0266, 1.5734] [−1.1514, −0.6286]  
[ 0.0898, 0.1102]  [−2.4623, −1.5377] [    1.0306, 1.5293]  
[ 0.9000, 1.1002]  [−0.3318, 0.1318] [    2.8682, 4.6423 

 

     The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
−0.0899 1.3 −0.89

0.1 −2 1.28
1.0001 −0.1    3.7552

, 

∆𝑆 =
0.0001 0.2733 0.2613
0.0101 0.4622 0.2493
0.1001 0.2318 0.8870

 

 
- The center matrices 𝑆 ,  𝑆  , 𝑆  and 𝑆  are all nonsingular 

(invertible) matrices. 
- For the square sub-matrices  𝑆   , 𝑆  and   𝑆 , the spectral 

radius 𝜌 𝑆   ∆𝑆  calculated is 0.2903, 0.5558 and 

0.4325 respectively which is less than 1. 

- The spectral radius of the square sub-matrix 𝑆  calculated 
is 𝜌(|(𝑆 ) |  ∆𝑆 ) = 21.1779 which is greater than 1.  

 
From the result obtained above, we conclude that the linear 
independency condition of the interval vectors of the interval 
controllability matrix 𝒞  is satisfied (at least one center matrix 

is nonsingular and the spectral radius 𝜌 𝑆   ∆𝑆 < 1) 

this means that the interval system is completely controllable. 
 
Observability test: 
   From corollary 5.3 and corollary 5.4, we have proved that 
the observability of the pair (𝐴, 𝐶̅) has the same observability 
of the pair (𝐴, 𝐶) and the latter depends on the linear 
independency condition of the interval vectors forming the 
observability matrix 𝒪 (theorem 4.2). The observability matrix 
calculated using (11) is as follows: 
𝒪 ∈ 𝒪 =  

 
[ 0.9799, 1.0201] [0.00,0.00] [0.00,0.00]

[0.00,0.00] [0.00,0.00] [1.00, 1.00]
[0.8779,1.1221]
[0.4498,0.5502]

[1.7559, 2.2441]
[−2.2001, −1.7999]

[−1.1221, −0.8779] 
[ 3.6000, 4.4001]

 

∈ 𝐼𝑅𝑙×𝑛 = 𝐼𝑅4×3  
which is an (𝑙 × 𝑛)  interval matrix with  𝑙 = (𝑛 − 𝑝 + 1) ∙
𝑝 = 4 . Here, we have the number of rows 𝑙 is greater than the 
number of columns 𝑛 (𝑙 > 𝑛)  . Therefore, the number of 
square sub- matrices  𝑆  that can be formed from  𝒪  is given 

by 𝑘 =
( )( )……..( )

!
, 𝑘 is then equal to 4. The row 

index set is given as 𝑠𝒪 = 𝑠 , 𝑖 = 1, 𝑘   = {𝑠 , 𝑠 , 𝑠 , 𝑠 } and 

the square set as 𝑆𝒪 = 𝑆 , 𝑖 = 1, 𝑘   = {𝑆 , 𝑆 , 𝑆 , 𝑆 }. The 
square sub-matrices, their center and their radius calculated are 
given below: 
For the index 𝑠 = {1  ,2    , 3}  corresponding to the 1st, 2nd and 
3rd row, we have sub-matrix 𝑆 : 
𝑆 = 

[0.9799, 1.0201] [0.00, 0.00] [0.00, 0.00]
[0.00, 0.00] [0.00, 0.00] [1.00, 1.00]

[0.8779, 1.1221] [1.7559, 2.2441] [−1.1221, −0.8779] 
 

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
1.00     0    0 

0 0 1.00
1.00 2.00 −1.00

,∆𝑆 =
0.02 0 0

0 0 0
0.122 0.244 0.122

 

For the index 𝑠 = {1   , 2    , 4} corresponding to the 1st, 2nd 
and 4th row, we have sub-matrix 𝑆  : 
𝑆 = 

[0.9799,    1.0201]   [0.00,    0.00] [0.00, 0.00]  

[0.00,    0.00] [0.00,    0.00] [1.00, 1.00]  
[0.4498,    0.5502]  [ −2.2001, −1.7999] [3.6000, 4.4001] 

 

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
1.00 0    0

0 0 1.00
0.50 −2.00 4.00

, ∆𝑆 =
0.02 0    0

0 0 0
0.0501 0.20 0.40

 

 
 
 
 



Third International Conference on Advances Technologies and Electrical Engineering (ICTAEE’18), December 10-12 2018 
 

 

For the index 𝑠 = {1   , 3 , 4} corresponding to the 1st, 3rd and 
4th row, we have sub-matrix 𝑆 : 
𝑆 = 

[0.9799, 1.0201] [0.00, 0.00] [0.00, 0.00] 
[0.8779, 1.1221] [1.7559, 2.2441] [−1.1221, −0.8779]

[0.4498, 0.5502] [−2.2001, −1.7999] [3.6000, 4.4001]
      

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
1 0 0

1 2 −1

0.5 −2 4

,   ∆𝑆 =
0.02 0 0

0.122 0.244 0.122

0.0501  0.20 0.40
 

For the index 𝑠 = { 2  ,   3    , 4} corresponding to the 2nd, 3rd 
and 4th  row, we have sub-matrix 𝑆 : 
𝑆 = 

[ 0.00, 0.00] [0.00, 0.00] [ 1.00, 1.00]

[0.8779,1.1221]  [1.7559, 2.2441] [−1.1221, −0.8779]

[0.4498, 0.5502]  [−2.2001, −1.7999] [3.6000, 4.4001] 
 

The center matrix of 𝑆  and its radius are as follows: 

𝑆 =
0 0    1
1 2 −1

0.5  −2    4
 ∆𝑆 =

0 0 0
0.122 0.244 0.122

0.0501 0.200 0.40
 

 
- The center matrices 𝑆 ,  𝑆  ,𝑆  and 𝑆  are all nonsingular 

(invertible) matrices. 
- For the square sub-matrices 𝑆   , 𝑆 ,    𝑆 and 𝑆  the spectral 

radius 𝜌 𝑆   ∆𝑆  calculated is 0.1220, 0.1000, 

0.3334 and  0.2158   respectively which is less than 1. 
 
From the result obtained above, we conclude that the linear 
independency condition of the interval vectors of the 
observability matrix 𝒪  is satisfied (at least one center matrix 

is nonsingular and the spectral radius 𝜌 𝑆   ∆𝑆 < 1)  

   Remark 5.1: Here we checked the linear independency 
condition of the theorem 4.2 using row interval vectors. Since 
row rank is equal to column rank and the full rank condition is 
equivalent to linear independency condition then we conclude 
that the pair (𝐴, 𝐶) is observable. Therefore, the pair (𝐴, 𝐶̅) is 
also observable by using corollary 5.3 and corollary 5.4. 

VI. CONCLUSION 

   In this paper, we introduced interval arithmetic to redefine 
the structural properties of controllability and observability 
tests of an LTI system with parametric uncertainties and 
delayed measurements. The robust controllability test was 
based on the linear independency condition of the interval 
vectors of the controllability interval matrix. For the robust 
observability test, a functional-based transformation was first 
performed to obtain free- delay interval system, and then the 
same linear independency condition was applied to the 
observability interval matrix of the transformed interval 
system. The developed method is characterized by its 
robustness respect to parametrical uncertainties and its 
simplicity by using an adequate transformation to overcome 
the delay in the output measurements. The case where the 
delay affect the control input or the state vector of an LTI 
system with parametric uncertainties can be investigated in 
future works.   
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