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Abstract 

 

 
Phase measurement is required in electronic applications where a synchronous 

relationship between the signals needs to be preserved. As the world continues to move 

towards a Smarter Grid day by day, it has become the necessity to incorporate real-time 

monitoring of the grid wherein the instantaneous snapshot of the health of the grid can be 

made available. 

Traditional electronic system which are used for time measurement are designed 

using a classical mixed-signal approach. With the advent of reconfigurable hardware such 

as field-programmable gate arrays (FPGAs), it is more advantageous for designers to opt 

for all-digital architecture. 

This project is about the design and implementation of a part of Phasor 

Measurement Unit (PMU) Prototype based on FPGA. It discusses how an FPGA can be 

used to estimate the phasors of a one-phase system. An example sinusoidal input signal 

is generated by a Function Generator and then sampled using the Analog to Digital 

Converters (ADC) on the FPGA board. The design then stores digital data into a local 

FIFO, which is passed to a 1024- Point FFT hardware core to get the spectrum of the 

signal and hence calculate the frequency and the phase difference. 

The system uses the Intel DE10 FPGA board (donated by the Intel University 

Program) and the Quartus Prime suite to design and implement the system. One of the 

aims of this project is to evaluate the potentials of the newly acquired DE10 FPGA board. 

The final output of the FFT core are transmitted back to local host through Quartus 

SignalTap II logic Analyzer Tool. 

 
Keywords: PMU, FPGA, VHDL, ADC, FFT, Quartus. 
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1.1 Overview 

 
The load dispatch centers in a large power system supervise and control over 

the transmission network and it takes preventive actions to avoid any sort of 

system failure which can hamper electricity distribution. With ever increasing size 

and complexity of the power system, the ability to detect any faults in the power 

system is heavily dependent on the real time information available to the operator. 

Traditionally, analog and digital information (status of circuit breaker, power flow 

and frequency) is measured at the substation level and transmitted to load dispatch 

center using supervisory control and data acquisition system (SCADA) or energy 

management system (EMS). The major limitation of SCADA or EMS is the 

inability to accurately calculate the phase angle between  a pair of substations. In 

SCADA or EMS, phase angle is either estimated from available data or is 

calculated offline. Phasor Measurement Units (PMU) overcome the limitations of 

SCADA and EMS by accurately calculating the phase angle between a pair of 

grids. 

Synchronized phasor measurement units were introduced in the mid-1980s 

as a solution for the need of more efficient and safer monitoring devices for 

Electric Power Systems (EPS). Since then, measuring Electric Power System 

(EPS) parameters of voltage and current in relatively distant buses has received 

great attention from researchers. Such measurements are performed by phasor 

measurement units (PMUs), synchronized by Global Positioning System (GPS) 

satellites. 

A commercial PMU measures the voltage and angle of a particular grid   at 

25 samples per second. The phase information is synchronized with Global 

Positioning Systems (GPS) satellite and is transmitted to Phasor Data Concentrator 

(PDC) through a high-speed communication network. The time stamped phase 

information is called synchrophasor. There are several benefits of PMU such as 

monitoring of EPS and network protection. The measurement of voltage and 

current in remote bus allows the operator to make a concrete decision about the 

maintenance and security of the system in the face of various uncertainties [1]. 
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Figure 1.1 shows an example of a standalone PMU device 
 

 
Figure 1.1 Standalone PMU device from Arbiter, model 1133A power sentinel 

[2] 

 
1.2 Literature Review 

 
The measurement of voltage phase angles using synchronized clocks for 

power system applications dates back to the early 1980s when measurements of 

voltage phase angles were carried out between Montreal and SEPT-ILES [3], [4], 

and parallel efforts by Bonanomi in 1981 [5]. 

However, the synchrophasor technology available today emerged from the 

early efforts by Phadke et al. at Virginia Tech as described in [6], [7]. Phadke 

demonstrated the first synchronized PMU in 1988, and in 1991 Macrodyne Inc. 

launched the first commercial PMU product [8]. Due to the cost of early PMU 

devices, PMU technology has historically been limited to transmission system 

applications where the business case justified expensive phasor analysis 

equipment. One of the early applications that is important to mention is the 

implementation of the wide-area protection system Syclopes in France in the early 

1990s, which was the first functional application of early forms of PMUs [9]. 

The cost of the components from which PMUs are assembled (such as  GPS 

receivers, microprocessors, and storage devices) have dropped significantly due 

to recent developments across the electronics sector. As a consequence, PMUs 

have reached price points that have made them an attractive tool for the 

distribution systems and embedded generation. Many PMUs are sold as dedicated 

devices which offer event recorder type functionality. Costs for such units vary 

between US $6000 and US $15000 depending on the specification. Many  

equipment  vendors  have  begun   to   offer  PMU  functionality  as       a 
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supplementary feature on other products in their range, such as protection relays 

[10]. 

The standard for PMU devices is maintained by the IEEE C37.118  Working 

Group. IEEE Std. C37.118 [1] was released in 2005 and subsequently updated in 

2011. The latest release comes in two parts; IEEE C37.118.1-2011 [1] describes 

how synchrophasors should be estimated and gives certification requirements 

while IEEE C37.118.2-2011 [2] describes data representation and data transfer. 

Concerns have been raised regarding the transient performance of PMUs under the 

2005 standard [1], [11], [12]. These concerns are addressed in the 2011 release of 

the standard. IEEE C37.118.1-2011 states that it defines synchrophasors, 

frequency, and rate-of-change-of frequency measurement under all operating 

conditions [1]. 

 
1.3 Motivation 

 
Many researchers designed PMU based on microcontrollers, but 

microcontroller is sequential in nature thereby degrading the efficiency of the 

system. By using FPGA, we are capable of measuring currents and voltages with 

parallel measurement, in other words the data for current and voltage will be read 

at the same time and at the same clock. It’s different from microcontroller that 

using a sequential programming language. In every task, it needs a couple of 

execution time, from first to the last task must be done by sequentially. Since 

there exist some gap of measurement, it will give us an uncertainty of the 

accurate time between compared value. It also takes longer delay than FPGA has. 

The advantages of using FPGA in phasor estimation is that the 1024- 

point FFT hardware core can be pipelined. In other words, it can accept input  data 

every clock cycle and generate output data every clock cycle, after a certain time 

delay. These huge computations can be handled well with a parallel processor such 

as FPGA. [13] 
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1.4 Project Objectives 

 
The main goal of this project is to design and implement a Phasor 

Measurement Unit (PMU) prototype using the DE10 Standard FPGA. 

 

 
1.5 Organization of the Report 

 
This report is organized into four chapters. Chapter two outlines the 

theoretical background of the project and lists the components used, their 

description and principal of operation. Chapter three presents the design and 

implementation of the project’s hardware, showing the interface between the 

different components of the system. Chapter four presents the finals results 

including the simulations done and the data transferred to PC. The conclusion 

summarizes the work presented in this report and provides suggestions for further 

work. 
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This chapter introduces the theoretical background related to the design and 

implementation of the PMU prototype starting from the adopted signal model, the 

theoretical definition of phasors. This chapter also describes the FPGA used in our 

project. 

 

2.1. Signal Model 

Electrical power 

 
 

is traditionally delivered from  the generators to the     end- 

users through an infrastructure that is mainly composed by AC power systems. As 

a consequence, during normal operating conditions of the power system, voltage 

and current waveforms are usually modeled as signals characterized by a single 

sinusoidal component with constant parameters: 

                            (2.1) 

2.2. Phasor: 
For a detailed analysis of an AC circuit, it is useful to know the magnitude, 

frequency and phase angle of the time-varying quantities during 

interval.  The  mathematical  tool  used  to  accomplish  this  task is 

a specific time 

called  Phasor. 

Let us consider equation (2.1), where Ym represents the maximum value or peak 

amplitude; ω = 2πfo is the angular frequency of the signal in radians per second (f0 

is the fundamental frequency); and φ is the phase angle in radians. Keeping in mind 

the Euler’s identity (ejx = cos x + j sin x), one can observe that Eq. (2.1) can also be 

rewritten as 

            (2.2) 

once the system frequency is known, the term ej2πfot  caan be neglected. 

Therefore Eq. (2.2) may be represented by a complex number V given by 
 

        (2.3) 

Assuming that both voltage and current signals are given by Eq. (2.3), one 

can  observe that  this  representation  is  at odds  with  the calculattion  of  average 

power, therefore the RMS quantities must be taken into account for the correct 

phasor representation of sinusoidal signals, as illustrated by the complex number  Y 

that follows. 
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The phase angle of a phasor brings the information about the fraction of the 

sinusoid’s period in which the time, or the angular displacement ωt, is advanced or 

delayed to an arbitrary reference. It is very important to correlate different 

alternating-waves between them, thus, the phasors represent an equilibrium point or 

the steady-state condition of the AC circuit, that is, one can assume that the phasors 

are time-invariant, as illustrated in Figure.2.1. 

 

Figure 2.1: Phasor representation of a sinusoid. 
 

However, in practical cases, a time interval must be considered to perform the 

phasor calculation. This time interval is also known as “data window” or 

“observation interval”, being fundamental in phasor estimation of practical 

waveforms. In essence, the phasor representation is related to a pure sinusoidal 

signal, but the existing signals in electric power systems may be distorted by 

harmonics.   In   this   way,   it   is   advised  to   extract   the   envisaged frequency 

component(s) of the signal to also be represented by phasor notation. These   tasks 

have been properly performed by the classical Fourier’s theory.   Due to the    fact, 

the main key points about phasor representation using the aforementioned theory 

is presented and discussed in greater detail in the later sections. 

(2.4) 
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2.3. Fast Fourier Transform 

We should mention that the Fourier transform is a very important part of many 

engineering applications. FFTs are an important part of any digital spectrum 

analyzer. 

FFTs can also be used when implementing a spectrogram, such as the one 

shown in Figure 2.2 below. Such spectrograms make it easier to understand 

artifacts of speech and other sounds, or even radio frequency waveforms, by visual 

inspection [14]. 

Figure 2.2 Spectral representation of speech 

 
Convolutions and/or correlations can often be implemented much faster and 

cheaper using an FFT implementation of the Fourier transform. This means that digital 

filters can be implemented with Fourier transform enabled convolutions 

faster/better/cheaper. Fourier transform are used to understand and analyze control 

systems. Fifth, Fourier transforms are used not only in filter implementations, but they 

are also used in the filter design process. And finally, like we used it in our design 

Fourier transform can be used to evaluate phasor measurements. 

The Fast Fourier   Transform   (FFT) is   a   specific    implementation    of the 

Fourier  transform,  that  drastically  reduces   the   cost   of   implementing   the 

Fourier transform Prior to the invention of the FFT, a Discrete Fourier transform 

could only be calculated the hard way with N
2 

multiplication operations per  

transform  of N points.  Since Cooley  and  Tukey  published their algorithmic 

implementation of the Discrete Fourier transform,  they can now be calculated  

with O(N   log2(N)) multiplies.   Needless   to   say,   the   invention   of   the  FFT 

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
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immediately started to transform signal processing. But before talking about the 

FFT we should understand a little more about what a Fourier transform is first [14]. 

A Fourier transform is a linear operator that decomposes a signal from a 

representation in time, to a time-less representation in frequency. 

 

 

(2.5) 

 
This is the definition we will first come across when studying Fourier 

transform. This form above is easy to work with mathematically with just pen and 

paper. There are two problems with this nice mathematical definition when it comes 

to working with an engineering reality. The first problem is that digital algorithms 

do not operate upon continuous signals very well.  Computers  and  other digital 

signal processors do a much better job with sampled signals. Hence, we’ll switch 

from discussing the pure Fourier transform shown above and  examine the Discrete-

time Fourier transform instead. For this, we will switch from a    continuous    

incoming    signal, x(t)    to    its sampled representation, x[n].  The Discrete-time 

Fourier transform can then be applied to our signal. 

(2.6) 

 
While this discrete-time transform works very nicely for representing the 

response of certain digital filters, it’s still not all that practical. This brings us to the 

second problem: Computers can’t handle an infinite number of samples, nor can 

they handle an infinite number potential frequencies. Both of these need to    be 

sampled and finite. Fixing this second problem brings us to the Discrete  Fourier 

transform. 

                                           (2.7) 

Now, not only is the x[n] used in this transform discrete, but the frequency 

index, k/N, is as well. All three of these representations are very tightly related. 

Mathematically, there are major and significant differences between these 

transforms. Practically, however, only this last transform can ever be computed 

digitally. Therefore, the first two expressions of the Fourier transform and then  the 

https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://zipcpu.com/dsp/2017/11/22/fltr-response.html
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
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discrete time Fourier transform can only ever be digitally approximated by the 

Discrete Fourier transform [14]. 

It is this third representation of the Fourier transform, known as the Discrete 

Fourier transform, that we will be discussing the implementation. We are also going  to 

argue that this is the only representation of the Fourier transform that can be 

numerically computed for any sampled finite sequence. If we look at equation (2.7) , 

we  can  see  it  takes  as  input N data samples, x[n],  and  calculates   one   summation 

across those inputs for every value of k to produce N samples out, X[k/N]. Given that 

there’s a complex multiplication required for every term in that summation 

of N numbers,   and   that   there   are N relevant   outputs,   this   will   cost N
2 

painful 

multiplications to calculate. If we just left things there, this transform would be so hard 

to calculate that no one would ever use it. Cooley and Tukey, however,  described a 

way that the Discrete Fourier transform can be decomposed into two transforms, each 

of  them  being  half  the  size  of  the  original,  for  the  cost  of  only N multiplies. If 

you then repeat this log2(N) times, you’ll get to a one-point transform, for a total cost 

of N log2(N)multiplies. At this cost point, the Discrete Fourier transform becomes 

relevant. Indeed, it becomes a significant  and  fundamental DSP operation. 

An FFT rapidly computes such transformations by factorizing the DFT matrix 

into a product of sparse (mostly zero) factors [2]. As a result, it manages to reduce the 

complexity of computing the DFT from O(n
2
), which arises if one simply applies   the 

definition of DFT, to O(nlog n), where n is the data size. The difference in speed can 

be enormous, especially for long data sets where N may be in the thousands or millions. 

In the presence of round-off error, many FFT algorithms are much more accurate than 

evaluating the DFT definition directly. There are many different FFT algorithms based 

on a wide range of published theories, from simple complex-number arithmetic to 

group theory and number theory [14]. 

2.4. Phasor Calculation for 3-phase system 
Consider a balanced 3-phase power system operating at a nominal frequency of 

f0, then the voltage waveform can be represented as 

x1(t) = Xmcos(2πf0t + φ1) 

x2(t) = Xmcos(2πf0t + φ2) 

x3(t) = Xmcos(2πf0t + φ3) (2.7) 

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing


Chapter 2 Theoretical Background 

11 

 

 

Here Xm represents the maximum amplitude of the signal and Φ represents the 

phase angle. The phase  angles are 120  degree or 2π      radian  apart.  The time   domain 

sample of the power system can be represented as 
3
 

 
 
 

 
(2.8) 

 

 

 
 

Here N is the number of samples, which is an integer multiple of fundamental 

frequency. f0 and n represents the sample index in the array which ranges from 0 to N−1. 

The generalized expression for N-point can be represented as 

 

 
(2.9) 

 

N-point DFT of the signal can be found out using 

 
 

(2.10) 

 
 

(2.11) 

 
 

The real and imaginary part of the above expression can be rewritten as 

 
 

(2.12) 

 
 

(2.13) 

 

 

 
The phasor estimate at nominal frequency is represented by this complex quantity 

Xnominal, whose magnitude 

gives the RMS magnitude of the signal. The phase angle can be computed using 

the  trigonometric property, 
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2.5. Field Programmable Gate Array 

2.5.1. Overview 

A field-programmable gate array (FPGA) is a logic device that contains a two-

dimensional array of generic logic cells and programmable switches. The 

conceptual structure of an FPGA device is shown in Figure 2.3. A logic cell can be 

configured (i.e., programmed) to perform a simple function, and a programmable 

switch can be customized to provide interconnections among the logic cells. Once 

the design and synthesis are completed, a simple adaptor cable has to be used to 

download the desired logic cell and switch configuration to the FPGA device and 

obtain the custom circuit [15]. 

 
Figure 2.3 Conceptual Structure of an FPGA Device 

 

An FPGA can be used to solve any problem which is computable. This is 

trivially proven by the fact FPGA can be used to implement a soft microprocessor, 

such as the Xilinx MicroBlaze or Altera Nios II. Their advantage lies in that they 

are sometimes significantly faster for some applications because of their parallel 

nature and optimality in terms of the number of gates used for a certain process [16]. 

 
2.5.2. Applications of FPGAs 

 

Specific applications of FPGAs include digital signal processing, software- 

defined radio, ASIC prototyping, medical imaging, computer vision, speech 

recognition, cryptography, bioinformatics, computer hardware emulation, radio 

astronomy, metal detection and a growing range of other areas [16]. 

https://en.wikipedia.org/wiki/Computable
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/MicroBlaze
https://en.wikipedia.org/wiki/Nios_II
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2.5.3. DE10-Board : 
 

The DE10-Standard Development Kit presents a robust hardware design 

platform built around the Intel System-on-Chip (SoC) FPGA, which combines the 

latest dual-core Cortex-A9 embedded cores with industry-leading programmable 

logic for ultimate design flexibility. Altera’s SoC integrates an ARM-based hard 

processor system (HPS) consisting of processor, peripherals and memory interfaces 

tied with the FPGA fabric using a high-bandwidth interconnect backbone. The DE10-

Standard development as shown in Figure 2.4 board includes hardware such as high-

speed DDR3 memory, video and audio capabilities, Ethernet networking, and much 

more. [17] 

The following hardware is provided on the board: 

•Intel Cyclone V SE 5CSXFC6D6F31C6N device 

• Serial configuration device –EPCS128 

• USB-Blaster II onboard for programming; JTAG Mode 

• 64 MBSDRAM (16-bit data bus) 

• 4 push-buttons 

• 10slide switches 

• 10red user LEDs 

• Six 7-segment displays 

• Four 50MHz clock sources from the clock generator 

• VGA DAC (8-bit high-speed triple DACs) with VGA-out connector 

• PS/2 mouse/keyboard connector 

• IR receiver and IR emitter 

• One HSMC with Configurable I/O standard 1.5/1.8/2.5/3.3 

• A/D converter, 4-pin SPI interface with FPGA 
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Figure 2.4 DE10-Standard development board (top view) [17] 

2.5.4. Quartus PRIME Software 

Quartus prime is a software development suit tool developed by 

Intel FPGA (former Altera) Company. It provides a graphic interface for 

users to access tools and display relevant files. Some differences may exist 

 

between  different  versions. The 

shown in the below Figure 2.5 

default Quartus  prime  GUI  window is 

Figure 2.5 Typical Quartus Winddow 
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2.5.4.1.   Signal-tap Logic Analyzer 
 

The Signal-Tap II Embedded Logic Analyzer is a system-level debugging 

tool provided by Quartus Prime, that captures and displays signals in circuits 

designed for implementation in Intel/Altera’s FPGAs. Signal-Tap runs on the  chip, 

with your design, in real hardware (not simulation) to provide waveforms of logic 

signals within the design. Signal-Tap uses significant hardware resources on the 

FPGA to allow flexible triggering and to record waveforms of your logic signals for 

later viewing on the PC running Quartus Prime. All communication is done through 

the JTAG programming cable that you use to program the FPGA.  No extra 

hardware external to the FPGA is necessary. Figure 2.6 depicts the overall window 

of this tool [18]. 

 

Figure 2.6 Overall windows of the SignalTap II Logic Analyzer 
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2.6. Analog to Digital Converter 

2.6.1. Overview 

Analog to digital converter converts continuous analog signal to discrete 

digital numbers. ADC’s differ from each other by two main parameters, the 

resolution which indicates the number of discrete values it can produce over the 

range of analog values and the step size (quantization value) which is based on the 

reference voltages of the ADC and it can be found as: 

 
(2.8) 

 
 

2.6.2. The LTC2308 

The DE-10 Board FPGA has a 12 Bit ADC, The LTC2308 is a low noise, 

500ksps,8-channel,12-bit successive approximation register (SAR) A/D converter. 

The LTC2308 includes a precision internal reference, a configurable 8-channel 

analog input multiplexer (MUX) and an SPI-compatible serial port for easy data 

transfers. The ADC may be configured to accept single-ended or differential signals 

and can operate in either unipolar or bipolar mode. A sleep mode option is also 

provided to save power during inactive periods. Conversions are initiated by a rising 

edge on the CONVST input. Once a conversion cycle has begun, it cannot be 

restarted until the current conversion is complete. The time taken by each conversion 

for each channel is 1.3 µs [19]. 

Figure 2.7 represents SPI timing specifications for this ADC 

Figure 2.7 LTC2308 Timing with a Short CONVST Pulse [19] 
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This chapter describes the design and implementation of a part of a Phasor 

Measurement Unit using FPGA. The block diagram of such a unit is shown in 

Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram of our prototype PMU 
 

 

3.1. Signal Acquisition and Sampling 

For the  calculation of  a  phasor, the data (i.e. the    sampled 

 

 
voltage signal) 

must be acquired. When the PMU is tested in real-world scenarios a means of 

getting the signals from the transmission lines is necessary, which is accomplished 

using  a  Potential  Transformer  (PT)  and  a  Current  Transformer  (CT)  in    the 

substations.  This  signal is  further stepped down  using the Hall  Effect    voltage 

sensors.  However,  in  our  laboratory  setup,  we  used  a  Function  Generator  to 

generate sinusoidal input signal to mimic the signals read from voltage and 

current sensors. 
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3.1.1. Sampling of the signals using ADC (Analog to Digital Converter) 

As explained in the last chapter, the on-board ADC is connected to the 

FPGA through an SPI-interface as seen in Figure 3.2. A state machine is designed 

and implemented in VHDL to control this ADC 

 

. Figure 3.2: Connections between the FPGA, 2x5 header, and the A/D converter 

[19] 

 

 
3.2 FFT Calculation 

To implement the phasor calculation unit, the DE10-board FPGA has been 

used as the computational unit. For a 3-phase system, the voltage samples are 

stored in FIFOs on the FPGA which is updated every time a new sample comes 

in. A counter in the FIFO keeps track of the number of accumulated samples.  As 

long as the FIFO store data, the phasor calculation task is initiated, and the FFT 

unit is used to calculate the spectrum of the input signal. 
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3.3 PMU SoC System Design 

The top-level file containing the SoC overall project is illustrated in Figure 3.3. 

 

 
Figure 3.3 Overall Block Diagram of the On-Chip System 



Chapter 3 Hardware Design 

21 

 

 

 

This design consists of two parts: 

3.3.1. The Off-Chip Hardware Unit 

The off-chip hardware unit is composed of: 

3.3.1.1. Function Generator: 

It generates the analog signals to be processed; in our case, it replaces the 

3-phase signals after signal conditioning. 

3.3.1.2. Data Acquisition Unit: 

It samples analog signals coming from the function generator and 

converts them into digital data. 

3.3.1.3. The PC Unit 

The PC runs the Quartus Prime development suite tools to develop, debug 

and download the overall system onto the FPGA chip of the DE10 board. 

 
3.3.2. The On-Chip Hardware Unit 

The on-chip hardware is implemented on the FPGA; it controls the Off- 

Chip hardware unit and communicates with the PC via the USB Blaster cable. 

The SoC system main entity has the following inputs and outputs: 

- Data-in: 1-bit input port connected to the ADC block, which represent 

the serial digital data coming-in from the LTC2308 ADC to the FPGA. 

- Data-out: 12-bit output port coming out of the ADC block, which 

represent the sampled parallel data. 

- Data ready: 1-bit output ports from the ADC to tell if the Data in the 

output register is valid or not. It is also used for handshaking with the 

FIFO block. 

- Convst: 1-bit output used to send the start of conversion signal to 

the ADC. 

- Sclk: 1-bit output used to provide slower serial data clock for the 

ADC 

- Reset : 1-bit input asynchronous reset connected to the ADC and  FFT 

block., to reset the hardware. 

- clk: 1-bit input port which represents the 50MHz clock input used  as 
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the overall design clock source. 
 

- result: 24-bit output port coming out from the FFT 

calculate the spectrum of the input signal sequence. 

block  used to 

- sync: 1-bit output port from the FFT block to indicate that we have 

got the calculated results from the FFT core. 

 

The overall block symbol of the SoC project is shown in Figure 3.4 
 

Figure 3.4 PMU SoC block symbol 
 

 
 

3.4. PMU SoC project blocks 
 

The SoC project is made of several custom blocks developed in VHDL 

involving the data acquisition and sampling of the analog input unit i.e. the ADC 

unit, frequency divider unit, data buffering unit, and the FFT unit. Each block will 

be detailed in the following sections 

 

3.4.1. Clock Divider block 

This block is used to synchronize data communication between the different 

blocks  by generating multiple  ranges  of  clock  frequencies, as we  can  see in 

Figure 3.5.  The main  frequencies generated by this block were :  25Mhz   which 

was  supplied  to  the  ADC  block  and  the  FIFO  block,  the  12.5Mhz sampling 

frequency which was supplied to the slow clock of the ADC and the 6Mhz clock 

which was used with The FFT block. 

The reason why we chose these frequencies was because of the following: 
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• The time for the whole power-up and conversion process before the data is 

ready to be output in the ADC is 5.5us (max), and we know that in order 

to sample one pulse we require 1.6us, that’s why we used a clock of 80ns 

i.e. 12.5Mhz, hence the sampling period will be 6.4us, to make sure the 

output is ready and is correct. 

• Since the FFT block is very fast, in order to synchronize the FFT with the 

arriving sampled signal from the FIFO block it was necessary to use a 

slower clock, that is why we used the 6Mhz clock. 

 

Figure 3.5: block diagram of the clock divider unit 
 

 

3.4.2. The ADC controller block: 
 

 

 
Figure 3.6: block diagram of the ADC controller unit 

As we can see from Figure 3.6, the ADC controller read tthe digital data  

from the on-board ADC using the Din serial input. In typical PMUs, the ADC 

conversion  is started on  reception of 1 pulse per second     (PPS) from  the GPS 

module.  However,  in  our  case  we did  not  have a  GPS  module.  So, a  locally 

generated  trigger PPS signal is used. The sampling process     then begins  as the 

state machine in Figure 3.7 depicts. 
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Figure 3.7: State machine representing data acquisition from the ADC 

 

Since the ADC in the DE-10 board FPGA is a 12-bit ADC, it gives a data 

reading of 0 to 2
12

-1 for an input voltage range of 0 volt to 4.096 volt. Hence, it 

is necessary to map the digital data readings with the actual measured values 

using the linear relationship between them. 

 

3.4.3. FIFO block (storage block): 

 

Figure 3.8: block diagram of the storage unit 
 
 

Once the data is sampled, it needs to be stored temporally in order to be 

processed by the FFT block as shown in Figure 3.8. The storage process begins once 

the ADC sends to the FIFO a “dataready” signal. The FIFO block used was initially 

generate from the IP core library in Quartus Prime. It was configured to accept a 12-

bit width and 1024 words depth as shown in Figure 3.9. This block is also provided 

with full and empty signal which are used to enable the FFT block 
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once the data is available. This IP block is clocked at the same clock as the ADC. 

Figure 3.9: Configuration of the FIFO block in the mega function wizard 
 

 

3.4.4. The Interfacing Logic: 

 

Figure 3.10: block diagram of the Interfacing logic unit 
 

 

This “Glue logic” as named in Figure 3.10 was used to interrface the FIFO 

block with the FFT block, since The FFT block needs to meet some conditions to 

be enabled. This block’s main task was to meet these conditions such as triggering 

the “ce” signal of the FFT and make the data length wider in order to be accepted 

by the FFT. 
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3.4.5. The FFT block 
 

 

Figure 3.11: block diagram of the FFT unit 

This  is  the  main  block  of  our  implemented  design  as it 

 

processes the 

sampled data in order to finally calculate its spectrum. Given that  implementing 

is  an FFT block  is  a huge  and  a complex  task,  we  evaluated  three  different 

(already existing) FFT hardware cores to test our system: 

3.7.5.1. The Intel FFT core integrated in the IP catalog in Quartus Prime: 

This  core  represents  the  best  solution  in  terms  of  efficiency       and 

reliability. However, we did not use this core, since it has 

issues: 

two major 

• This core requires sending data via bus which should be controlled by 

a microprocessor. Hence, it is not suited for our system design which 

is based on direct execution on pure hardware blocks. 

• As shown in Figure 3.9 this core has many handshaking signals which 

makes it very complex to interface with our glue logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.12: FFT core integrated inside Quartus’s mega wizard 
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3.7.5.2. Open Source FFT core by Gisselquist Technology, LLC 

This is an open source FFT core, which is implemented by Gisselquist 

Technology, LLC. In order to be able to generate the Verilog code for this 

core we followed a number of steps [13]: 

• Running the FFT Core Generator software: 

Inside Linux shell we run the following commands: 
 

 

Once the 

exectable 

“make” command completes, we got 

program  in  the  sw/  subdirectory    which 

an ‘fftgen’ 

is   used  to 

generate customizable FFT cores depending on user requirements. 

• Generating the FFT core 

This core offers several features, but since we needed just a 1024 

point FFT with 12-bit input/output width, the following commands 

is used to generate the core: 

$ ./fftgen  -f 1024  –n 12  –m 12 
 

 

The block diagram of the generated core is represented in Figure 3.13 

 

 
Figure 3.13: Block diagram of the generated core 

The input and output ports of this core are: 

$ git clone https://github.com/ZipCPU/dblclockfft 

$ make 
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i_clk: synchronous to the 6Mhz clock divider output. 

i_reset: is a positive edge asynchronous reset signal. 

i_ce: is a global CE signal. It is set to 1 on every clock where a valid 

new sample is available on the input. 

i_sample: is actually a pair of values, both real and imaginary, stuffed 

into one signal bus. The real portion is placed in the upper bits, and the 

imaginary portion is placed in the lower or least significant bits. 

o_result: is the output of one FFT bin from the FFT. It is in the exact 

same format as i_sample. 

o_sync: is the last output in the port list. This signal will be true when 

o_result contains the first output bin coming out of the FFT. 

Unfortunately, despite the core being simple to interface with, it did not work 

properly [13]. 

 

3.7.5.3. Spiral core: 

The Spiral DFT/FFT is a web-based IP Generator which 

generates customized Fast Fourier Transform (FFT) 

synthesizable   RTL   Verilog.   The   user   has   control over 

 

automatically 

IP   cores   in a   

variety  of 

parameters  that  control  the  functionality  and  cost/performance   tradeoffs 

such as area and throughput [20]. We selected the parameter that suits our 

design and generated it as shown in Figure 3.14, 

Figure 3.14 The web interface FFT core generator [20] 
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Figure 3.15: Block diagram of the spiral FFT core 

 

The block of the generated core is shown in Figure 3.15 
 

 

The input/output ports of this core are: 

clk: synchronous to the clock input. 

reset: is a positive edge asynchronous reset signal. 

next: this input (asserted high), is used to instruct the system that the 

input stream will begin on the following cycle. 

X0,1,2,3: is actually a pair of values of 12 bits, both real and imaginary, 

used to make the core work in parallel. The real portion is placed in the 

upper bits, and the imaginary portion is placed in the lower for example 

X0 is the real part and X1 is the imaginary part and so on. 

Y0,1,2,3: is the outputs from the FFT. It is in the exact same format as 

X0,1,2,3. 

Next_out: The output signal 'next_out' (also asserted high) indicates that the 

output vector will begin streaming out of the system on the following cycle. 

 

The design uses a system of flag signals to indicate the beginning of the 

input and output data streams. The 'next' input (asserted high), is used to 

instruct the system that the input stream will begin on the following cycle. 

This system has a 'gap' of 512 cycles. This means that 512 cycles must 

elapse between the beginning of the input vectors. 

The output signal 'next_out' (also asserted high) indicates that the output 

vector will begin streaming out of the system on the following cycle. 

The system has a latency of 1373 cycles. This means that the 'next_out' 

will be asserted 1373 cycles after the user asserts 'next' [20]. 
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This chapter shows the implementation of our prototype Phasor measurement 

unit using FPGA. This chapter also describes and analyses the results captured using 

SignalTap II Logic Analyzer Tool. Figure 4.1 depicts the system implemented. The 

Function Generator generates a sinusoidal signal with a 50Hz frequency. This signal 

is fed to one of the analog inputs of the on-board ADC. 

 

Figure 4.1: The experimental setup to test the PMU system 

 

4.1. Testing the FFT hardware core 

 

4.1.1. Open Source FFT core by Gisselquist Technology, LLC 
 

Figure 4.2 shows a real-time testing of the first FFT core using SignalTap 

logic analyzer. It can be seen that the ADC is transmitting data through the signal 

‘output’ to the core and the core’s chip enable (‘ce’) is turned on, but no data is 

coming out from the core i.e. ‘results’. This indicates that the core is not working 

since all interfacing conditions are satisfied and no output data is coming out. 

Function generator 

PC running the 

Quartus Prime 

Scope 

DE10 board 
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Figure 4.2 Actual real-time testing of the open source FFT core 

 

 

4.1.2. Spiral FFT Core Simluation 

 
As shown in Figure 4.3, ModelSim was used to test the core through 

simulation. Figure 4.3 (a) shows the beginning of simulation where the signal ‘next’ 

is given a pulse to start the FFT computations. Figure 4.3 (b) shows the end of 

simulation where the signal ‘next_out’ is asserted high by the FFT core indicating 

the end of FFT computations. Since the simulation takes a large number of cycles, 

we cannot show the full length of the waveforms. As it can be noticed, the core is 

functional since there are results generated by the core for given input signals. Also 

it can noticed that this core is triggered once it receives a “next” signal which means 

that it begins processing the data when the “next” signal is one, when the data are 

processed the core set the “next_out” signal to one and the data is available on the 

“Y” signals. 
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(a) 
 

(b) 
 

Figure 4.3 Simulation of the Spiral FFT core: (a) the beginning of simulation (b) the end of simulation 
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4.2. Project Compilation Report 

The compilation of the whole system was successful. The summary of the 

compilation is shown in Figure 4.4. The entire system uses 6% of the total logic 

elements, 6841 registers, 14% of the total pins and 23% of the total memory bits, 

also as we can see the designed system uses 32% of DSP blocks, which can reflect 

that the FFT core is synthesized correctly. 

Figure 4.4 Compilation Summary 

 

4.3. Results of the implemented system 

After the design has been compiled, the SignalTap II Logic Analyzer Tool is 

launched and required nodes and clocks are added to test the design in real time as 

shown in the bellow Figure 4.5. 

 
Figure 4.5: Adding design signals to Signal Tap  II Logic Analyzer 

Tool 
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After the programmer and the device have been verified, the design is 

recompiled, it can be remarked that the design took longer to recompile since the 

tool took enormous resources for testing. 

The generated waveforms of the tested prototype is shown in Figure 4.6 

 

 

(a) 

 

 

(b) 
Figure 4.6: Waveforms of the tested design 

(a)the beginning of simulation (b) the end of simulation 

 
As seen in the waveform generated in Figure 4.6 We are getting some data 

inputs from the interfaced logic which is connected to the storage block which is 

also connected to the data acquisition unit (ADC), hence the data from the ADC is 

well received. 

Also, as it can be seen we are getting a pulse to the “next” signal in order to 

trigger the core. Hence the conditions to turn the FFT core on are satisfied. 

At last it is noticed that after a certain time after a “next” pulse is generated 

there is a “next_out” signal associated with Y’s data i.e. the FFT core is working. 

Next_i pulse 

FFT Outputs 

Next_out pulse 
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As the PMU technology has to provide estimations with high degree of 

accuracy, the hardware platform that will be used for this phasor estimation 

algorithm should have a high degree of determinism. In this respect, the use of 

FPGA to implement the PMU algorithm is highly justified. 

 
The FPGA-based PMU was based on the Cyclone V Assembly, VHDL, 

Verilog HDL. These platforms are open source software; hence, the overall 

implementation is low cost and can be easily configured. 

 
It can be concluded that SoC-based PMU was designed and implemented 

and the objectives of this work have been successfully met and they are as follows: 

 
- Implementation of a Phasor Measurement Unit System based on FPGA 

- Apply every single knowledge of Hardware design and computer 

engineering that were acquired during the past five years. 

 
Effort and time were spent to debug software bugs and  hardware problems 

to improve the system and make it operational. The implementation of the SoC-

based PMU System was carried and the final prototype was fully functional. Like 

any other project, this work can be enhanced and improved by adding some 

features, mainly: 

 
- The project was designed using a small single-phase function generator 

system for study purpose, for wide area monitoring purpose,  the  prototype 

can be implemented with some modifications, for example, by testing the 

system with 3 phases, increasing the sampling rate for better accuracy, 

attaching a GPS module in the system for time stamping etc. 

- In the future scope of research, the prototype is to be used in studying the 

effects of faults on the Phasor estimates, power monitoring system, and 

other benefits that could be gained from phasor measurement unit. 
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Using Signal Tap II Logic Analyzer 
 

1- First we need to have a complete Compiled project, so we set pin 

assignments and we should have no error. 

2- Select SignalTap II Logic Analyzer: After compilation we have to ensure 

the JTAG programmer (USB-Blaster) is connected between the board and 

the PC. We open SignalTap II Logic Analyzer by selecting “Tools | 

SignalTap II Logic Analyzer” or we can open pre-existing SignalTap II 

Logic Analyzer file (*.stp) from “File | Open”. 

After that we Select Hardware, If not appear USB-Blaster, we click Setup 

to select the programmer. Shown in Figure I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I: Selecting Hardware in Signal Tap tool 

3- Add nodes to be analyzed: we double click to add necessary nodes, click 

List to view nodes, then Add nodes to be analyzed Select nodes. As shown 

in Figure II 

 

Figure II: Adding your desired nodes to test 
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2. Program your code 

1.  Click to 

choose sof file 

Figure III Selecting the clock and programming the tool 

 

4- Select proper clock Basically, the clock need to be set to FPGA clock. 

5- Choose Sample depth depending  on RAM attached to FPGA 

6- After setting for SignalTap II Logic Analyzer, you need to compile your 

project again.Select „sof‟ file and program your code Select „sof‟ file to 

be downloaded first.Program your project on the board. As shown in 

Figure III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7- Run analysis to view signals as shown in Figure IV 

 

Figure IV Running the Analysis on Signal 

Autorun analysis to view signals 

Run analysis to view signal transitions. It only shows transitions until 
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