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Abstract

Phase measurement is required in electronic applications where a synchronous
relationship between the signals needs to be preserved. As the world continues to move
towards a Smarter Grid day by day, it has become the necessity to incorporate real-time
monitoring of the grid wherein the instantaneous snapshot of the health of the grid can be
made available.

Traditional electronic system which are used for time measurement are designed
using a classical mixed-signal approach. With the advent of reconfigurable hardware such
as field-programmable gate arrays (FPGAS), it is more advantageous for designers to opt
for all-digital architecture.

This project is about the design and implementation of a part of Phasor
Measurement Unit (PMU) Prototype based on FPGA. It discusses how an FPGA can be
used to estimate the phasors of a one-phase system. An example sinusoidal input signal
is generated by a Function Generator and then sampled using the Analog to Digital
Converters (ADC) on the FPGA board. The design then stores digital data into a local
FIFO, which is passed to a 1024- Point FFT hardware core to get the spectrum of the
signal and hence calculate the frequency and the phase difference.

The system uses the Intel DE10 FPGA board (donated by the Intel University
Program) and the Quartus Prime suite to design and implement the system. One of the
aims of this project is to evaluate the potentials of the newly acquired DE10 FPGA board.
The final output of the FFT core are transmitted back to local host through Quartus

SignalTap Il logic Analyzer Tool.

Keywords: PMU, FPGA, VHDL, ADC, FFT, Quartus.
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Introduction

1.1 Overview

The load dispatch centers in a large power system supervise and control over
the transmission network and it takes preventive actions to avoid any sort of
system failure which can hamper electricity distribution. With ever increasing size
and complexity of the power system, the ability to detect any faults in the power
system is heavily dependent on the real time information available to the operator.
Traditionally, analog and digital information (status of circuit breaker, power flow
and frequency) is measured at the substation level and transmitted to load dispatch
center using supervisory control and data acquisition system (SCADA) or energy
management system (EMS). The major limitation of SCADA or EMS is the
inability to accurately calculate the phase angle between a pair of substations. In
SCADA or EMS, phase angle is either estimated from available data or is
calculated offline. Phasor Measurement Units (PMU) overcome the limitations of
SCADA and EMS by accurately calculating the phase angle between a pair of
grids.

Synchronized phasor measurement units were introduced in the mid-1980s
as a solution for the need of more efficient and safer monitoring devices for
Electric Power Systems (EPS). Since then, measuring Electric Power System
(EPS) parameters of voltage and current in relatively distant buses has received
great attention from researchers. Such measurements are performed by phasor
measurement units (PMUs), synchronized by Global Positioning System (GPS)
satellites.

A commercial PMU measures the voltage and angle of a particular grid at
25 samples per second. The phase information is synchronized with Global
Positioning Systems (GPS) satellite and is transmitted to Phasor Data Concentrator
(PDC) through a high-speed communication network. The time stamped phase
information is called synchrophasor. There are several benefits of PMU such as
monitoring of EPS and network protection. The measurement of voltage and
current in remote bus allows the operator to make a concrete decision about the

maintenance and security of the system in the face of various uncertainties [1].
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Figure 1.1 shows an example of a standalone PMU device

Figure 1.1 Standalone PMU device from Arbiter, model 1133A power sentinel
[2]

1.2 Literature Review

The measurement of voltage phase angles using synchronized clocks for
power system applications dates back to the early 1980s when measurements of
voltage phase angles were carried out between Montreal and SEPT-ILES [3], [4],
and parallel efforts by Bonanomi in 1981 [5].

However, the synchrophasor technology available today emerged from the
early efforts by Phadke et al. at Virginia Tech as described in [6], [7]. Phadke
demonstrated the first synchronized PMU in 1988, and in 1991 Macrodyne Inc.
launched the first commercial PMU product [8]. Due to the cost of early PMU
devices, PMU technology has historically been limited to transmission system
applications where the business case justified expensive phasor analysis
equipment. One of the early applications that is important to mention is the
implementation of the wide-area protection system Syclopes in France in the early
1990s, which was the first functional application of early forms of PMUs [9].

The cost of the components from which PMUs are assembled (such as GPS
receivers, microprocessors, and storage devices) have dropped significantly due
to recent developments across the electronics sector. As a consequence, PMUs
have reached price points that have made them an attractive tool for the
distribution systems and embedded generation. Many PMUs are sold as dedicated
devices which offer event recorder type functionality. Costs for such units vary
between US $6000 and US $15000 depending on the specification. Many
equipment vendors have begun to offer PMU functionality as a
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supplementary feature on other products in their range, such as protection relays
[10].

The standard for PMU devices is maintained by the IEEE C37.118 Working
Group. IEEE Std. C37.118 [1] was released in 2005 and subsequently updated in
2011. The latest release comes in two parts; IEEE C37.118.1-2011 [1] describes
how synchrophasors should be estimated and gives certification requirements
while IEEE C37.118.2-2011 [2] describes data representation and data transfer.
Concerns have been raised regarding the transient performance of PMUs under the
2005 standard [1], [11], [12]. These concerns are addressed in the 2011 release of
the standard. IEEE C37.118.1-2011 states that it defines synchrophasors,
frequency, and rate-of-change-of frequency measurement under all operating

conditions [1].

1.3 Motivation

Many researchers designed PMU based on microcontrollers, but
microcontroller is sequential in nature thereby degrading the efficiency of the
system. By using FPGA, we are capable of measuring currents and voltages with
parallel measurement, in other words the data for current and voltage will be read
at the same time and at the same clock. It’s different from microcontroller that
using a sequential programming language. In every task, it needs a couple of
execution time, from first to the last task must be done by sequentially. Since

there exist some gap of measurement, it will give us an uncertainty of the
accurate time between compared value. It also takes longer delay than FPGA has.

The advantages of using FPGA in phasor estimation is that the 1024-
point FFT hardware core can be pipelined. In other words, it can accept input data
every clock cycle and generate output data every clock cycle, after a certain time
delay. These huge computations can be handled well with a parallel processor such
as FPGA. [13]
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1.4 Project Objectives

The main goal of this project is to design and implement a Phasor
Measurement Unit (PMU) prototype using the DE10 Standard FPGA.

1.5 Organization of the Report

This report is organized into four chapters. Chapter two outlines the
theoretical background of the project and lists the components used, their
description and principal of operation. Chapter three presents the design and
implementation of the project’s hardware, showing the interface between the
different components of the system. Chapter four presents the finals results
including the simulations done and the data transferred to PC. The conclusion
summarizes the work presented in this report and provides suggestions for further

work.
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Chapter 2 Theoretical Background

This chapter introduces the theoretical background related to the design and
implementation of the PMU prototype starting from the adopted signal model, the
theoretical definition of phasors. This chapter also describes the FPGA used in our

project.

2.1.Signal Model

Electrical power is traditionally delivered from the generators to the  end-

users through an infrastructure that is mainly composed by AC power systems. As
a consequence, during normal operating conditions of the power system, voltage
and current waveforms are usually modeled as signals characterized by a single

sinusoidal component with constant parameters:
y(t) = Yicos(wt + ¢) (2.1)

2.2.Phasor:
For a detailed analysis of an AC circuit, it is useful to know the magnitude,

frequency and phase angle of the time-varying quantities during a specific time

interval. The mathematical tool used to accomplish this task is called Phasor.

Let us consider equation (2.1), where Y represents the maximum value or peak
amplitude; o = 2xfo is the angular frequency of the signal in radians per second (fo
is the fundamental frequency); and ¢ is the phase angle in radians. Keeping in mind
the Euler’s identity (e = cos x + j sin x), one can observe that Eq. (2.1) can also be

rewritten as

y(t) = Re{Yy, ﬁj{;,-r+¢'=]|} = RE[{eﬂﬂht}}f‘mEﬁ] (2.2)
once the system frequency is known, the term eJ?™ ot can be neglected.
Therefore Eq. (2.2) may be represented by a complex number V given by

y(t) «— V = Yie?® = Yiulcos ¢+ j sin ¢). (2.3)

Assuming that both voltage and current signals are given by Eq. (2.3), one
can observe that this representation is at odds with the calculattion of average
power, therefore the RMS quantities must be taken into account for the correct
phasor representation of sinusoidal signals, as illustrated by the complex number Y

that follows.



Chapter 2 Theoretical Background

Y\ Ym o
y(t) +— Y = (E) el? = (\,75) [cos &+ j sin ¢].  (2.4)

The phase angle of a phasor brings the information about the fraction of the
sinusoid’s period in which the time, or the angular displacement t, is advanced or
delayed to an arbitrary reference. It is very important to correlate different
alternating-waves between them, thus, the phasors represent an equilibrium point or
the steady-state condition of the AC circuit, that is, one can assume that the phasors

are time-invariant, as illustrated in Figure.2.1.

I Imaginary

... RMS value

Real

=0

Figure 2.1: Phasor representation of a sinusoid.

However, in practical cases, a time interval must be considered to perform the
phasor calculation. This time interval is also known as “data window” or
“observation interval”, being fundamental in phasor estimation of practical
waveforms. In essence, the phasor representation is related to a pure sinusoidal
signal, but the existing signals in electric power systems may be distorted by
harmonics. In this way, it is advised to extract the envisaged frequency
component(s) of the signal to also be represented by phasor notation. These tasks
have been properly performed by the classical Fourier’s theory. Due to the fact,
the main key points about phasor representation using the aforementioned theory

is presented and discussed in greater detail in the later sections.
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2.3.Fast Fourier Transform

We should mention that the Fourier transform is a very important part of many
engineering applications. FFTs are an important part of any digital spectrum
analyzer.

FFTs can also be used when implementing a spectrogram, such as the one
shown in Figure 2.2 below. Such spectrograms make it easier to understand
artifacts of speech and other sounds, or even radio frequency waveforms, by visual
inspection [14].

A

Frequency

>

>
Time

Figure 2.2 Spectral representation of speech

Convolutions and/or correlations can often be implemented much faster and
cheaper using an FFT implementation of the Fourier transform. This means that digital
filters can be implemented with Fourier transform enabled convolutions
faster/better/cheaper. Fourier transform are used to understand and analyze control
systems. Fifth, Fourier transforms are used not only in filter implementations, but they
are also used in the filter design process. And finally, like we used it in our design
Fourier transform can be used to evaluate phasor measurements.

The Fast Fourier Transform (FFT)is a specific implementation of the
Fourier transform, that drastically reduces the cost of implementing the
Fourier transform Prior to the invention of the FFT, a Discrete Fourier transform
could only be calculated the hard way with N? multiplication operations per
transform of N points. Since Cooley and Tukey published their algorithmic
implementation of the Discrete Fourier transform, they can now be calculated

with O(N log2(N)) multiplies. Needless to say, the invention of the FFT


https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
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https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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immediately started to transform signal processing. But before talking about the
FFT we should understand a little more about what a Fourier transform is first [14].
A Fourier transform is a linear operator that decomposes a signal from a

representation in time, to a time-less representation in frequency.

OO
X(eﬁ“f) = Z @ [n) e~ 927/

=00 (2.5)

This is the definition we will first come across when studying Fourier
transform. This form above is easy to work with mathematically with just pen and
paper. There are two problems with this nice mathematical definition when it comes
to working with an engineering reality. The first problem is that digital algorithms
do not operate upon continuous signals very well. Computers and other digital
signal processors do a much better job with sampled signals. Hence, we’ll switch
from discussing the pure Fourier transform shown above and examine the Discrete-
time Fourier transform instead. For this, we will switch from a  continuous
incoming signal, x(t) to its sampled representation, x[n]. The Discrete-time
Fourier transform can then be applied to our signal.

k pl . &
X [—} = Z z[n] e I*TR" (2.6)
N n=>0

While this discrete-time transform works very nicely for representing the
response of certain digital filters, it’s still not all that practical. This brings us to the
second problem: Computers can’t handle an infinite number of samples, nor can
they handle an infinite number potential frequencies. Both of these need to  be
sampled and finite. Fixing this second problem brings us to the Discrete Fourier

transform.

X(f) = / h z(t)e 72 It dt 2.7)

Now, not only is the x[n] used in this transform discrete, but the frequency
index, k/N, is as well. All three of these representations are very tightly related.
Mathematically, there are major and significant differences between these
transforms. Practically, however, only this last transform can ever be computed

digitally. Therefore, the first two expressions of the Fourier transform and then the
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discrete time Fourier transform can only ever be digitally approximated by the

Discrete Fourier transform [14].

It is this third representation of the Fourier transform, known as the Discrete
Fourier transform, that we will be discussing the implementation. We are also going to
argue that this is the only representation of the Fourier transform that can be
numerically computed for any sampled finite sequence. If we look at equation (2.7) ,
we can see it takes as input N data samples, X[n], and calculates one summation
across those inputs for every value of k to produce N samples out, X[k/N]. Given that
there’s a complex multiplication required for every term in that summation
of N numbers, and that there are N relevant outputs, this will cost N?painful
multiplications to calculate. If we just left things there, this transform would be so hard
to calculate that no one would ever use it. Cooley and Tukey, however, described a
way that the Discrete Fourier transform can be decomposed into two transforms, each
of them being half the size of the original, for the cost of only N multiplies. If
you then repeat this logz(N) times, you’ll get to a one-point transform, for a total cost
of N logz2(N)multiplies. At this cost point, the Discrete Fourier transform becomes
relevant. Indeed, it becomes a significant and fundamental DSP operation.

An FFT rapidly computes such transformations by factorizing the DFT matrix
into a product of sparse (mostly zero) factors [2]. As a result, it manages to reduce the
complexity of computing the DFT from O(n?), which arises if one simply applies the
definition of DFT, to O(nlog n), where n is the data size. The difference in speed can
be enormous, especially for long data sets where N may be in the thousands or millions.
In the presence of round-off error, many FFT algorithms are much more accurate than
evaluating the DFT definition directly. There are many different FFT algorithms based
on a wide range of published theories, from simple complex-number arithmetic to
group theory and number theory [14].

2.4.Phasor Calculation for 3-phase system
Consider a balanced 3-phase power system operating at a nominal frequency of

0, then the voltage waveform can be represented as
x1(t) = Xmcos(2=fOt + ¢1)
X2(t) = Xmcos(2=fOt + ¢2)
x3(t) = Xmcos(2xfOt + ¢3) (2.7)

10


https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing

Chapter 2 Theoretical Background

Here Xm represents the maximum amplitude of the signal and ® represents the
phase angle. The phase angles are 120 degree or 2z radian apart. The time domain

sample of the power system can be represented as

2mn
Kn1 = XCoS(——*+ @1)
2mn
Xpz = ,‘=|L’mcr:rs{T + 2) (2.8)

Xn3 =XmCOS( 2;” + p3)

Here N is the number of samples, which is an integer multiple of fundamental
frequency. fo and n represents the sample index in the array which ranges from 0 to N—1.
The generalized expression for N-point can be represented as

1 =~ 2mn 2mn
X = N HZ_;, .r:,l{m.eT —jsfnT} (2.9)

N-point DFT of the signal can be found out using

/3 N -
Xreal = == Tn(cos—) (2.10)
Ji\'r — J.\!
ﬁ N-—1 2mn
Ximg = N Tp(cos N ) (2.11)

The real and imaginary part of the above expression can be rewritten as

N—1
2 2m 2
X, = ti'_ Z .r:,ll:ms% — jsin ;1} (2.12)
n=0
N—1
2 2 2 2.13
Xnmnz'imi = T\/: HZID IHECGS% - jSi”%} ( )

The phasor estimate at nominal frequency is represented by this complex quantity
Xnominal, whose |Xr1mnz'naf| = JYEEGE + -Xizmg magnitUde
gives the RMS magnitude of the signal. The phase angle can be computed using

i i ‘Yfru
the trigonometric property, &, minal = ﬂfﬂ?]{mﬁ}-}
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2.5.Field Programmable Gate Array

2.5.1. Overview

A field-programmable gate array (FPGA) is a logic device that contains a two-
dimensional array of generic logic cells and programmable switches. The
conceptual structure of an FPGA device is shown in Figure 2.3. A logic cell can be
configured (i.e., programmed) to perform a simple function, and a programmable
switch can be customized to provide interconnections among the logic cells. Once
the design and synthesis are completed, a simple adaptor cable has to be used to
download the desired logic cell and switch configuration to the FPGA device and

obtain the custom circuit [15].

il I i
logic cell S F logic cell %SF logic cell

I
I

—— 4 sbE—— s

%[%
%%‘%

logic cel s logic cel s logic cell

I I I

Figure 2.3 Conceptual Structure of an FPGA Device

An FPGA can be used to solve any problem which is computable. This is
trivially proven by the fact FPGA can be used to implement a soft microprocessor,
such as the Xilinx MicroBlaze or Altera Nios Il. Their advantage lies in that they
are sometimes significantly faster for some applications because of their parallel

nature and optimality in terms of the number of gates used for a certain process [16].

2.5.2. Applications of FPGAs

Specific applications of FPGAs include digital signal processing, software-
defined radio, ASIC prototyping, medical imaging, computer vision, speech
recognition, cryptography, bioinformatics, computer hardware emulation, radio

astronomy, metal detection and a growing range of other areas [16].
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2.5.3. DE10-Board:

The DE10-Standard Development Kit presents a robust hardware design
platform built around the Intel System-on-Chip (SoC) FPGA, which combines the
latest dual-core Cortex-A9 embedded cores with industry-leading programmable
logic for ultimate design flexibility. Altera’s SoC integrates an ARM-based hard
processor system (HPS) consisting of processor, peripherals and memory interfaces
tied with the FPGA fabric using a high-bandwidth interconnect backbone. The DE10-
Standard development as shown in Figure 2.4 board includes hardware such as high-
speed DDR3 memory, video and audio capabilities, Ethernet networking, and much
more. [17]

The following hardware is provided on the board:

*Intel Cyclone V SE SCSXFC6D6F31C6N device

« Serial configuration device -EPCS128

« USB-Blaster 11 onboard for programming; JTAG Mode

* 64 MBSDRAM (16-bit data bus)

* 4 push-buttons

+ 10slide switches

« 10red user LEDs

* Six 7-segment displays

* Four 50MHz clock sources from the clock generator

* VGA DAC (8-bit high-speed triple DACs) with VGA-out connector
* PS/2 mouse/keyboard connector

* IR receiver and IR emitter

» One HSMC with Configurable 1/0 standard 1.5/1.8/2.5/3.3
 A/D converter, 4-pin SPI interface with FPGA

13
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Videodl VGA-Out :
ideo-In S \RT t
HFPGA G _ VoA -

mHPS lineOut 24-bit DAC net ..

M System 1 Line-In 1 J b ia

Audio Codec
Video Decoder

PS2
SDRAM
USB Blaster ||
DC 12v
]
Power ON/OFF Cyclone V SoC FPGA

HSMC Connector

ADC Connector 2x20 GPIO Connector

MSEL

LED x10

Button x4

Switch x10 " "
7-Segment WARI

Display HPS RS

Figure 2.4 DE10-Standard development board (top view) [17]

2.5.4. Quartus PRIME Software
Quartus prime is a software development suit tool developed by

Intel FPGA (former Altera) Company. It provides a graphic interface for
users to access tools and display relevant files. Some differences may exist

between different versions. The default Quartus prime GUI window is

shown in the below Figure 2.5

@Fk Eidt View P e Hep
DEUY @ G| |Es@es 0 r2na0k 08 W &
it e e 2 Bk bt | & vhd2 e | 2 Bleca2 bt
by Compleen anwchy (o] s =
g A
Project i
Navigator :}:
Window il
| = I
Dfmucy| B @ oegniiis] ) Work: Space Window
Tydks 4
flaw [ Congdoon :IJ oo
ffad 2
progegs-é-g .................
> \ 5
Winglow
1T = NTL Ve
| & Ante ) v N v
£ ’ « >
‘ Type imoa:):
Messages Window
b System [ Procrmirg ), Eanirhs J, o J, Wamig |\ Coical Viwrrg J, Ever ), Scppanarmd [P/
=

iy 1] b=

Figure 2.5 Typical Quartus PRIME GUI Window
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2.5.4.1. Signal-tap Logic Analyzer

The Signal-Tap 1l Embedded Logic Analyzer is a system-level debugging
tool provided by Quartus Prime, that captures and displays signals in circuits
designed for implementation in Intel/Altera’s FPGAs. Signal-Tap runs on the chip,
with your design, in real hardware (not simulation) to provide waveforms of logic
signals within the design. Signal-Tap uses significant hardware resources on the
FPGA to allow flexible triggering and to record waveforms of your logic signals for
later viewing on the PC running Quartus Prime. All communication is done through
the JTAG programming cable that you use to program the FPGA. No extra
hardware external to the FPGA is necessary. Figure 2.6 depicts the overall window
of this tool [18].

) SignalTap 1 Logic Analyzer - C:/Lab/Altera/BRL DEMO_Medil/BRL DEMO_Medil - BRL DEMO_Medil - [stolstp] @J E=SEEL
Fle Edit View Project Processing Tools Window Help 5 Search altera.com @
Instance Manager: ~)-'.:\ B W |2 Invalid JTAG configuration X | JTAG Chain Configuration: _ X
Instange Status LEs: 0 Memory: 0 Small: NA Medium: NA Harshwars: (Please Select = ] [ Setup... ]
b.‘i] auto_sig... Notrunning 0 cells 0 bits NA NA
Device: None Detected Y Scan Chain
< — T' N SOF Manager: | 3%, | U E]

| auto_signaltap_0 Lock mode: | =" Allow all changes Signal Configuration:

Node Data Enable | Trigger Enable | Trigger Conditions
Type | Alias | Name 0 0 1[V[BasicAND _ ~

Clock:

Data
Sample depth: | 128 v | RAM type: |Auto
[Tl segmented: |2 64 sample segments

Storage qualifier:

Type: [ £ Continuous
< m

Plpata | &3 setwp |

Hierarchy Display: x | [[] patalog: |4
L%‘ auto_signaltap_0

ﬁ] auto_signaltap_0

00:00:00

Figure 2.6 Overall windows of the SignalTap Il Logic Analyzer
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2.6.Analog to Digital Converter
2.6.1. Overview
Analog to digital converter converts continuous analog signal to discrete
digital numbers. ADC’s differ from each other by two main parameters, the
resolution which indicates the number of discrete values it can produce over the
range of analog values and the step size (quantization value) which is based on the
reference voltages of the ADC and it can be found as:

AV = V'ref+_1‘rref-
~ onbits_4

(2.8)

2.6.2. The LTC2308

The DE-10 Board FPGA has a 12 Bit ADC, The LTC2308 is a low noise,
500ksps,8-channel,12-bit successive approximation register (SAR) A/D converter.
The LTC2308 includes a precision internal reference, a configurable 8-channel
analog input multiplexer (MUX) and an SPI-compatible serial port for easy data
transfers. The ADC may be configured to accept single-ended or differential signals
and can operate in either unipolar or bipolar mode. A sleep mode option is also
provided to save power during inactive periods. Conversions are initiated by a rising
edge on the CONVST input. Once a conversion cycle has begun, it cannot be
restarted until the current conversion is complete. The time taken by each conversion
for each channel is 1.3 ps [19].

Figure 2.7 represents SPI timing specifications for this ADC

MS8 LS8

S00 811 810] 89| 88| 87| s | 8s | 84| 83| 82| 81 80 I——

Figure 2.7 LTC2308 Timing with a Short CONVST Pulse [19]
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This chapter describes the design and implementation of a part of a Phasor
Measurement Unit using FPGA. The block diagram of such a unit is shown in

Figure 3.1.

| Three-phase Voltage and Current Signal 'w
Bl

-~

\ Signal Process Module

H B

3

| Serial Port Module

’ ADC ‘
N >
N _SSTasaael S
| FIFO ADC Control ‘ [
L e Module
| j r odu |
| |
| GLUE FPGA ’
' JIC |
| |
| FFT Module |
| I
| 1

¢

Figure 3.1: Block diagram of our prototype PMU

3.1. Signal Acquisition and Sampling

For the calculation of a phasor, the data (i.e. the sampled voltage signal)

must be acquired. When the PMU is tested in real-world scenarios a means of
getting the signals from the transmission lines is necessary, which is accomplished
using a Potential Transformer (PT) and a Current Transformer (CT) in the
substations. This signal is further stepped down using the Hall Effect voltage
sensors. However, in our laboratory setup, we used a Function Generator to
generate sinusoidal input signal to mimic the signals read from voltage and

current sensors.
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3.1.1. Sampling of the signals using ADC (Analog to Digital Converter)
As explained in the last chapter, the on-board ADC is connected to the
FPGA through an SPI-interface as seen in Figure 3.2. A state machine is designed
and implemented in VHDL to control this ADC

LTC2308CUF ‘

ADC_INO

ADC_IN1
—_—

ADC_IN2 SCLK oL D

|

_ADC N2 Socon BFANITERYE
ADC IN3 DIN e ®

_

ADC_DOUT
—_

DOUT @
ADC_CS N

o™

SoC

ADC_IN4
ADC_INS
ADC_IN8

ADC_IN7

. Figure 3.2: Connections between the FPGA, 2x5 header, and the A/D converter
[19]

3.2 FFT Calculation
To implement the phasor calculation unit, the DE10-board FPGA has been

used as the computational unit. For a 3-phase system, the voltage samples are
stored in FIFOs on the FPGA which is updated every time a new sample comes
in. A counter in the FIFO keeps track of the number of accumulated samples. As
long as the FIFO store data, the phasor calculation task is initiated, and the FFT

unit is used to calculate the spectrum of the input signal.
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3.3 PMU SoC System Design

The top-level file containing the SoC overall project is illustrated in Figure 3.3.

ffiglueiinst4 fft_topiinst7

i %0[11..0]

i clk i X1[11..0] YO[11.0]
i data[11.0] i X2[11.0] Y1[11.0]
dividerinst10 |_reset LX301.0] Y2[11.0]
Lnext ¥3[11..0]
CLK clk &
= sync
fifo:inst3
ADCiinst datal11.0] input[11.0]
wrreq
data_in[ > o DataRdy
- Dout[11..0]
ackno[ > [ > dataready
clock[ > clockout [ > sclk
convst
reset[ > [ > convst

Figure 3.3 Overall Block Diagram of the On-Chip System
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This design consists of two parts:
3.3.1. The Off-Chip Hardware Unit
The off-chip hardware unit is composed of:
3.3.1.1. Function Generator:
It generates the analog signals to be processed; in our case, it replaces the
3-phase signals after signal conditioning.
3.3.1.2. Data Acquisition Unit:
It samples analog signals coming from the function generator and
converts them into digital data.
3.3.1.3. The PC Unit
The PC runs the Quartus Prime development suite tools to develop, debug
and download the overall system onto the FPGA chip of the DE10 board.

3.3.2. The On-Chip Hardware Unit
The on-chip hardware is implemented on the FPGA,; it controls the Off-
Chip hardware unit and communicates with the PC via the USB Blaster cable.
The SoC system main entity has the following inputs and outputs:
- Data-in: 1-bit input port connected to the ADC block, which represent
the serial digital data coming-in from the LTC2308 ADC to the FPGA.
- Data-out: 12-bit output port coming out of the ADC block, which
represent the sampled parallel data.
- Data ready: 1-bit output ports from the ADC to tell if the Data in the
output register is valid or not. It is also used for handshaking with the
FIFO block.
- Convst: 1-bit output used to send the start of conversion signal to
the ADC.

- Sclk: 1-bit output used to provide slower serial data clock for the
ADC

- Reset : 1-bit input asynchronous reset connected to the ADC and FFT

block., to reset the hardware.

- clk: 1-bit input port which represents the 50MHz clock input used as
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the overall design clock source.

- result: 24-bit output port coming out from the FFT block used to

calculate the spectrum of the input signal sequence.

- sync: 1-bit output port from the FFT block to indicate that we have

got the calculated results from the FFT core.

The overall block symbol of the SoC project is shown in Figure 3.4

TE o -
* [project
LS corvst ||
|| clock
dataready
[ | data_in
* Pink: result[0.23] O
|| reset
sync ||
[ | ackno ||
sclk
|| clear
ul I O

Figure 3.4 PMU SoC block symbol

3.4. PMU SoC project blocks

The SoC project is made of several custom blocks developed in VHDL
involving the data acquisition and sampling of the analog input unit i.e. the ADC
unit, frequency divider unit, data buffering unit, and the FFT unit. Each block will

be detailed in the following sections

3.4.1. Clock Divider block
This block is used to synchronize data communication between the different

blocks by generating multiple ranges of clock frequencies, as we can see in

Figure 3.5. The main frequencies generated by this block were : 25Mhz which
was supplied to the ADC block and the FIFO block, the 12.5Mhz sampling
frequency which was supplied to the slow clock of the ADC and the 6Mhz clock
which was used with The FFT block.

The reason why we chose these frequencies was because of the following:
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e The time for the whole power-up and conversion process before the data is
ready to be output in the ADC is 5.5us (max), and we know that in order
to sample one pulse we require 1.6us, that’s why we used a clock of 80ns
i.e. 12.5Mhz, hence the sampling period will be 6.4us, to make sure the
output is ready and is correct.

e Since the FFT block is very fast, in order to synchronize the FFT with the

arriving sampled signal from the FIFO block it was necessary to use a

slower clock, that is why we used the 6Mhz clock.

“— GLK clk_25
clk_6 —3
Clk_12 {—

Figure 3.5: block diagram of the clock divider unit

3.4.2. The ADC controller block:

ADC
— clk conwst —
— Din Crout[datswidth-1. 0] s
— r=t
CrataRdy —
clockouwt —

Figure 3.6: block diagram of the ADC controller unit
As we can see from Figure 3.6, the ADC controller read tthedigital data
from the on-board ADC using the Din serial input. In typical PMUs, the ADC

conversion is started on reception of 1 pulse per second (PPS) from the GPS

module. However, in our case we did not have a GPS module. So, a locally

generated trigger PPS signal is used. The sampling process then begins as the

state machine in Figure 3.7 depicts.
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getting_input stop_reading start_convert data_ready

Figure 3.7: State machine representing data acquisition from the ADC

Since the ADC in the DE-10 board FPGA is a 12-bit ADC, it gives a data

reading of 0 to 2'2-1 for an input voltage range of 0 volt to 4.096 volt. Hence, it
IS necessary to map the digital data readings with the actual measured values
using the linear relationship between them.

3.4.3. FIFO block (storage block):

fifo
b d3ta[11..0] g[11..0] frmke
— wireg full—
— rdreq {zck empty —+
N usedw[, (] fm—
— aclr 12 bits x 1024 words

nst

Once the data is sampled, it needs to be stored temporally in order to be
processed by the FFT block as shown in Figure 3.8. The storage process begins once
the ADC sends to the FIFO a “dataready” signal. The FIFO block used was initially
generate from the IP core library in Quartus Prime. It was configured to accept a 12-
bit width and 1024 words depth as shown in Figure 3.9. This block is also provided
with full and empty signal which are used to enable the FFT block
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once the data is available. This IP block is clocked at the same clock as the ADC.

[®=]

r;j FIFO

Parameter

Settings

N

Vs

~ s
Width, Cks, Synchronization /> SCFIFO Options 5 > Rdreq Option, Blk Type Optimization, Circuitry Protection 5 e

Currently selected device family: ¢ ycfone v

fifo
Match project/default
¥— data[11..0} q[11..0) > —_—
How wide should the FIFO be? | 12 « | bits

K— wrreq full —>
k| rdreq {zck empty i Use a different output width and set to 12 bits
K— clock LsedWit = How deep should the FIFO be? 1024 v | words
k— aci 12 bits x 1024 words Note: You could enter arbitrary values for width

Do you want a common dock for reading and writing the FIFO?

® Yes, synchronize both reading and writing to 'dock’.

Create one set of fullfempty control signals.

@) No, synchronize reading and writing to 'rddk’ and 'wrclk’, respectively.
Create a set of fullfempty control signals for each dock.

Resource Usage

29 lut + 2 M10K + 47 reg [ cancel | [ <Back |[ mext> |[ mnish |

Figure 3.9: Configuration of the FIFO block in the mega function wizard

dftglue

— i_ck i_next —

— i_reset _K0[11. . 0] s

=t i_data[11..0] LXA[11..0] =t

: [ X2[11..0] gt
X3[11..0] =

imst1

Figure 3.10: block diagram of the Interfacing logic unit

This “Glue logic” as named in Figure 3.10 was used to interrface the FIFO
block with the FFT block, since The FFT block needs to meet some conditions to
be enabled. This block’s main task was to meet these conditions such as triggering
the “ce” signal of the FFT and make the data length wider in order to be accepted
by the FFT.
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3.45. The FFT block

: fft_top

-— clk next_out —
'— reset SO[11..0] p—
— next YA[_0)
— X0[11...0] Y2[11..0] g
ot X1[11..0] Y[, 0]
—12[11..0]

— JG[11..0]

instz2

Figure 3.11: block diagram of the FFT unit

This is the main block of our implemented design as it processes the

sampled data in order to finally calculate its spectrum. Given that implementing
is an FFT block is a huge and acomplex task, we evaluated three different
(already existing) FFT hardware cores to test our system:
3751  The Intel FFT core integrated in the IP catalog in Quartus Prime:
This core represents the best solution in terms of efficiency  and
reliability. However, we did not use this core, since it has two major

issues:

e This core requires sending data via bus which should be controlled by
a microprocessor. Hence, it is not suited for our system design which
is based on direct execution on pure hardware blocks.
e Asshown in Figure 3.9 this core has many handshaking signals which

makes it very complex to interface with our glue logic.

- = o[ petsis 53 [ 5 Bodesymbol o5 o=
Syst: unnamed  Pathe fft_i_0 ah P
] Show signals
FET
altera_fft_ii | Generate Example Design... fit_ii_0
Faraen 2 cli source
et e i i Source_walid source_val
L rst souree_ready source_reacl
Direction: Bi-directional i soum; el source_error[1.|
= et_n soum; sop S0Urce_so
|- 170 sink] - soUrce_eo)
: : source_eop
Data Flow: Variable Streaming ink_valicl inke walid <cource real source_real[26 |
Input Order: Matural o .nk_readv kcrmady,  source. g fe—cmiee imag[28
ink_errar[1..0] Sikicerrar fhepts_out fitpts_out[10..
Output Order: Digit Reverse - ink_sop e -
2 _sop
- ink_sop ink_eop
|~ Data and Twiddle sk realli7.0] |
Representation: |Fixed Point " Sink_imag(17..0 sink_imag
Data Input Width: |13 . | bits _ﬂ SHriiEn fﬂpt_s_in
Twiddle Width: [18 < | bits ose L
Data Qutput Width: |29 bits altera_fit_ii
|' Latency
Calculation Latency: |1p74 cydes
Throughput Latency: |1n24 cydes
M pi e
[al presets 4 | e

Figure 3.12: FFT core integrated inside Quartus’s mega wizard
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3752 Open Source FFT core by Gisselquist Technology, LLC

This is an open source FFT core, which is implemented by Gisselquist
Technology, LLC. In order to be able to generate the Verilog code for this
core we followed a number of steps [13]:

o Running the FFT Core Generator software:

Inside Linux shell we run the following commands:

S git clone https://github.com/ZipCPU/dblclockfft

S make

Once the “make” command completes, we got an ‘fftgen’

exectable program in the sw/ subdirectory which is used to

generate customizable FFT cores depending on user requirements.
e  Generating the FFT core

This core offers several features, but since we needed just a 1024

point FFT with 12-bit input/output width, the following commands

is used to generate the core:

$ ./fftgen -f 1024 -n 12 -m 12

The block diagram of the generated core is represented in Figure 3.13

i reset
Y
e o_sync
Pipelined
FFT
Core

i sample 0 result _
{Re,Im} | /\ {Re,Im} ~

i clk

Figure 3.13: Block diagram of the generated core

The input and output ports of this core are:
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i_clk: synchronous to the 6Mhz clock divider output.

i_reset: is a positive edge asynchronous reset signal.

I_ce: is a global CE signal. It is set to 1 on every clock where a valid
new sample is available on the input.

I_sample: is actually a pair of values, both real and imaginary, stuffed
into one signal bus. The real portion is placed in the upper bits, and the
imaginary portion is placed in the lower or least significant bits.
0_result: is the output of one FFT bin from the FFT. It is in the exact
same format as i_sample.

0_sync: is the last output in the port list. This signal will be true when
0_result contains the first output bin coming out of the FFT.

Unfortunately, despite the core being simple to interface with, it did not work

properly [13].

3753 Spiral core:
The Spiral DFT/FFT is a web-based IP Generator which automatically
generates customized Fast Fourier Transform (FFT) IP cores ina
synthesizable RTL Verilog. The user has control over variety of

parameters that control the functionality and cost/performance tradeoffs
such as area and throughput [20]. We selected the parameter that suits our

design and generated it as shown in Figure 3.14,

parameter value range explanation

Problem specification

transform size 1024 ~ 4-32768 Number of samples (2]
direction forward ¥ forward or inverse DFT (2}
data type fixed point ¥ fixed or floating point (2)
12 bits 4-32 bits fixed point precision (7)
unscaled ¥ scaling mode (7]
Parameters controlling implementation
architecture fully streaming v iterative or fully streaming {2)
radix & v 2,4, 8, 186, size of DFT basic block (7)
32, 64, 128,
256
streaming width a T 8-256 number of complex words per cycle (2)
data ordering natural in / natural out A natural or digit-reversed data order (2)
BRAM budget 1000 maximum # of BRAMs to utilize (-1 for no

limit) (2)

Permutation JACM'0S [3] (patented) ¥ Please click for more information
method

Generate Verilog || Réinitialiser

Figure 3.14 The web interface FFT core generator [20]

28



Chapter 3 Hardware Design

The block of the generated core is shown in Figure 3.15

: fft_top

-— clk next_out —
'— reset O[T, 0] e—
—{ next YA[1.0] o
et XD[11...0] Y 2[11..0] fome
et I[11...0] Y3[11..0] frm
et X2[11..0]

— }E[11..0]

Figure 3.15: Block diagram of the spiral FFT core
The input/output ports of this core are:
clk: synchronous to the clock input.
reset: is a positive edge asynchronous reset signal.
next: this input (asserted high), is used to instruct the system that the
input stream will begin on the following cycle.
Xo,1,2,3: 1S actually a pair of values of 12 bits, both real and imaginary,
used to make the core work in parallel. The real portion is placed in the
upper bits, and the imaginary portion is placed in the lower for example
Xo'is the real part and Xy is the imaginary part and so on.
Yo,1,2,3: i the outputs from the FFT. It is in the exact same format as
X0,1,2,3-
Next_out: The output signal 'next_out' (also asserted high) indicates that the

output vector will begin streaming out of the system on the following cycle.

The design uses a system of flag signals to indicate the beginning of the
input and output data streams. The 'next" input (asserted high), is used to
instruct the system that the input stream will begin on the following cycle.
This system has a 'gap' of 512 cycles. This means that 512 cycles must
elapse between the beginning of the input vectors.

The output signal 'next_out' (also asserted high) indicates that the output
vector will begin streaming out of the system on the following cycle.

The system has a latency of 1373 cycles. This means that the 'next_out'

will be asserted 1373 cycles after the user asserts 'next' [20].
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Chapter 4 Implementation and Results

This chapter shows the implementation of our prototype Phasor measurement
unit using FPGA. This chapter also describes and analyses the results captured using
SignalTap Il Logic Analyzer Tool. Figure 4.1 depicts the system implemented. The
Function Generator generates a sinusoidal signal with a 50Hz frequency. This signal
is fed to one of the analog inputs of the on-board ADC.

PC running the
Quartus Prime

DE10 bo
'_:,\ " A

ard D -
"‘7 '""'v /? 2 -

Figure 4.1: The experimental setup to test the PMU system
4.1. Testing the FFT hardware core

4.1.1. Open Source FFT core by Gisselquist Technology, LLC

Figure 4.2 shows a real-time testing of the first FFT core using SignalTap
logic analyzer. It can be seen that the ADC is transmitting data through the signal
‘output’ to the core and the core’s chip enable (‘ce’) is turned on, but no data is
coming out from the core i.e. ‘results’. This indicates that the core is not working
since all interfacing conditions are satisfied and no output data is coming out.
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kA

JTAG Chain Configuration: [JTAG re

X

Instance Status Enabled  LEs: 2085 Memory: 92160 Small: 0/0 Medium: 8/553  Large: 0/0 Hardware: | DE-S6C [USE-1]
FFTout _ 1100 cells 51200 bits 0 blocks 5 blocks 0 blocks
®. AbCout Not running 0 cells 0 bits 0 blocks 0 blocks 0 blocks Device:  [{@2: 5CSEBAG(|ES)/5CS
» : : -
i Glue Not running 985 cells 40960 bits 0 blocks 4 blocks 0 blocks >> | SOF Manager: = l“] E

log: Trig @ 2019/06/11 12:50:38 (0:0:0.2 elapsed) #1

Type| Alias _Name
__*’ fftmain:inst4]i_clk
% ce
e —
[ 8] |® resutfzs.o)

288 320 352 384 416 576 608 640

224 256 448 480 512 544
AR AR AR AR RARRRRARRRARRAR RN

Figure 4.2 Actual real-time testing of the open source FFT core

4.1.2. Spiral FFT Core Simluation

As shown in Figure 4.3, ModelSim was used to test the core through
simulation. Figure 4.3 (a) shows the beginning of simulation where the signal ‘next’
is given a pulse to start the FFT computations. Figure 4.3 (b) shows the end of
simulation where the signal ‘next out’ is asserted high by the FFT core indicating
the end of FFT computations. Since the simulation takes a large number of cycles,
we cannot show the full length of the waveforms. As it can be noticed, the core is
functional since there are results generated by the core for given input signals. Also
it can noticed that this core is triggered once it receives a “next” signal which means
that it begins processing the data when the “next” signal is one, when the data are
processed the core set the “next_out” signal to one and the data is available on the

“Y” signals.
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Figure 4.3 Simulation of the Spiral FFT core: (a) the beginning of simulation (b) the end of simulation
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4.2.Project Compilation Report

The compilation of the whole system was successful. The summary of the
compilation is shown in Figure 4.4. The entire system uses 6% of the total logic
elements, 6841 registers, 14% of the total pins and 23% of the total memory bits,
also as we can see the designed system uses 32% of DSP blocks, which can reflect

that the FFT core is synthesized correctly.

Flow Status Successful - Sun Jun 30 00:02:33 2019
Quartus Prime Version 16.1.0 Build 196 10/24/2016 SJ Lite Edition
Revision Name adc

Top-level Entity Name project

Farnily Cyclone V

Device SCSXFCeDEF31CE

Timing Models Final

Logic utilization (in ALMs) 2,452 ] 41,910 (6 % :|

Total registers 6841

Total pins 70/499(14% )

Total virtual pins 0

Total block memory bits 1,304,192 / 5,662,720( 23 %)

Total DSP Blocks 36/112 (32 %)

Figure 4.4 Compilation Summary

4.3.Results of the implemented system

After the design has been compiled, the SignalTap Il Logic Analyzer Tool is
launched and required nodes and clocks are added to test the design in real time as
shown in the bellow Figure 4.5.

P [= @ [=]
=] e >0
T — 4 21 [invatia smag configuration % | JTaG chain configurstion: | EREIEEEEEEE
Instance Status Enabled LEs: 1826 Memory: 917504 Small: 0/0 Medium: 112/55. Large: 0/0 Hardware: | Disabled Setup,
auto_signaltap_0 Not running 1826 cells 917504 bits 0 blocks 112 blocks 0 blocks
Device: None Detected Scan Chain

>> | SOF Manager i | I | Dsers/psi/Desktop/p/adc/ade.sof | ...

trigger: 2010/07/04 11:20:32 #1 Lock mode: | =" Allow all changes - Signal Configuration: x
Node [ Data Enable | Trigger Enante | Trigzer Conditions | |

Type | Alias Name nz | 0 [1CC asic anp Clock sclk

N reset O Data

E dft_topiinst2|clk O

N dft_toprinstz|next_i O Sample depth (B RAM type: | Auto

- dft_topinst2|next_out O [ segmented: 2 4K sample segments

& F-input{11.0] O

& Bt topins2|X0[11.0] O Nodes Allocated: ® Auto O Manuat -
E T topine o

& - dift_top:inst2|x111..0] O Pipeline Factor: 0 <
& - dft_toprinst2[¥2[11..0] O

& F-dft_toprinst2|X3[11.0] O Storage qualifier:

g
| = | | ®-vo[11.0] 0 Type: ZE Continuous A
3 #-¥1[11..0] O

3 -¥2[11.0] O Input port: auto,

& F-¥3[(11.0 O
e [11.0] Nodes Allocated

Rec
e v
< >

P pata Bseup

auto_signaltap_0

0% 00:00:00

Figure 4.5: Adding design signals to Signal Tap Il Logic Analyzer

Tool
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After the programmer and the device have been verified, the design is
recompiled, it can be remarked that the design took longer to recompile since the

tool took enormous resources for testing.

The generated waveforms of the tested prototype is shown in Figure 4.6

o Trig @ 2019/07/04 1131:37 (000.2 elapsed)

Next i pulse

Type ) Alias | Name l 1849, ......,.!,9#.“..‘.......?.‘?99......‘..?.‘?f'.ﬁ...,.....?.‘?n’.?......,..?.‘?u‘?ﬁ‘..,.....?.‘?P,.“......‘..,?.‘?EP‘..,......?“?ﬂﬁ.......,.?.'.'f'.E..,......?.'!Eﬁ.........?.'.'ﬂ“..,......l
- dft_toprinst2|clk 1I’1ﬂﬂFﬂ|’1ﬂﬂ|’]ﬂ |_||_||_||_||_||_|UUUJUUUUUUUUUUUUUUUU|_||_||_||_||_||—|
> dft_topidgt2|next_i ’_|
- dft_toprinst2|next_out
= #- input[11..0] z02h L 202h i 20zh L 202h
> +| dft_top:inst2|X0[11..0] 202h | 202h | 202h [ 202N
{ #- dft_top:inst2|X1[11..0] 00oh
S +- dft_top:inst2|X2[11..0] 207h | 207h | 207h B K 207h
—~ - dft_top:inst2|X3[11..0] 000h
a - yo[11..0] BRI ENE NI IEE NN RN ERETIERE NS T B0 EEEEE N T
T3 - ¥1[11..0] LEBEENEEENEEE NG BEEE T REEEE B B AEETEED AR
~ - ¥2[11..0] ¥ Yoornll ¥ Fron 1 IO Yooont 0 Weranl X X 0O O Yoornfooont XX XXX
iy #-¥3[11.0] AN B RN EA S EEENE G B BRI EELEEE
< —
(a)
"ype | Alias Name L.....*.‘?ﬂ.!i...‘.. 4480 4406 4512 4538 4544 45EQ 4576 4582 4608
B —— AR Next_out pulse |'|ﬂﬂﬂI'II'mﬂ|'|ﬂﬂ'||'|ﬂﬂl‘ll’l‘lﬂl‘lﬂﬂﬂl‘ll‘lmﬂﬂﬂﬂﬂﬂﬂﬂrI‘lﬂl'l
- dft_toprin ;
- |n512|n¢nt out _,_| >
i +- input{11.0] FFFR I FFEh X FFFR 0
—~ * dft_topinst2]X0{11..0] FFFh
ﬁ * - dft_topinst2]X1[11..0] 000h
= +- dft_topinst2]X2[11..0] I 004h
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3 = vo[11..0] o0oh M_FEFn B I FEFn B AL FRER i WEFER WEFFRAL_ooon AL I Fren Al ooon ID'DI i 200h WO ooon KOsl
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(b)
Figure 4.6: Waveforms of the tested design
(a)the beginning of simulation (b) the end of simulation

As seen in the waveform generated in Figure 4.6 We are getting some data
inputs from the interfaced logic which is connected to the storage block which is
also connected to the data acquisition unit (ADC), hence the data from the ADC is
well received.

Also, as it can be seen we are getting a pulse to the “next” signal in order to
trigger the core. Hence the conditions to turn the FFT core on are satisfied.

At last it is noticed that after a certain time after a “next” pulse is generated

there is a “next_out” signal associated with Y’s data i.e. the FFT core is working.
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Conclusion

As the PMU technology has to provide estimations with high degree of
accuracy, the hardware platform that will be used for this phasor estimation
algorithm should have a high degree of determinism. In this respect, the use of
FPGA to implement the PMU algorithm is highly justified.

The FPGA-based PMU was based on the Cyclone V Assembly, VHDL,
Verilog HDL. These platforms are open source software; hence, the overall

implementation is low cost and can be easily configured.

It can be concluded that SoC-based PMU was designed and implemented

and the objectives of this work have been successfully met and they are as follows:

- Implementation of a Phasor Measurement Unit System based on FPGA
- Apply every single knowledge of Hardware design and computer

engineering that were acquired during the past five years.

Effort and time were spent to debug software bugs and hardware problems
to improve the system and make it operational. The implementation of the SoC-
based PMU System was carried and the final prototype was fully functional. Like
any other project, this work can be enhanced and improved by adding some

features, mainly:

- The project was designed using a small single-phase function generator
system for study purpose, for wide area monitoring purpose, the prototype
can be implemented with some modifications, for example, by testing the
system with 3 phases, increasing the sampling rate for better accuracy,
attaching a GPS module in the system for time stamping etc.

- In the future scope of research, the prototype is to be used in studying the
effects of faults on the Phasor estimates, power monitoring system, and

other benefits that could be gained from phasor measurement unit.
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Appendix

Using Signal Tap Il Logic Analyzer

1- First we need to have a complete Compiled project, so we set pin
assignments and we should have no error.

2- Select SignalTap Il Logic Analyzer: After compilation we have to ensure
the JTAG programmer (USB-Blaster) is connected between the board and
the PC. We open SignalTap II Logic Analyzer by selecting “Tools |
SignalTap II Logic Analyzer” or we can open pre-existing SignalTap 11
Logic Analyzer file (*.stp) from “File | Open”.

After that we Select Hardware, If not appear USB-Blaster, we click Setu

Y
to select the programmer. Shown in Figure | [ -
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3- Add nodes to be analyzed: we double click to add necessary nodes, click
List to view nodes, then Add nodes to be analyzed Select nodes. As shown
in Figure 11
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Figure 11: AddfHg your desired nodes to test
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4- Select proper clock Basically, the clock need to be set to FPGA clock.

5- Choose Sample depth depending on RAM attached to FPGA

6- After setting for SignalTap Il Logic Analyzer, you need to compile your
project again.Select ,,sof* file and program your code Select ,,sof™ file to

be downloaded first.Program your project on the board. As shown in
Figure 111

Search altera.com

-' X | JTAG Chain Configuration: JTAG ready x |
56 Large: 0/0 Hardware: [USB-Blasher [USB-0] v] [ — ] |
0 blocks

Device:  |@1: EP3C25/EP4CE22 (0x020F3 ~ | | Scan Chain |

SOF Manager: 20i1/BRL_DEMO_Medi1.sof ... |

Signal Configuration: -

- |
rogra
Clock: CLOCK_S0

— 1. Click to EI

Sample depth: RAM type: | Auto choose sof file)
[] segmented: ‘72 16 K sample segments v:

N
o)

Storage qualifier:

Type: [§ Continuous v ]

Input port: ‘ ‘
| V! Record data discontinulties

[ ] Disable:storage qualifier

Figure 111 Selecting the clock and programming the tool
7- Run analysis to view signals as shown in Figure 1V

Search altera.com
;' Instance Manager: . . . Ready to acquire X | JTAG Chain Configuration: JTAG ready X |
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&) auto 725 cells 393216 bits 0 blocks 48 blocks 0 blocks
Device: @1 EP3C2S/EP4CE22 (0x020F3 ¥ | [ Scan chain |
' Run analysis to view signal transitions. It only shows tfansitiemnssilu] - pevo vedrsof ..
log: 2013/11/27 15:16:47 #0 dick ta insert time bar
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2 e | D R N |
A ﬂz}]
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Figure 1V Running the Analysis on Signal
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