
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Electronics

Option: Computer Engineering

Title:

FPGA-Based Phasor Measurement Unit

Prototype

Presented by:

- TALAMALI Youcef

- AMROUCHE Yacine

Supervisor:

Dr. MAACHE A

Registration Number:…..…../2019

i

Abstract

Phase measurement is required in electronic applications where a synchronous

relationship between the signals needs to be preserved. As the world continues to move

towards a Smarter Grid day by day, it has become the necessity to incorporate real-time

monitoring of the grid wherein the instantaneous snapshot of the health of the grid can be

made available.

Traditional electronic system which are used for time measurement are designed

using a classical mixed-signal approach. With the advent of reconfigurable hardware such

as field-programmable gate arrays (FPGAs), it is more advantageous for designers to opt

for all-digital architecture.

This project is about the design and implementation of a part of Phasor

Measurement Unit (PMU) Prototype based on FPGA. It discusses how an FPGA can be

used to estimate the phasors of a one-phase system. An example sinusoidal input signal

is generated by a Function Generator and then sampled using the Analog to Digital

Converters (ADC) on the FPGA board. The design then stores digital data into a local

FIFO, which is passed to a 1024- Point FFT hardware core to get the spectrum of the

signal and hence calculate the frequency and the phase difference.

The system uses the Intel DE10 FPGA board (donated by the Intel University

Program) and the Quartus Prime suite to design and implement the system. One of the

aims of this project is to evaluate the potentials of the newly acquired DE10 FPGA board.

The final output of the FFT core are transmitted back to local host through Quartus

SignalTap II logic Analyzer Tool.

Keywords: PMU, FPGA, VHDL, ADC, FFT, Quartus.

iii

Dedication

This project is dedicated to my dear parents whose faith in me never once

wavered for their love, endless support and encouragement ,also to my lovely sisters ,

brothers, nephews and nieces . I would like to thank them for their support and

unconditional love during all my studies. I further extend my gratitude to all members

of TALAMALI’s family.

I also dedicate this project to all my good friends, especially the squad for all

the moments and memories shared together, mostly the pep talks that brought humor

along with encouragement through the years spent in university, without forgetting my

childhood friends for always having my back no matter the

circumstances.

Last and not least, I dedicate this humble work to everyone who has taught,

encouraged, and advised me during all my studies.

.Talamali youcef

This work is first dedicated to my parents and my brothers for their never fading

love, support, belief and patience and most importantly for their excellent guidance that

made me become the person I am today, to my brothers and sisters and m and nieces for

their unconditional love and care and all my family for their encouragement.

I also dedicate this project to all my good friends, especially the squad for all the

moments and memories shared together, without forgetting my friends of the mosk for

always having my back no matter the circumstances.

.Amrouche Yacine

iv

Acknowledgment

All praise and thanks giving to Allah the most powerful and most

merciful who give us the ability and patience to accomplish this humble work.

We would like to express our gratitude to our supervisor Dr. A.

MAACHE for his guidance and support during our work. We are grateful to

our teachers, academic staff and workers at the Institute of Electrical and

Electronic Engineering who prepare for us the environment to work and offer

to us their valuable help.

We would also want to thank all those people who supported us through

the process of writing this report.

We would like to acknowledge the donation of the DE10 Standard board

done by the Intel University Program.

v

Table of Contents

Table of Contents

Abstract ... i

Dedication .. ii

Acknowledgment ... iii

Table of Contents .. iv

List of Figures... viii

List of Abbreviations .. x

CHAPTER 1: Introduction .. 1

1.1 Overview ... 1

1.2 Literature Review ... 2

1.3 Motivation ... 3

1.4 Project Objectives ... 4

1.5 Organization of the Report ... 4

CHAPTER 2: Theoretical Background... 5

2.1 Signal Model… ... 6

2.2 Phasor.. 6

2.3 Fast Fourier Transform ... 7

2.4 Phasor Calculation for 3-phase system ... 10

2.5 Field Programmable Gate Array ... 12

2.5.1 Overview .. 12

2.5.2 Applications of FPGAs .. 12

2.5.3 DE10 Board .. 13

vi

Table of Contents

2.5.4 Quartus Prime Software ... 14

2.5.4.1 Signal-tap II Logic Analyzer ... 15

2.6 Analog to Digital Converter ... 16

2.6.1 Overview .. 16

2.6.2 The LTC2308 ... 16

CHAPTER 3: Hardware Design .. 17

3.1 Signal Acquisition and Sampling .. 18

3.1.1 Sampling of the signals within built ADC (Analog to Digital Converter) 19

3.2 FFT Calculation ... 19

3.3 PMU SoC System Design… .. 20

3.3.1 The Off-Chip Hardware Unit ... 21

3.3.1.1 Function Generator: .. 21

3.3.1.2 Data Acquisition Unit: .. 21

3.3.1.3 The PC Unit ..21

3.3.2 The On-Chip Hardware Unit ... 21

3.4 PMU SoC project Blocks ... 22

3.4.1 Clock Divider block .. 22

3.4.2 The Analog to digital converter (ADC) block .. 23

3.4.3 FIFO block (storage block) .. 24

3.4.4 The Interfacing Logic .. 25

3.4.5 The FFT block .. 26

3.4.5.1 The intel core integrated in the IP catalog in Quartus Prime 26

3.4.5.2 FFT core generated by Gisselquist Technology, LLC 27

3.4.5.3 Spiral core .. 28

vii

Table of Contents

CHAPTER 4: Real Time Implementation and Analysis 30

4.1. Simulation of the FFT core using Model Sim ... 31

4.1.1. First FFT core .. 31

4.1.2. Spiral FFT Core ... 32

4.2. Project Compilation Report .. 34

4.3. Results of the implemented system ... 34

Conclusion ... 36

Appendix ... 38

References ... 42

List of Figures

8

List of Figures

Figure 1.1: Standalone PMU device from Arbiter, model 1133A power sentinel…..2

Figure 2.1: Phasor representation of a sinusoid .. 7

Figure 2.2: Spectral representation of speech ... 8

Figure 2.3: Conceptual Structure of an FPGA Device ... 12

Figure 2.4: DE10-Standard development board (top view) 14

Figure 2.5: Typical Quartus PRIME GUI Window .. 14

Figure 2.6: Overall windows of the SignalTap II Logic Analyzer 15

Figure 2.7: LTC2308 Timing with a Short CONVST Pulse 16

Figure 3.1: Block diagram of our PMU .. 18

Figure 3.2: Connections between the FPGA, 2x5 header, and the A/D converter..19

Figure 3.3: Overall Block Diagram of the On-Chip System… 20

Figure 3.4: PMU SoC Block Diagram ..21

Figure 3.5: Block diagram of the clock divider unit .. 23

Figure 3.6: Block diagram of the ADC unit .. 23

Figure 3.7: State machine representing data acquisition from the ADC 24

Figure 3.8: Block diagram of the storage unit ... 24

Figure 3.9: Configuration of the FIFO block in the mega function wizard 25

Figure 3.10: Block diagram of the Interfacing logic unit .. 25

Figure 3.11: Block diagram of the FFT unit .. 26

Figure 3.12: FFT core integrated inside Quartus’s mega wizard 26

Figure 3.13: Block diagram of the generated core .. 27

Figure 3.14: Using the web based FFT generator to generate our FFT block 28

Figure 3.15: Block diagram of the spiral FFT ... 29

Figure 4.1: The Overall Prototype Built in the Laboratory 31

Figure 4.2: Simulation of the first FFT core .. 32

Figure 4.3: Simulation of the Spiral FFT core ... 33

Figure 4.4: Compilation Summary .. 34

Figure 4.5: Testing the design in Signal Tap II Logic Analyzer Tool 34

Figure 4.6: Waveforms of the tested design .. 35

List of Abbreviations

ix

List of Abbreviations

AC Analog Current

ADC Analog to Digital Convertor

ASIC Application Specific Integrated Circuit

ARM Acorn RISC Machine

CPU Central Processing Unit

DC Direct Current

DFT Discrete Fourier Transform

DE10 board Development and Education board Cyclone V

CT Current Transformer

EMS Energy Management System

EPROM Erasable Programmable Read Only Memory

FFT Fast Fourier Transform

FIFO First-In, First-Out

FPGA Field programmable gate array

FSM Finite State Machine

GPS Global Positioning System

GUI Graphical User Interface

HDL Hardware Description Language

HPS Hard Processor System

IC Integrated Circuit

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

PC Personnel Computer

PDC Phasor Data Concentrator

PLD Programmable Logic Device

PMU Phasor Measurement Unit

PPS Pulse Per Second

PROM Programmable Read Only Memory

List of Abbreviations

x

PT Potential Transformer

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

SCADA Supervisory Control And Data Acquisition System

SDRAM Synchronous Dynamic Random Access Memory

SoC System on Chip

SoPC System on Programmable Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

UTC Universal Coordinated Time

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

Introduction

Introduction

1

1.1 Overview

The load dispatch centers in a large power system supervise and control over

the transmission network and it takes preventive actions to avoid any sort of

system failure which can hamper electricity distribution. With ever increasing size

and complexity of the power system, the ability to detect any faults in the power

system is heavily dependent on the real time information available to the operator.

Traditionally, analog and digital information (status of circuit breaker, power flow

and frequency) is measured at the substation level and transmitted to load dispatch

center using supervisory control and data acquisition system (SCADA) or energy

management system (EMS). The major limitation of SCADA or EMS is the

inability to accurately calculate the phase angle between a pair of substations. In

SCADA or EMS, phase angle is either estimated from available data or is

calculated offline. Phasor Measurement Units (PMU) overcome the limitations of

SCADA and EMS by accurately calculating the phase angle between a pair of

grids.

Synchronized phasor measurement units were introduced in the mid-1980s

as a solution for the need of more efficient and safer monitoring devices for

Electric Power Systems (EPS). Since then, measuring Electric Power System

(EPS) parameters of voltage and current in relatively distant buses has received

great attention from researchers. Such measurements are performed by phasor

measurement units (PMUs), synchronized by Global Positioning System (GPS)

satellites.

A commercial PMU measures the voltage and angle of a particular grid at

25 samples per second. The phase information is synchronized with Global

Positioning Systems (GPS) satellite and is transmitted to Phasor Data Concentrator

(PDC) through a high-speed communication network. The time stamped phase

information is called synchrophasor. There are several benefits of PMU such as

monitoring of EPS and network protection. The measurement of voltage and

current in remote bus allows the operator to make a concrete decision about the

maintenance and security of the system in the face of various uncertainties [1].

Introduction

2

Figure 1.1 shows an example of a standalone PMU device

Figure 1.1 Standalone PMU device from Arbiter, model 1133A power sentinel

[2]

1.2 Literature Review

The measurement of voltage phase angles using synchronized clocks for

power system applications dates back to the early 1980s when measurements of

voltage phase angles were carried out between Montreal and SEPT-ILES [3], [4],

and parallel efforts by Bonanomi in 1981 [5].

However, the synchrophasor technology available today emerged from the

early efforts by Phadke et al. at Virginia Tech as described in [6], [7]. Phadke

demonstrated the first synchronized PMU in 1988, and in 1991 Macrodyne Inc.

launched the first commercial PMU product [8]. Due to the cost of early PMU

devices, PMU technology has historically been limited to transmission system

applications where the business case justified expensive phasor analysis

equipment. One of the early applications that is important to mention is the

implementation of the wide-area protection system Syclopes in France in the early

1990s, which was the first functional application of early forms of PMUs [9].

The cost of the components from which PMUs are assembled (such as GPS

receivers, microprocessors, and storage devices) have dropped significantly due

to recent developments across the electronics sector. As a consequence, PMUs

have reached price points that have made them an attractive tool for the

distribution systems and embedded generation. Many PMUs are sold as dedicated

devices which offer event recorder type functionality. Costs for such units vary

between US $6000 and US $15000 depending on the specification. Many

equipment vendors have begun to offer PMU functionality as a

Introduction

3

supplementary feature on other products in their range, such as protection relays

[10].

The standard for PMU devices is maintained by the IEEE C37.118 Working

Group. IEEE Std. C37.118 [1] was released in 2005 and subsequently updated in

2011. The latest release comes in two parts; IEEE C37.118.1-2011 [1] describes

how synchrophasors should be estimated and gives certification requirements

while IEEE C37.118.2-2011 [2] describes data representation and data transfer.

Concerns have been raised regarding the transient performance of PMUs under the

2005 standard [1], [11], [12]. These concerns are addressed in the 2011 release of

the standard. IEEE C37.118.1-2011 states that it defines synchrophasors,

frequency, and rate-of-change-of frequency measurement under all operating

conditions [1].

1.3 Motivation

Many researchers designed PMU based on microcontrollers, but

microcontroller is sequential in nature thereby degrading the efficiency of the

system. By using FPGA, we are capable of measuring currents and voltages with

parallel measurement, in other words the data for current and voltage will be read

at the same time and at the same clock. It’s different from microcontroller that

using a sequential programming language. In every task, it needs a couple of

execution time, from first to the last task must be done by sequentially. Since

there exist some gap of measurement, it will give us an uncertainty of the

accurate time between compared value. It also takes longer delay than FPGA has.

The advantages of using FPGA in phasor estimation is that the 1024-

point FFT hardware core can be pipelined. In other words, it can accept input data

every clock cycle and generate output data every clock cycle, after a certain time

delay. These huge computations can be handled well with a parallel processor such

as FPGA. [13]

Introduction

4

1.4 Project Objectives

The main goal of this project is to design and implement a Phasor

Measurement Unit (PMU) prototype using the DE10 Standard FPGA.

1.5 Organization of the Report

This report is organized into four chapters. Chapter two outlines the

theoretical background of the project and lists the components used, their

description and principal of operation. Chapter three presents the design and

implementation of the project’s hardware, showing the interface between the

different components of the system. Chapter four presents the finals results

including the simulations done and the data transferred to PC. The conclusion

summarizes the work presented in this report and provides suggestions for further

work.

5

Chapter 2

Theoretical Background

Chapter 2 Theoretical Background

6

This chapter introduces the theoretical background related to the design and

implementation of the PMU prototype starting from the adopted signal model, the

theoretical definition of phasors. This chapter also describes the FPGA used in our

project.

2.1. Signal Model

Electrical power

is traditionally delivered from the generators to the end-

users through an infrastructure that is mainly composed by AC power systems. As

a consequence, during normal operating conditions of the power system, voltage

and current waveforms are usually modeled as signals characterized by a single

sinusoidal component with constant parameters:

 (2.1)

2.2. Phasor:
For a detailed analysis of an AC circuit, it is useful to know the magnitude,

frequency and phase angle of the time-varying quantities during

interval. The mathematical tool used to accomplish this task is

a specific time

called Phasor.

Let us consider equation (2.1), where Ym represents the maximum value or peak

amplitude; ω = 2πfo is the angular frequency of the signal in radians per second (f0

is the fundamental frequency); and φ is the phase angle in radians. Keeping in mind

the Euler’s identity (ejx = cos x + j sin x), one can observe that Eq. (2.1) can also be

rewritten as

 (2.2)

once the system frequency is known, the term ej2πfot caan be neglected.

Therefore Eq. (2.2) may be represented by a complex number V given by

 (2.3)

Assuming that both voltage and current signals are given by Eq. (2.3), one

can observe that this representation is at odds with the calculattion of average

power, therefore the RMS quantities must be taken into account for the correct

phasor representation of sinusoidal signals, as illustrated by the complex number Y

that follows.

Chapter 2 Theoretical Background

7

The phase angle of a phasor brings the information about the fraction of the

sinusoid’s period in which the time, or the angular displacement ωt, is advanced or

delayed to an arbitrary reference. It is very important to correlate different

alternating-waves between them, thus, the phasors represent an equilibrium point or

the steady-state condition of the AC circuit, that is, one can assume that the phasors

are time-invariant, as illustrated in Figure.2.1.

Figure 2.1: Phasor representation of a sinusoid.

However, in practical cases, a time interval must be considered to perform the

phasor calculation. This time interval is also known as “data window” or

“observation interval”, being fundamental in phasor estimation of practical

waveforms. In essence, the phasor representation is related to a pure sinusoidal

signal, but the existing signals in electric power systems may be distorted by

harmonics. In this way, it is advised to extract the envisaged frequency

component(s) of the signal to also be represented by phasor notation. These tasks

have been properly performed by the classical Fourier’s theory. Due to the fact,

the main key points about phasor representation using the aforementioned theory

is presented and discussed in greater detail in the later sections.

(2.4)

Chapter 2 Theoretical Background

8

2.3. Fast Fourier Transform

We should mention that the Fourier transform is a very important part of many

engineering applications. FFTs are an important part of any digital spectrum

analyzer.

FFTs can also be used when implementing a spectrogram, such as the one

shown in Figure 2.2 below. Such spectrograms make it easier to understand

artifacts of speech and other sounds, or even radio frequency waveforms, by visual

inspection [14].

Figure 2.2 Spectral representation of speech

Convolutions and/or correlations can often be implemented much faster and

cheaper using an FFT implementation of the Fourier transform. This means that digital

filters can be implemented with Fourier transform enabled convolutions

faster/better/cheaper. Fourier transform are used to understand and analyze control

systems. Fifth, Fourier transforms are used not only in filter implementations, but they

are also used in the filter design process. And finally, like we used it in our design

Fourier transform can be used to evaluate phasor measurements.

The Fast Fourier Transform (FFT) is a specific implementation of the

Fourier transform, that drastically reduces the cost of implementing the

Fourier transform Prior to the invention of the FFT, a Discrete Fourier transform

could only be calculated the hard way with N
2

multiplication operations per

transform of N points. Since Cooley and Tukey published their algorithmic

implementation of the Discrete Fourier transform, they can now be calculated

with O(N log2(N)) multiplies. Needless to say, the invention of the FFT

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform

Chapter 2 Theoretical Background

9

immediately started to transform signal processing. But before talking about the

FFT we should understand a little more about what a Fourier transform is first [14].

A Fourier transform is a linear operator that decomposes a signal from a

representation in time, to a time-less representation in frequency.

(2.5)

This is the definition we will first come across when studying Fourier

transform. This form above is easy to work with mathematically with just pen and

paper. There are two problems with this nice mathematical definition when it comes

to working with an engineering reality. The first problem is that digital algorithms

do not operate upon continuous signals very well. Computers and other digital

signal processors do a much better job with sampled signals. Hence, we’ll switch

from discussing the pure Fourier transform shown above and examine the Discrete-

time Fourier transform instead. For this, we will switch from a continuous

incoming signal, x(t) to its sampled representation, x[n]. The Discrete-time

Fourier transform can then be applied to our signal.

(2.6)

While this discrete-time transform works very nicely for representing the

response of certain digital filters, it’s still not all that practical. This brings us to the

second problem: Computers can’t handle an infinite number of samples, nor can

they handle an infinite number potential frequencies. Both of these need to be

sampled and finite. Fixing this second problem brings us to the Discrete Fourier

transform.

 (2.7)

Now, not only is the x[n] used in this transform discrete, but the frequency

index, k/N, is as well. All three of these representations are very tightly related.

Mathematically, there are major and significant differences between these

transforms. Practically, however, only this last transform can ever be computed

digitally. Therefore, the first two expressions of the Fourier transform and then the

https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://zipcpu.com/dsp/2017/11/22/fltr-response.html
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform

Chapter 2 Theoretical Background

10

discrete time Fourier transform can only ever be digitally approximated by the

Discrete Fourier transform [14].

It is this third representation of the Fourier transform, known as the Discrete

Fourier transform, that we will be discussing the implementation. We are also going to

argue that this is the only representation of the Fourier transform that can be

numerically computed for any sampled finite sequence. If we look at equation (2.7) ,

we can see it takes as input N data samples, x[n], and calculates one summation

across those inputs for every value of k to produce N samples out, X[k/N]. Given that

there’s a complex multiplication required for every term in that summation

of N numbers, and that there are N relevant outputs, this will cost N
2

painful

multiplications to calculate. If we just left things there, this transform would be so hard

to calculate that no one would ever use it. Cooley and Tukey, however, described a

way that the Discrete Fourier transform can be decomposed into two transforms, each

of them being half the size of the original, for the cost of only N multiplies. If

you then repeat this log2(N) times, you’ll get to a one-point transform, for a total cost

of N log2(N)multiplies. At this cost point, the Discrete Fourier transform becomes

relevant. Indeed, it becomes a significant and fundamental DSP operation.

An FFT rapidly computes such transformations by factorizing the DFT matrix

into a product of sparse (mostly zero) factors [2]. As a result, it manages to reduce the

complexity of computing the DFT from O(n
2
), which arises if one simply applies the

definition of DFT, to O(nlog n), where n is the data size. The difference in speed can

be enormous, especially for long data sets where N may be in the thousands or millions.

In the presence of round-off error, many FFT algorithms are much more accurate than

evaluating the DFT definition directly. There are many different FFT algorithms based

on a wide range of published theories, from simple complex-number arithmetic to

group theory and number theory [14].

2.4. Phasor Calculation for 3-phase system
Consider a balanced 3-phase power system operating at a nominal frequency of

f0, then the voltage waveform can be represented as

x1(t) = Xmcos(2πf0t + φ1)

x2(t) = Xmcos(2πf0t + φ2)

x3(t) = Xmcos(2πf0t + φ3) (2.7)

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing

Chapter 2 Theoretical Background

11

Here Xm represents the maximum amplitude of the signal and Φ represents the

phase angle. The phase angles are 120 degree or 2π radian apart. The time domain

sample of the power system can be represented as
3

(2.8)

Here N is the number of samples, which is an integer multiple of fundamental

frequency. f0 and n represents the sample index in the array which ranges from 0 to N−1.

The generalized expression for N-point can be represented as

(2.9)

N-point DFT of the signal can be found out using

(2.10)

(2.11)

The real and imaginary part of the above expression can be rewritten as

(2.12)

(2.13)

The phasor estimate at nominal frequency is represented by this complex quantity

Xnominal, whose magnitude

gives the RMS magnitude of the signal. The phase angle can be computed using

the trigonometric property,

Chapter 2 Theoretical Background

12

2.5. Field Programmable Gate Array

2.5.1. Overview

A field-programmable gate array (FPGA) is a logic device that contains a two-

dimensional array of generic logic cells and programmable switches. The

conceptual structure of an FPGA device is shown in Figure 2.3. A logic cell can be

configured (i.e., programmed) to perform a simple function, and a programmable

switch can be customized to provide interconnections among the logic cells. Once

the design and synthesis are completed, a simple adaptor cable has to be used to

download the desired logic cell and switch configuration to the FPGA device and

obtain the custom circuit [15].

Figure 2.3 Conceptual Structure of an FPGA Device

An FPGA can be used to solve any problem which is computable. This is

trivially proven by the fact FPGA can be used to implement a soft microprocessor,

such as the Xilinx MicroBlaze or Altera Nios II. Their advantage lies in that they

are sometimes significantly faster for some applications because of their parallel

nature and optimality in terms of the number of gates used for a certain process [16].

2.5.2. Applications of FPGAs

Specific applications of FPGAs include digital signal processing, software-

defined radio, ASIC prototyping, medical imaging, computer vision, speech

recognition, cryptography, bioinformatics, computer hardware emulation, radio

astronomy, metal detection and a growing range of other areas [16].

https://en.wikipedia.org/wiki/Computable
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/MicroBlaze
https://en.wikipedia.org/wiki/Nios_II

Chapter 2 Theoretical Background

13

2.5.3. DE10-Board :

The DE10-Standard Development Kit presents a robust hardware design

platform built around the Intel System-on-Chip (SoC) FPGA, which combines the

latest dual-core Cortex-A9 embedded cores with industry-leading programmable

logic for ultimate design flexibility. Altera’s SoC integrates an ARM-based hard

processor system (HPS) consisting of processor, peripherals and memory interfaces

tied with the FPGA fabric using a high-bandwidth interconnect backbone. The DE10-

Standard development as shown in Figure 2.4 board includes hardware such as high-

speed DDR3 memory, video and audio capabilities, Ethernet networking, and much

more. [17]

The following hardware is provided on the board:

•Intel Cyclone V SE 5CSXFC6D6F31C6N device

• Serial configuration device –EPCS128

• USB-Blaster II onboard for programming; JTAG Mode

• 64 MBSDRAM (16-bit data bus)

• 4 push-buttons

• 10slide switches

• 10red user LEDs

• Six 7-segment displays

• Four 50MHz clock sources from the clock generator

• VGA DAC (8-bit high-speed triple DACs) with VGA-out connector

• PS/2 mouse/keyboard connector

• IR receiver and IR emitter

• One HSMC with Configurable I/O standard 1.5/1.8/2.5/3.3

• A/D converter, 4-pin SPI interface with FPGA

Chapter 2 Theoretical Background

14

Figure 2.4 DE10-Standard development board (top view) [17]

2.5.4. Quartus PRIME Software

Quartus prime is a software development suit tool developed by

Intel FPGA (former Altera) Company. It provides a graphic interface for

users to access tools and display relevant files. Some differences may exist

between different versions. The

shown in the below Figure 2.5

default Quartus prime GUI window is

Figure 2.5 Typical Quartus Winddow

Chapter 2 Theoretical Background

15

2.5.4.1. Signal-tap Logic Analyzer

The Signal-Tap II Embedded Logic Analyzer is a system-level debugging

tool provided by Quartus Prime, that captures and displays signals in circuits

designed for implementation in Intel/Altera’s FPGAs. Signal-Tap runs on the chip,

with your design, in real hardware (not simulation) to provide waveforms of logic

signals within the design. Signal-Tap uses significant hardware resources on the

FPGA to allow flexible triggering and to record waveforms of your logic signals for

later viewing on the PC running Quartus Prime. All communication is done through

the JTAG programming cable that you use to program the FPGA. No extra

hardware external to the FPGA is necessary. Figure 2.6 depicts the overall window

of this tool [18].

Figure 2.6 Overall windows of the SignalTap II Logic Analyzer

Chapter 2 Theoretical Background

16

2.6. Analog to Digital Converter

2.6.1. Overview

Analog to digital converter converts continuous analog signal to discrete

digital numbers. ADC’s differ from each other by two main parameters, the

resolution which indicates the number of discrete values it can produce over the

range of analog values and the step size (quantization value) which is based on the

reference voltages of the ADC and it can be found as:

(2.8)

2.6.2. The LTC2308

The DE-10 Board FPGA has a 12 Bit ADC, The LTC2308 is a low noise,

500ksps,8-channel,12-bit successive approximation register (SAR) A/D converter.

The LTC2308 includes a precision internal reference, a configurable 8-channel

analog input multiplexer (MUX) and an SPI-compatible serial port for easy data

transfers. The ADC may be configured to accept single-ended or differential signals

and can operate in either unipolar or bipolar mode. A sleep mode option is also

provided to save power during inactive periods. Conversions are initiated by a rising

edge on the CONVST input. Once a conversion cycle has begun, it cannot be

restarted until the current conversion is complete. The time taken by each conversion

for each channel is 1.3 µs [19].

Figure 2.7 represents SPI timing specifications for this ADC

Figure 2.7 LTC2308 Timing with a Short CONVST Pulse [19]

17

Chapter 3

Hardware Design

Chapter 3 Hardware Design

18

This chapter describes the design and implementation of a part of a Phasor

Measurement Unit using FPGA. The block diagram of such a unit is shown in

Figure 3.1.

Figure 3.1: Block diagram of our prototype PMU

3.1. Signal Acquisition and Sampling

For the calculation of a phasor, the data (i.e. the sampled

voltage signal)

must be acquired. When the PMU is tested in real-world scenarios a means of

getting the signals from the transmission lines is necessary, which is accomplished

using a Potential Transformer (PT) and a Current Transformer (CT) in the

substations. This signal is further stepped down using the Hall Effect voltage

sensors. However, in our laboratory setup, we used a Function Generator to

generate sinusoidal input signal to mimic the signals read from voltage and

current sensors.

Chapter 3 Hardware Design

19

3.1.1. Sampling of the signals using ADC (Analog to Digital Converter)

As explained in the last chapter, the on-board ADC is connected to the

FPGA through an SPI-interface as seen in Figure 3.2. A state machine is designed

and implemented in VHDL to control this ADC

. Figure 3.2: Connections between the FPGA, 2x5 header, and the A/D converter

[19]

3.2 FFT Calculation

To implement the phasor calculation unit, the DE10-board FPGA has been

used as the computational unit. For a 3-phase system, the voltage samples are

stored in FIFOs on the FPGA which is updated every time a new sample comes

in. A counter in the FIFO keeps track of the number of accumulated samples. As

long as the FIFO store data, the phasor calculation task is initiated, and the FFT

unit is used to calculate the spectrum of the input signal.

Chapter 3 Hardware Design

3.3 PMU SoC System Design

The top-level file containing the SoC overall project is illustrated in Figure 3.3.

Figure 3.3 Overall Block Diagram of the On-Chip System

Chapter 3 Hardware Design

21

This design consists of two parts:

3.3.1. The Off-Chip Hardware Unit

The off-chip hardware unit is composed of:

3.3.1.1. Function Generator:

It generates the analog signals to be processed; in our case, it replaces the

3-phase signals after signal conditioning.

3.3.1.2. Data Acquisition Unit:

It samples analog signals coming from the function generator and

converts them into digital data.

3.3.1.3. The PC Unit

The PC runs the Quartus Prime development suite tools to develop, debug

and download the overall system onto the FPGA chip of the DE10 board.

3.3.2. The On-Chip Hardware Unit

The on-chip hardware is implemented on the FPGA; it controls the Off-

Chip hardware unit and communicates with the PC via the USB Blaster cable.

The SoC system main entity has the following inputs and outputs:

- Data-in: 1-bit input port connected to the ADC block, which represent

the serial digital data coming-in from the LTC2308 ADC to the FPGA.

- Data-out: 12-bit output port coming out of the ADC block, which

represent the sampled parallel data.

- Data ready: 1-bit output ports from the ADC to tell if the Data in the

output register is valid or not. It is also used for handshaking with the

FIFO block.

- Convst: 1-bit output used to send the start of conversion signal to

the ADC.

- Sclk: 1-bit output used to provide slower serial data clock for the

ADC

- Reset : 1-bit input asynchronous reset connected to the ADC and FFT

block., to reset the hardware.

- clk: 1-bit input port which represents the 50MHz clock input used as

Chapter 3 Hardware Design

22

the overall design clock source.

- result: 24-bit output port coming out from the FFT

calculate the spectrum of the input signal sequence.

block used to

- sync: 1-bit output port from the FFT block to indicate that we have

got the calculated results from the FFT core.

The overall block symbol of the SoC project is shown in Figure 3.4

Figure 3.4 PMU SoC block symbol

3.4. PMU SoC project blocks

The SoC project is made of several custom blocks developed in VHDL

involving the data acquisition and sampling of the analog input unit i.e. the ADC

unit, frequency divider unit, data buffering unit, and the FFT unit. Each block will

be detailed in the following sections

3.4.1. Clock Divider block

This block is used to synchronize data communication between the different

blocks by generating multiple ranges of clock frequencies, as we can see in

Figure 3.5. The main frequencies generated by this block were : 25Mhz which

was supplied to the ADC block and the FIFO block, the 12.5Mhz sampling

frequency which was supplied to the slow clock of the ADC and the 6Mhz clock

which was used with The FFT block.

The reason why we chose these frequencies was because of the following:

Chapter 3 Hardware Design

23

• The time for the whole power-up and conversion process before the data is

ready to be output in the ADC is 5.5us (max), and we know that in order

to sample one pulse we require 1.6us, that’s why we used a clock of 80ns

i.e. 12.5Mhz, hence the sampling period will be 6.4us, to make sure the

output is ready and is correct.

• Since the FFT block is very fast, in order to synchronize the FFT with the

arriving sampled signal from the FIFO block it was necessary to use a

slower clock, that is why we used the 6Mhz clock.

Figure 3.5: block diagram of the clock divider unit

3.4.2. The ADC controller block:

Figure 3.6: block diagram of the ADC controller unit

As we can see from Figure 3.6, the ADC controller read tthe digital data

from the on-board ADC using the Din serial input. In typical PMUs, the ADC

conversion is started on reception of 1 pulse per second (PPS) from the GPS

module. However, in our case we did not have a GPS module. So, a locally

generated trigger PPS signal is used. The sampling process then begins as the

state machine in Figure 3.7 depicts.

Chapter 3 Hardware Design

24

Figure 3.7: State machine representing data acquisition from the ADC

Since the ADC in the DE-10 board FPGA is a 12-bit ADC, it gives a data

reading of 0 to 2
12

-1 for an input voltage range of 0 volt to 4.096 volt. Hence, it

is necessary to map the digital data readings with the actual measured values

using the linear relationship between them.

3.4.3. FIFO block (storage block):

Figure 3.8: block diagram of the storage unit

Once the data is sampled, it needs to be stored temporally in order to be

processed by the FFT block as shown in Figure 3.8. The storage process begins once

the ADC sends to the FIFO a “dataready” signal. The FIFO block used was initially

generate from the IP core library in Quartus Prime. It was configured to accept a 12-

bit width and 1024 words depth as shown in Figure 3.9. This block is also provided

with full and empty signal which are used to enable the FFT block

Chapter 3 Hardware Design

25

once the data is available. This IP block is clocked at the same clock as the ADC.

Figure 3.9: Configuration of the FIFO block in the mega function wizard

3.4.4. The Interfacing Logic:

Figure 3.10: block diagram of the Interfacing logic unit

This “Glue logic” as named in Figure 3.10 was used to interrface the FIFO

block with the FFT block, since The FFT block needs to meet some conditions to

be enabled. This block’s main task was to meet these conditions such as triggering

the “ce” signal of the FFT and make the data length wider in order to be accepted

by the FFT.

Chapter 3 Hardware Design

26

3.4.5. The FFT block

Figure 3.11: block diagram of the FFT unit

This is the main block of our implemented design as it

processes the

sampled data in order to finally calculate its spectrum. Given that implementing

is an FFT block is a huge and a complex task, we evaluated three different

(already existing) FFT hardware cores to test our system:

3.7.5.1. The Intel FFT core integrated in the IP catalog in Quartus Prime:

This core represents the best solution in terms of efficiency and

reliability. However, we did not use this core, since it has

issues:

two major

• This core requires sending data via bus which should be controlled by

a microprocessor. Hence, it is not suited for our system design which

is based on direct execution on pure hardware blocks.

• As shown in Figure 3.9 this core has many handshaking signals which

makes it very complex to interface with our glue logic.

Figure 3.12: FFT core integrated inside Quartus’s mega wizard

Chapter 3 Hardware Design

27

3.7.5.2. Open Source FFT core by Gisselquist Technology, LLC

This is an open source FFT core, which is implemented by Gisselquist

Technology, LLC. In order to be able to generate the Verilog code for this

core we followed a number of steps [13]:

• Running the FFT Core Generator software:

Inside Linux shell we run the following commands:

Once the

exectable

“make” command completes, we got

program in the sw/ subdirectory which

an ‘fftgen’

is used to

generate customizable FFT cores depending on user requirements.

• Generating the FFT core

This core offers several features, but since we needed just a 1024

point FFT with 12-bit input/output width, the following commands

is used to generate the core:

$./fftgen -f 1024 –n 12 –m 12

The block diagram of the generated core is represented in Figure 3.13

Figure 3.13: Block diagram of the generated core

The input and output ports of this core are:

$ git clone https://github.com/ZipCPU/dblclockfft

$ make

Chapter 3 Hardware Design

28

i_clk: synchronous to the 6Mhz clock divider output.

i_reset: is a positive edge asynchronous reset signal.

i_ce: is a global CE signal. It is set to 1 on every clock where a valid

new sample is available on the input.

i_sample: is actually a pair of values, both real and imaginary, stuffed

into one signal bus. The real portion is placed in the upper bits, and the

imaginary portion is placed in the lower or least significant bits.

o_result: is the output of one FFT bin from the FFT. It is in the exact

same format as i_sample.

o_sync: is the last output in the port list. This signal will be true when

o_result contains the first output bin coming out of the FFT.

Unfortunately, despite the core being simple to interface with, it did not work

properly [13].

3.7.5.3. Spiral core:

The Spiral DFT/FFT is a web-based IP Generator which

generates customized Fast Fourier Transform (FFT)

synthesizable RTL Verilog. The user has control over

automatically

IP cores in a

variety of

parameters that control the functionality and cost/performance tradeoffs

such as area and throughput [20]. We selected the parameter that suits our

design and generated it as shown in Figure 3.14,

Figure 3.14 The web interface FFT core generator [20]

Chapter 3 Hardware Design

29

Figure 3.15: Block diagram of the spiral FFT core

The block of the generated core is shown in Figure 3.15

The input/output ports of this core are:

clk: synchronous to the clock input.

reset: is a positive edge asynchronous reset signal.

next: this input (asserted high), is used to instruct the system that the

input stream will begin on the following cycle.

X0,1,2,3: is actually a pair of values of 12 bits, both real and imaginary,

used to make the core work in parallel. The real portion is placed in the

upper bits, and the imaginary portion is placed in the lower for example

X0 is the real part and X1 is the imaginary part and so on.

Y0,1,2,3: is the outputs from the FFT. It is in the exact same format as

X0,1,2,3.

Next_out: The output signal 'next_out' (also asserted high) indicates that the

output vector will begin streaming out of the system on the following cycle.

The design uses a system of flag signals to indicate the beginning of the

input and output data streams. The 'next' input (asserted high), is used to

instruct the system that the input stream will begin on the following cycle.

This system has a 'gap' of 512 cycles. This means that 512 cycles must

elapse between the beginning of the input vectors.

The output signal 'next_out' (also asserted high) indicates that the output

vector will begin streaming out of the system on the following cycle.

The system has a latency of 1373 cycles. This means that the 'next_out'

will be asserted 1373 cycles after the user asserts 'next' [20].

30

Chapter 4

Implementation and Results

Chapter 4 Implementation and Results

31

This chapter shows the implementation of our prototype Phasor measurement

unit using FPGA. This chapter also describes and analyses the results captured using

SignalTap II Logic Analyzer Tool. Figure 4.1 depicts the system implemented. The

Function Generator generates a sinusoidal signal with a 50Hz frequency. This signal

is fed to one of the analog inputs of the on-board ADC.

Figure 4.1: The experimental setup to test the PMU system

4.1. Testing the FFT hardware core

4.1.1. Open Source FFT core by Gisselquist Technology, LLC

Figure 4.2 shows a real-time testing of the first FFT core using SignalTap

logic analyzer. It can be seen that the ADC is transmitting data through the signal

‘output’ to the core and the core’s chip enable (‘ce’) is turned on, but no data is

coming out from the core i.e. ‘results’. This indicates that the core is not working

since all interfacing conditions are satisfied and no output data is coming out.

Function generator

PC running the

Quartus Prime

Scope

DE10 board

Chapter 4 Implementation and Results

32

Figure 4.2 Actual real-time testing of the open source FFT core

4.1.2. Spiral FFT Core Simluation

As shown in Figure 4.3, ModelSim was used to test the core through

simulation. Figure 4.3 (a) shows the beginning of simulation where the signal ‘next’

is given a pulse to start the FFT computations. Figure 4.3 (b) shows the end of

simulation where the signal ‘next_out’ is asserted high by the FFT core indicating

the end of FFT computations. Since the simulation takes a large number of cycles,

we cannot show the full length of the waveforms. As it can be noticed, the core is

functional since there are results generated by the core for given input signals. Also

it can noticed that this core is triggered once it receives a “next” signal which means

that it begins processing the data when the “next” signal is one, when the data are

processed the core set the “next_out” signal to one and the data is available on the

“Y” signals.

Chapter 4 Implementation and Results

(a)

(b)

Figure 4.3 Simulation of the Spiral FFT core: (a) the beginning of simulation (b) the end of simulation

Chapter 4 Implementation and Results

34

4.2. Project Compilation Report

The compilation of the whole system was successful. The summary of the

compilation is shown in Figure 4.4. The entire system uses 6% of the total logic

elements, 6841 registers, 14% of the total pins and 23% of the total memory bits,

also as we can see the designed system uses 32% of DSP blocks, which can reflect

that the FFT core is synthesized correctly.

Figure 4.4 Compilation Summary

4.3. Results of the implemented system

After the design has been compiled, the SignalTap II Logic Analyzer Tool is

launched and required nodes and clocks are added to test the design in real time as

shown in the bellow Figure 4.5.

Figure 4.5: Adding design signals to Signal Tap II Logic Analyzer

Tool

Chapter 4 Implementation and Results

35

After the programmer and the device have been verified, the design is

recompiled, it can be remarked that the design took longer to recompile since the

tool took enormous resources for testing.

The generated waveforms of the tested prototype is shown in Figure 4.6

(a)

(b)
Figure 4.6: Waveforms of the tested design

(a)the beginning of simulation (b) the end of simulation

As seen in the waveform generated in Figure 4.6 We are getting some data

inputs from the interfaced logic which is connected to the storage block which is

also connected to the data acquisition unit (ADC), hence the data from the ADC is

well received.

Also, as it can be seen we are getting a pulse to the “next” signal in order to

trigger the core. Hence the conditions to turn the FFT core on are satisfied.

At last it is noticed that after a certain time after a “next” pulse is generated

there is a “next_out” signal associated with Y’s data i.e. the FFT core is working.

Next_i pulse

FFT Outputs

Next_out pulse

36

Conclusion

 37

Conclusion

As the PMU technology has to provide estimations with high degree of

accuracy, the hardware platform that will be used for this phasor estimation

algorithm should have a high degree of determinism. In this respect, the use of

FPGA to implement the PMU algorithm is highly justified.

The FPGA-based PMU was based on the Cyclone V Assembly, VHDL,

Verilog HDL. These platforms are open source software; hence, the overall

implementation is low cost and can be easily configured.

It can be concluded that SoC-based PMU was designed and implemented

and the objectives of this work have been successfully met and they are as follows:

- Implementation of a Phasor Measurement Unit System based on FPGA

- Apply every single knowledge of Hardware design and computer

engineering that were acquired during the past five years.

Effort and time were spent to debug software bugs and hardware problems

to improve the system and make it operational. The implementation of the SoC-

based PMU System was carried and the final prototype was fully functional. Like

any other project, this work can be enhanced and improved by adding some

features, mainly:

- The project was designed using a small single-phase function generator

system for study purpose, for wide area monitoring purpose, the prototype

can be implemented with some modifications, for example, by testing the

system with 3 phases, increasing the sampling rate for better accuracy,

attaching a GPS module in the system for time stamping etc.

- In the future scope of research, the prototype is to be used in studying the

effects of faults on the Phasor estimates, power monitoring system, and

other benefits that could be gained from phasor measurement unit.

38

References

[1] IEEE Standard for Synchrophasor Measurements for Power Systems,

IEEE Std. C37.118.1-2011. [Online]. Available:

http://standards.ieee.org/findstds/standard/C37.118.1-2011.html.

[2] Paolo Castello, Algorithms for the synchrophasor measurement in steady-

state and dynamic conditions, University of Cagliari, March 2014

[3] IEEE Standard for Synchrophasor Data Transfer for Power

Systems,IEEE Std. C37.118.2- 2011. [Online]. Available:

http://standards.ieee.org/findstds/standard/C37.118.2- 2011.html

[4] .G. Missout and P. Girard, Measurement of bus voltage angle between

montreal and SEPT-ILES, IEEE Trans. Power App. Syst., vol. PAS-99, no.

2, pp. 536-539, Mar. 1980

[5] G. Missout, J. Beland, G. Bedard, and Y. Lafleur, Dynamic measurement

of the absolute voltage angle on long transmission lines, IEEE Trans.

Power App. Syst., vol. PAS-100, no. 11, pp. 4428-4434, Nov. 1981.

[6] P. Bonanomi, Phase angle measurements with synchronized clocks principle

and applications, IEEE Trans. Power App. Syst., vol. PAS-100, no. 12, pp.

5036-5043, Dec. 1981.

[7] A. G. Phadke and J. S. Thorp, History and applications of phasor

measurements, in Proc. IEEE PES PSCE, 2006, pp. 331-335.

[8] A. G. Phadke, Synchronized phasor measurements A historical overview, in

Proc. IEEE/PES Transmiss. Distrib. Conf. Exhib. Asia Pacific, Oct. 6-10,

2002, vol. 1, pp. 476-479.

[9] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and

Their Applications. New York, NY, USA: Springer-Verlag, 2008

[10] P. Denys, C. Counan, L. Hossenlopp, and C. Holweck, Measurement of

voltage phase for the French future defence plan against losses of

synchronism, IEEE Trans. Power Del., vol. 7, no. 1, pp. 62-69, Jan. 1992..

[11] A.Agarwal, N.Verma, H. Tiwari, J. Singh, Varun Maheshwari Design and

Development of Phasor Measurement Unit on FPGA,

[12] B. Kasztenny and M. Adamiak, Implementation and performance of

synchrophasor function within microprocessor based relays, in Proc. 61st

Annu. Georgia Tech. Protect. Relaying Conf., Atlanta, GA, USA, May 2-4,

2007, pp. 1-43.

http://standards.ieee.org/findstds/standard/C37.118.1-2011.html
http://standards.ieee.org/findstds/standard/C37.118.2-%202011.html

39

[13] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, Performance of

phasor measurement units for wide area real-time control, in Proc. IEEE

PES Gen. Meeting, Jul. 2630, 2009, pp. 1-5.

[14] Open source FFT core, [Online]:

https://zipcpu.com/dsp/2018/10/02/fft.html. Accessed on 30-06-2019

[15] R. Wisniewski, in Synthesis of compositional microprogram control units for

programmable devices, Zielona Góra: University of Zielona Góra, 2009, p. 153.

[16] Intel FPGA, DE10 Standard User Manual, 2017

[17] Mike Pridgen, “Tutorial for Quartus‟ SignalTap II Logic Analyzer”,

http://www.mil.ufl.edu/4712/docs/SignalTa p_Tutorial.pdf.

[18] Linear Technology, LTC2308 ADC datasheet, 2007.

[19] Spiral DFT core generator, [Online]:

https://www.spiral.net/hardware/dftgen.html. Accessed on 30-06-2019

https://zipcpu.com/dsp/2018/10/02/fft.html
http://www.mil.ufl.edu/4712/docs/SignalTa
https://www.spiral.net/hardware/dftgen.html

40

Appendix

Appendix

41

Using Signal Tap II Logic Analyzer

1- First we need to have a complete Compiled project, so we set pin

assignments and we should have no error.

2- Select SignalTap II Logic Analyzer: After compilation we have to ensure

the JTAG programmer (USB-Blaster) is connected between the board and

the PC. We open SignalTap II Logic Analyzer by selecting “Tools |

SignalTap II Logic Analyzer” or we can open pre-existing SignalTap II

Logic Analyzer file (*.stp) from “File | Open”.

After that we Select Hardware, If not appear USB-Blaster, we click Setup

to select the programmer. Shown in Figure I

Figure I: Selecting Hardware in Signal Tap tool

3- Add nodes to be analyzed: we double click to add necessary nodes, click

List to view nodes, then Add nodes to be analyzed Select nodes. As shown

in Figure II

Figure II: Adding your desired nodes to test

Appendix

2. Program your code

1. Click to

choose sof file

Figure III Selecting the clock and programming the tool

4- Select proper clock Basically, the clock need to be set to FPGA clock.

5- Choose Sample depth depending on RAM attached to FPGA

6- After setting for SignalTap II Logic Analyzer, you need to compile your

project again.Select „sof‟ file and program your code Select „sof‟ file to

be downloaded first.Program your project on the board. As shown in

Figure III

7- Run analysis to view signals as shown in Figure IV

Figure IV Running the Analysis on Signal

Autorun analysis to view signals

Run analysis to view signal transitions. It only shows transitions until

	People’s Democratic Republic of Algeria Ministry of Higher Education and Scientific Research
	Department of Electronics
	- TALAMALI Youcef
	Dr. MAACHE A
	Dedication
	Acknowledgment
	Table of Contents
	CHAPTER 2: Theoretical Background 5

	List of Figures
	List of Abbreviations
	Introduction
	1.1 Overview
	1.2 Literature Review
	1.3 Motivation
	1.4 Project Objectives
	1.5 Organization of the Report
	Chapter 2
	2.1. Signal Model
	2.2. Phasor:
	2.3. Fast Fourier Transform
	2.4. Phasor Calculation for 3-phase system
	2.5. Field Programmable Gate Array
	2.5.1. Overview
	2.5.2. Applications of FPGAs
	2.5.3. DE10-Board :
	2.5.4. Quartus PRIME Software
	2.5.4.1. Signal-tap Logic Analyzer

	2.6. Analog to Digital Converter
	2.6.1. Overview
	2.6.2. The LTC2308
	Figure 2.7 LTC2308 Timing with a Short CONVST Pulse [19]

	Chapter 3
	3.2 FFT Calculation
	3.3 PMU SoC System Design
	3.3.1. The Off-Chip Hardware Unit
	3.3.1.1. Function Generator:
	3.3.1.2. Data Acquisition Unit:
	3.3.1.3. The PC Unit
	3.3.2. The On-Chip Hardware Unit
	3.4.1. Clock Divider block
	Figure 3.5: block diagram of the clock divider unit
	3.4.3. FIFO block (storage block):
	3.4.4. The Interfacing Logic:
	3.4.5. The FFT block
	3.7.5.2. Open Source FFT core by Gisselquist Technology, LLC
	3.7.5.3. Spiral core:
	Chapter 4
	4.1. Testing the FFT hardware core
	4.1.1. Open Source FFT core by Gisselquist Technology, LLC
	Figure 4.2 Actual real-time testing of the open source FFT core
	(b)

	4.2. Project Compilation Report
	4.3. Results of the implemented system
	Figure 4.6: Waveforms of the tested design

	Conclusion
	References
	Appendix
	Using Signal Tap II Logic Analyzer
	Figure I: Selecting Hardware in Signal Tap tool

	Word Bookmarks
	People’s_Democratic_Republic_of_Algeria_
	Institute_of_Electrical_and_Electronic_E
	Department_of_Electronics__
	Abstract_
	Hardware_Design_and_Implementation
	Dedication_
	Acknowledgment_
	Table_of_Contents_
	List_of_Figures_
	List_of_Abbreviations_
	Introduction_
	1.1_Overview_
	1.2_Literature_Review_
	1.3_Motivation_
	1.4_Project_Objectives_
	1.5_Organization_of_the_Report_
	Theoretical_Background_
	1._Signal_Model_
	2.3._Fast_Fourier_Transform_
	Signal_Acquisition
	2.5._Field_Programmable_Gate_Array_
	1._Overview_
	2.5.2._Applications_of_FPGAs_
	2.5.3._DE10-Board_:_
	2.5.4._Quartus_PRIME_Software_
	2.5.4.1._Signal-tap_Logic_Analyzer_
	2.6._Analog_to_Digital_Converter_
	2.6.1._Overview_
	2.6.2._The_LTC2308_
	3._Signal_Acquisition_and_Sampling__
	Phasor_Calculation_for_3-phase_system
	2.2.1_Sampling_of_the_signals_using_ADC_
	Sampling_of_the_signals_with_in_built_AD
	2____FFT_Calculation_
	3.3___PMU_SoC_System_Design_
	1._The_Off-Chip_Hardware_Unit_
	3.3.2._The_On-Chip_Hardware_Unit_
	2.__PMU_SoC_project_blocks_
	Implementation_and_Results_
	4.1.__Testing_the_FFT_hardware_core_
	4.1.1._Open_Source_FFT_core_by_Gisselqui
	4.1.2._Spiral_FFT_Core_Simluation_
	1._Results_of_the_implemented_system_
	References_

