DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10155

Titre: A reproducing kernel Hilbert space method for nonlinear partial differential equations : applications to physical equations
Auteur(s): Attia, Nourhane
Akgül, Ali
Mots-clés: Convergence analysis
Numerical method for nonlinear problems
partial differential equations
RKHS method
Wave equations
Date de publication: 2022
Editeur: Institute of Physics
Collection/Numéro: Physica Scripta/ Vol.97, N°10 (2022);
Résumé: The partial differential equations (PDEs) describe several phenomena in wide fields of engineering and physics. The purpose of this paper is to employ the reproducing kernel Hilbert space method (RKHSM) in obtaining effective numerical solutions to nonlinear PDEs, which are arising in acoustic problems for a fluid flow. In this paper, the RKHSM is used to construct numerical solutions for PDEs which are found in physical problems such as sediment waves in plasma, sediment transport in rivers, shock waves, electric signals' transmission along a cable, acoustic problems for a fluid flow, vibrating membrane, and vibrating string. The RKHSM systematically produces analytic and approximate solutions in the form of series. The convergence analysis and error estimations are discussed to prove the applicability theoretically. Three applications are tested to show the performance and efficiency of the used method. Computational results indicated a good agreement between the exact and numerical solutions
URI/URL: https://iopscience.iop.org/article/10.1088/1402-4896/ac8958/meta
DOI 10.1088/1402-4896/ac8958
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10155
ISSN: 00318949
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires