DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10266

Titre: Integrating the LSSVM and RBFNN models with three optimization algorithms to predict the soil liquefaction potential
Auteur(s): Mingxiang, Cai
Ouaer, Hocine
Ahmed Salih, Mohammed
Xiaoling, Chen
Menad Nait, Amar
Hasanipanah, Mahdi
Mots-clés: Least squares support vector machine
Optimization algorithms
Radial basis function neural network
Soil liquefaction potential
Date de publication: 2022
Editeur: Springer
Collection/Numéro: Engineering with Computers/ Vol.38, N°4 (2022);pp. 3611-3623
Résumé: Liquefaction has caused many catastrophes during earthquakes in the past. When an earthquake is occurring, saturated granular soils may be subjected to the liquefaction phenomenon that can result in significant hazards. Therefore, a valid and reliable prediction of soil liquefaction potential is of high importance, especially when designing civil engineering projects. This study developed the least squares support vector machine (LSSVM) and radial basis function neural network (RBFNN) in combination with the optimization algorithms, i.e., the grey wolves optimization (GWO), differential evolution (DE), and genetic algorithm (GA) to predict the soil liquefaction potential. Afterwards, statistical scores such as root mean square error were applied to evaluate the developed models. The computational results showed that the proposed RBFNN-GWO and LSSVM-GWO, with Coefficient of Determination (R2) = 1 and Root Mean Square Error (RMSE) = 0, produced better results than other models proposed previously in the literature for the prediction of the soil liquefaction potential. It is an efficient and effective alternative for the soil liquefaction potential prediction. Furthermore, the results of this study confirmed the effectiveness of the GWO algorithm in training the RBFNN and LSSVM models. According to sensitivity analysis results, the cyclic stress ratio was also found as the most effective parameter on the soil liquefaction in the studied case
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10266
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires