DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11169

Titre: Numerical investigation and optimization of melting performance for thermal energy storage system partially filled with metal foam layer: New design configurations
Auteur(s): Haddad, Zoubida
Iachachene, Farida
Sheremet, Mikhail A.
;Abu-Nada, Eiyad
Mots-clés: Convective flow
Enthalpy-porosity approach
Heat transfer
Metal foam
Nanoparticles
Numerical simulation
Phase change material
Square cavity
Date de publication: 2023
Editeur: Elsevier
Collection/Numéro: Applied Thermal Engineering/ Vol.223 (2023);pp. 1-16
Résumé: Low thermal performance of storage systems represents a barrier to their industrial/engineering application and commercialization. Among all the proposed methods, combination of phase change material with metal foams appears more promising due to the high thermal conductivity of metal foams. However, the insertion of metal foams reduces the PCM volume; hence, a lower amount of stored energy. The present numerical study thoroughly addresses this issue with a focus on the optimization of melting performance for thermal energy storage system partially filled with metal foam layer. A finite volume method based on the enthalpy–porosity technique has been adopted for the numerical simulations. The metal foam location, porosity, and nanoparticle volume fraction were optimized to explore their effects on the melting performance. The results showed that inserting the foam layer diagonally from the top left to the right bottom leads to the lowest melting time. Compared to pure PCM, the melting time increases by 77.7%, while the stored energy decreases by 6.7%. The optimum porosity was found to be 0.88 as it gives approximately the same amount of stored energy as that of pure PCM with a deviation of 4%. Adding nanoparticles to pure PCM increases the melting rate by approximately 8%, while it decreases the stored energy by almost 3%. It is concluded that hybrid systems, i.e., metal foam at an optimum porosity and nanoparticles is more efficient than using each technique separately
URI/URL: https://doi.org/10.1016/j.applthermaleng.2022.119809
https://www.sciencedirect.com/science/article/pii/S1359431122017392
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11169
ISSN: 13594311
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires