DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11259

Titre: A machine learning model for improving virtual machine migration in cloud computing
Auteur(s): Belgacem, Ali
Mahmoudi, Saïd
Ferrag, Mohamed Amine
Mots-clés: Cloud computing
Energy consumption
Machine learning
Virtualization
VM migration
Date de publication: 2023
Editeur: Springer
Collection/Numéro: Journal of Supercomputing/ (2023);pp. 1-23
Résumé: Cloud Computing is a paradigm allowing access to physical and application resources online via the Internet. These resources are virtualized using virtualization software to make them available to users as a service. Virtual machines (VMs) migration technique provided by virtualization technology impacts the performance of the cloud. It is a significant concern in this environment. When allocating resources, the distribution of VMs is unbalanced, and their movement from one server to another can increase energy consumption and network overhead, necessitating an improvement in VM migrations. This paper addresses the VMs migration issue by applying a machine learning model to reduce the VMs migration number and energy consumption. The proposed algorithm (named VMLM) is based on improving VM’s migration process and selection. It has been benchmarked with JVCMMD and EVSP solutions. The simulation results demonstrate the efficiency of our proposal, which includes two phases the machine learning preparing stage and the VMs migration stage
URI/URL: DOI 10.1007/s11227-022-05031-z
https://link.springer.com/article/10.1007/s11227-022-05031-z
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11259
ISSN: 09208542
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Ali Belgacem.pdf5,74 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires