Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11259
|
Titre: | A machine learning model for improving virtual machine migration in cloud computing |
Auteur(s): | Belgacem, Ali Mahmoudi, Saïd Ferrag, Mohamed Amine |
Mots-clés: | Cloud computing Energy consumption Machine learning Virtualization VM migration |
Date de publication: | 2023 |
Editeur: | Springer |
Collection/Numéro: | Journal of Supercomputing/ (2023);pp. 1-23 |
Résumé: | Cloud Computing is a paradigm allowing access to physical and application resources online via the Internet. These resources are virtualized using virtualization software to make them available to users as a service. Virtual machines (VMs) migration technique provided by virtualization technology impacts the performance of the cloud. It is a significant concern in this environment. When allocating resources, the distribution of VMs is unbalanced, and their movement from one server to another can increase energy consumption and network overhead, necessitating an improvement in VM migrations. This paper addresses the VMs migration issue by applying a machine learning model to reduce the VMs migration number and energy consumption. The proposed algorithm (named VMLM) is based on improving VM’s migration process and selection. It has been benchmarked with JVCMMD and EVSP solutions. The simulation results demonstrate the efficiency of our proposal, which includes two phases the machine learning preparing stage and the VMs migration stage |
URI/URL: | DOI 10.1007/s11227-022-05031-z https://link.springer.com/article/10.1007/s11227-022-05031-z http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11259 |
ISSN: | 09208542 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|