DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11267

Titre: Advances in coyote optimization algorithm : variants and applications
Auteur(s): Meraihi, Yassine
Gabis, Asma Benmessaoud
Ramdane-Cherif, Amar
Acheli, Dalila
Mots-clés: Algorithm optimization
Coyote Optimization Algorithm (COA)
Meta-heuristics
Population-based
Date de publication: 2023
Editeur: Springer
Collection/Numéro: EAI/Springer Innovations in Communication and Computing/ (2023);pp. 99-113
Résumé: Coyote Optimization Algorithm (COA) is a recent population-based technique inspired by the attitude of coyotes in nature. COA has been widely applied to tackle different optimization issues in several areas and has proved its successfulness compared to several methods found in the literature. In this paper, we describe a brief overview of COA and its variants including adjusted and hybridized versions. Additionally, we present COA applications in various fields such as image segmentation, wireless mesh networks, economic dispatch, electric power systems, distributed generation, and other engineering issues. Finally, we recommend some interesting future research areas directions for COA
URI/URL: DOI 10.1007/978-3-031-19523-5_7
https://link.springer.com/chapter/10.1007/978-3-031-19523-5_7
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11267
ISBN: 978-303119522-8
ISSN: 25228595
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires