Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11330
|
Titre: | Aerial forest smoke’s fire detection using enhanced YOLOv5 |
Auteur(s): | Cherifi, Dalila Bekkour, Belkacem Benmalek, Assala Bayou, Meroua Mechti, Ines Bekkouche, Abdelghani Amine, Chaima Halak, Ahmed |
Mots-clés: | Aerial fire detection algorithm Deep learning YOLOv5 |
Date de publication: | 2023 |
Editeur: | Springer |
Collection/Numéro: | Lecture Notes in Networks and Systems/ Vol.591 LNNS (2023);pp. 342-349 |
Résumé: | Forest fires around the world are the main cause of devastating millions of forest hectares, destroying several infrastructures and unfortunately causing many human casualties among both fire fighting crews and civilians that might be accidentally surrounded by the fire. The early detection of more than 58,950 forest fires and the real-time fire perception are two key factors that allow the firefighting crews to act accordingly in order to prevent the fire from achieving unmanageable proportions [1]. Forest fire detection is such a challenging problem for the current world. Traditional methodologies depend on a set of expensive hardware and sensors that might be not accurate due to some environment parameters and weather fluctuations. This paper proposes an accurate intelligent deep learning-based YOLOv5 model to detect forest fires from a given aerial images |
URI/URL: | DOI 10.1007/978-3-031-21216-1_37 https://link.springer.com/chapter/10.1007/978-3-031-21216-1_37 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11330 |
ISBN: | 978-303121215-4 |
ISSN: | 23673370 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|