DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11330

Titre: Aerial forest smoke’s fire detection using enhanced YOLOv5
Auteur(s): Cherifi, Dalila
Bekkour, Belkacem
Benmalek, Assala
Bayou, Meroua
Mechti, Ines
Bekkouche, Abdelghani
Amine, Chaima
Halak, Ahmed
Mots-clés: Aerial fire detection algorithm
Deep learning
YOLOv5
Date de publication: 2023
Editeur: Springer
Collection/Numéro: Lecture Notes in Networks and Systems/ Vol.591 LNNS (2023);pp. 342-349
Résumé: Forest fires around the world are the main cause of devastating millions of forest hectares, destroying several infrastructures and unfortunately causing many human casualties among both fire fighting crews and civilians that might be accidentally surrounded by the fire. The early detection of more than 58,950 forest fires and the real-time fire perception are two key factors that allow the firefighting crews to act accordingly in order to prevent the fire from achieving unmanageable proportions [1]. Forest fire detection is such a challenging problem for the current world. Traditional methodologies depend on a set of expensive hardware and sensors that might be not accurate due to some environment parameters and weather fluctuations. This paper proposes an accurate intelligent deep learning-based YOLOv5 model to detect forest fires from a given aerial images
URI/URL: DOI 10.1007/978-3-031-21216-1_37
https://link.springer.com/chapter/10.1007/978-3-031-21216-1_37
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11330
ISBN: 978-303121215-4
ISSN: 23673370
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires