DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11463

Titre: Blood cells image segmentation and counting using deep transfer learning
Auteur(s): Gharbi, Aghiles
Neggazi, Mohamed Lamine
Touazi, Faycal
Gaceb, Djamel
Yagoubi, Mohamed Riad
Mots-clés: White blood cells
Image segmentation
Technological innovation
Image color analysis
Smart cities
Transfer learning
Watersheds
Date de publication: 2023
Editeur: IEEE
Collection/Numéro: 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC);
Résumé: In this paper, we present a two-step automatic blood cell counting approach for accurately and efficiently determining the complete blood count (CBC). The approach involves using two convolutional neural networks (CNNs) for the segmentation of red blood cells, white blood cells, and platelets, and then applying three different algorithms (Watershed, Connected Component Labeling, and Circle Hough Transform) to count the cells present in the masks produced by the CNNs. We also introduce a loss function for the Circle Hough Transform algorithm to further improve its accuracy. Our approach shows good results compared to other methods in the literature and has the potential to significantly reduce the time and effort required for manual blood cell counting
URI/URL: DOI: 10.1109/ICAISC56366.2023.10085605
https://ieeexplore.ieee.org/document/10085605/authors#authors
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11463
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires