DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11512

Titre: CNN and M-SLIC superpixels feature fusion for VHR image classification
Auteur(s): Semcheddine, Belkis Asma
Daamouche, Abdelhamid
Mots-clés: CNN
Feature fusion
M-SLIC superpixels segmentation
Haralick features
Multispectral image classification
Remote sensing
Date de publication: 2022
Editeur: IEEE
Collection/Numéro: 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE);
Résumé: In this letter, we present a method for fusing handcrafted features with abstract features for the purpose of VHR remote sensing image classification. The proposed strategy allows for a multi-level feature fusion, which enriches the available spectral data, resulting in a better class separability. In a first step, deep features are extracted using Convolutional Neural Networks. These features are then fused with Haralick features drawn out by means of M-SLIC superpixels segmentation. The combined features are then concatenated with the spectral features of the image and classified using Support Vector Machines. Our experiments were conducted on a VHR satellite image, and the obtained results qualify us to validate the superiority of the suggested scheme (over 16% overall classification accuracy improvement)
URI/URL: DOI: 10.1109/ICATEEE57445.2022.10093756
https://ieeexplore.ieee.org/document/10093756/authors#authors
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11512
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires