Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11512
|
Titre: | CNN and M-SLIC superpixels feature fusion for VHR image classification |
Auteur(s): | Semcheddine, Belkis Asma Daamouche, Abdelhamid |
Mots-clés: | CNN Feature fusion M-SLIC superpixels segmentation Haralick features Multispectral image classification Remote sensing |
Date de publication: | 2022 |
Editeur: | IEEE |
Collection/Numéro: | 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE); |
Résumé: | In this letter, we present a method for fusing handcrafted features with abstract features for the purpose of VHR remote sensing image classification. The proposed strategy allows for a multi-level feature fusion, which enriches the available spectral data, resulting in a better class separability. In a first step, deep features are extracted using Convolutional Neural Networks. These features are then fused with Haralick features drawn out by means of M-SLIC superpixels segmentation. The combined features are then concatenated with the spectral features of the image and classified using Support Vector Machines. Our experiments were conducted on a VHR satellite image, and the obtained results qualify us to validate the superiority of the suggested scheme (over 16% overall classification accuracy improvement) |
URI/URL: | DOI: 10.1109/ICATEEE57445.2022.10093756 https://ieeexplore.ieee.org/document/10093756/authors#authors http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11512 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|