Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Telecommunication >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11697
|
Titre: | Comparaison between the implementation of emotion detection from Twitter Tweets using SVM and LSTM |
Auteur(s): | Fedoul, Ibrahim Nassim Ibrahim Nassim Bouhamadouche, Anis Namane, Rachid (supervisor) |
Mots-clés: | Implementation and testing Twitter Tweets |
Date de publication: | 2020 |
Editeur: | Université M’Hamed BOUGARA de Boumerdes : Institut de génie electrique et electronique (IGEE) |
Résumé: | This report compares two di?erent Machine Learning (ML) methods used to classify five types of emotions from a twitter tweets dataset.
The first approach is a classical method in Natural Language Processing (NLP), Support Vector Machine (SVM); The text data is cleaned, tokenized, and stemmed to derive fea-ture vectors using two di?erent feature extraction methods, namely Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF). The resulting feature ma-trix is fed to a non-linear SVM classifier. Conversely, the second approach is more recent; this method uses word embedding and Long Short Term Memory (LSTM) neural network. First, we convert words of similar meaning into similar feature vectors. Then, the result-ing features are fed sequentially into the LSTM.
Although it has been proved in the past that the SVM is the most robust model in classifica-tion problems, it is not the case for text classification. LSTM showed a better performance compared to the SVM; between 85% and 87% for LSTM and around 82% for the SVM. |
Description: | 57 p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11697 |
Collection(s) : | Telecommunication
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|