DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Telecommunication >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11697

Titre: Comparaison between the implementation of emotion detection from Twitter Tweets using SVM and LSTM
Auteur(s): Fedoul, Ibrahim Nassim Ibrahim Nassim
Bouhamadouche, Anis
Namane, Rachid (supervisor)
Mots-clés: Implementation and testing
Twitter Tweets
Date de publication: 2020
Editeur: Université M’Hamed BOUGARA de Boumerdes : Institut de génie electrique et electronique (IGEE)
Résumé: This report compares two di?erent Machine Learning (ML) methods used to classify five types of emotions from a twitter tweets dataset. The first approach is a classical method in Natural Language Processing (NLP), Support Vector Machine (SVM); The text data is cleaned, tokenized, and stemmed to derive fea-ture vectors using two di?erent feature extraction methods, namely Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF). The resulting feature ma-trix is fed to a non-linear SVM classifier. Conversely, the second approach is more recent; this method uses word embedding and Long Short Term Memory (LSTM) neural network. First, we convert words of similar meaning into similar feature vectors. Then, the result-ing features are fed sequentially into the LSTM. Although it has been proved in the past that the SVM is the most robust model in classifica-tion problems, it is not the case for text classification. LSTM showed a better performance compared to the SVM; between 85% and 87% for LSTM and around 82% for the SVM.
Description: 57 p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11697
Collection(s) :Telecommunication

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Final FYP Report.pdf1,7 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires