Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11926
|
Titre: | ECG Heartbeat Arrhythmias Classification Using Convolutional Neural Networks |
Auteur(s): | Tighilt, Kahina Mohammed-Sahnoun, A. (Supervisor) |
Mots-clés: | Convolutional Neural Networks Electrocardiograms or ECG signals |
Date de publication: | 2022 |
Résumé: | While cardiac diseases are increasing in the past years, heart monitoring has become crucial to
assess the heart behavior and detect any arrhythmia if available. Electrocardiograms or ECG
signals, are records of the electrical activity of the heart that illustrates the way the
depolarization wave flow in each heartbeat; A proper study of an ECG signal’s characteristics
is the gold standard of providing effective diagnostics for cardiac diseases.
The aim of this work is to provide an automatic approach of analyzing and detecting
arrhythmias using deep neural networks or to be more specific, 2-dimensional convolutional
neural networks. The great performance in extracting the spatial features of input image data
is what contributed in CNNs popularity and is what makes it more suitable than any other
model. In this study a CNN architecture was proposed and discussed in terms of performance,
and the impact of deep learning techniques which are batch normalization and dropout on it |
Description: | 52p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11926 |
Collection(s) : | Computer
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|