DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12599

Titre: Retina blood vessels segmentation by combining deep learning networks
Auteur(s): Bachiri, Mohamed Elssaleh
Rahmoune, Adel
Rahmoune, Fayçal
Mots-clés: Retinal segmentation
Convolution neuron network
U-Net
Deep learning
VGG 16
Resnet 34
Date de publication: 2023
Editeur: Inder science
Collection/Numéro: International Journal of Biomedical Engineering and Technology, Vol. 43, N° 1 (2023);p.p. 38-59
Résumé: In this paper, we propose two deep learning architectures for the segmentation and detection of the vascular networks of blood vessels in fundus images. First, we combined VGG16 with U-net, then, we used Resnet 34 in combination with U-net. Both architectures employ an encoding and a decoding path. In this paper, we used the DRIVE and STARE databases. After applying VGG 16+U-net on the DRIVE database, we obtained the accuracy value of 0.96955, 0.79929 sensitivity, 0.98624 specificity, 0.9805 recall, and 0.9833 F1-score. We applied VGG 16+U-net on STARE database and we got 0.95259 accuracy, 0.89996 sensitivity, 0.95530 specificity, 0.9933 recall, and 0.9742 F1-score. Concerning Resnet 34 + U-net, we got the value of 0.9692 accuracy, 0.7859 sensitivity, 0.9870 specificity, 0.9794 recall, and 0.9832 F1-score after applying on DRIVE database. Moreover, we got 0.9363 accuracy, 0.9335 sensitivity, 0.9246 specificity, 0.9961 recall, and 0.9649 F1-score after we applied Resnet 34+U-net on STARE.
URI/URL: https://doi.org/10.1504/IJBET.2023.133720
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12599
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Bachiri_Article.pdf1,33 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires