DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12632

Titre: Embedded AI-based induction motor diagnosis and fault classification
Auteur(s): Maallem, Nassim
Touzout, Walid ( Supervisor)
Mots-clés: AI-based system
Induction motor, fault diagnosis
Date de publication: 2023
Editeur: Université M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electronique
Résumé: In any industry, regardless of how reliable the equipment is, it is prone to failures and degradation due to many factors ranging from environmental factors to simply reaching the end of the life cycle. This made fault diagnosis a necessary and reliable tool, to maintain equipment and extend their lifetime. This report focuses on presenting the development of an AI-based system for fault diagnosis of an induction motor, using classi?cation techniques and deploying it on an embedded system, with the aim of extending equipment lifetime and maintaining its e?ciency. The project utilizes data collected from accelerometers and acoustic sensors to train multiple AI models mainly: Support-vector-machines, k-nearest-neighbor, Decision tree, Random forest, Feed forward neural network, and Long-short-term memory. As a result, the feed forward neural network model is found to perform the best in terms of accuracy, model size, and testing time among the evaluated models. Moreover, the system we deployed on an ESP32-S3 SoC, performed well and proved to be reliable for industrial application when tested with new data. Consequently, the ?ndings highlight the reliability and precision of AI models in fault diagnosis tasks, and showed how to bene?t from deploying such systems on embedded platforms. Overall, the presented report emphasizes the importance of fault diagnosis in industrial settings and showcases the practicality and e?ectiveness of AI on embedded systems in this domain.
Description: 74p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12632
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
my final thesis_removed-Copier.pdf5,29 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires