DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12797

Titre: Development of non-conventional super-UWB antenna based on genetic algorithm optimization
Auteur(s): Fertas, Khelil
Fertas, Fouad
Maamria, Tarek
Mots-clés: Genetic Algorithm Optimization (GAO)
Non-conventional DGS filter
Super-Ultra Wide Band (SUWB)
Date de publication: 2023
Editeur: Institute of Electrical and Electronics Engineers Inc
Collection/Numéro: International Conference on Electromagnetics in Advanced Applications/ 2023 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Venice, Italy, 2023, pp. 052-055
Résumé: This paper presents, an improved applied approach using genetic algorithm optimization for super-ultra wide band antenna. The intended antenna is optimized to operate from 2.8 GHz to more than 40 GHz and suggested for UWB wireless communications include 5G applications. Improving the impedance bandwidth is achieved by optimizing appropriate non-conventional defected ground structure (DGS) filter. The optimized non-conventional filter consists of a matrix of rectangular shapes where each one is allocated by either conducting or non-conducting property. The process is based in a code developed using visual basic script of CST microwave studio. Additionally, the optimized form can be automatically achieved without designer intervention. The simulated results for reflexion coefficient, current distribution, radiation pattern and gain are presented and discussed
URI/URL: 10.1109/APWC57320.2023.10297516
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12797
https://ieeexplore.ieee.org/document/10297516
ISBN: 979-835032060-2
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Development_of_Non-Conventional_Super-UWB_Antenna_Based_on_Genetic_Algorithm_Optimization.pdf1,27 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires