DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12800

Titre: Impact of spiking neurons leakages and network recurrences on event-based spatio-temporal pattern recognition
Auteur(s): Bouanane, Mohamed Sadek
Cherifi, Dalila
Chicca, Elisabetta
Khacef, Lyes
Mots-clés: Digital neuromorphic architectures
Event-based sensors
Network recurrences
Neural heterogeneity
Neurons leakages
Spatio-temporal patterns
Spiking neural networks
Date de publication: 2023
Editeur: Frontiers Media SA
Collection/Numéro: Frontiers in Neuroscience/ Vol. 17, Article N° 1244675; PP. 1-13
Résumé: Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge. However, multiple spiking neuron models have been proposed in the literature with different levels of biological plausibility and different computational features and complexities. Consequently, there is a need to define the right level of abstraction from biology in order to get the best performance in accurate, efficient and fast inference in neuromorphic hardware. In this context, we explore the impact of synaptic and membrane leakages in spiking neurons. We confront three neural models with different computational complexities using feedforward and recurrent topologies for event-based visual and auditory pattern recognition. Our results showed that, in terms of accuracy, leakages are important when there are both temporal information in the data and explicit recurrence in the network. Additionally, leakages do not necessarily increase the sparsity of spikes flowing in the network. We also investigated the impact of heterogeneity in the time constant of leakages. The results showed a slight improvement in accuracy when using data with a rich temporal structure, thereby validating similar findings obtained in previous studies. These results advance our understanding of the computational role of the neural leakages and network recurrences, and provide valuable insights for the design of compact and energy-efficient neuromorphic hardware for embedded systems.
URI/URL: https://doi.org/10.3389/fnins.2023.1244675
https://www.frontiersin.org/articles/10.3389/fnins.2023.1244675/full
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12800
ISSN: 1662-4548
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Bouanane, Mohamed Sadek.pdf1,15 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires