DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12817

Titre: Robust fault estimation for wind turbine pitch and drive train systems
Auteur(s): Azizi, Abdesamia
Youssef, Tewfik
Kouadri, Abdelmalek
Mansouri, Majdi
Mimouni, Mohamed Fouzi
Mots-clés: Augmented state
Genetic algorithm optimizer
Multi-objective function
Unknown input observer (UIO)
Wind turbine
Date de publication: 2024
Editeur: Elsevier
Collection/Numéro: International Journal of Electrical Power and Energy Systems/ Vol. 155, Part B, Article N° 109673, ( Jan. 2024)
Résumé: The reliability and accuracy of the wind conversion system largely depend on the early detection and diagnosis of faults. In this paper, a novel fault estimator for wind turbine pitch and drive train systems is developed. The main objective is to estimate actuator and sensor faults along with the system states while mitigating the impact of process disturbances and noises. To accomplish this, an augmented state is created by combining the states of the system and different faults. Subsequently, an Unknown Input Observer (UIO) is developed to estimate them simultaneously. The UIO matrices are obtained by optimizing a multi-objective function formed by transforming states and faults estimation errors into the frequency domain using a genetic algorithm. Compared with other approaches, particularly H∞, the proposed technique shows great superiority in accurately estimating various actuators and sensors faults.
URI/URL: https://doi.org/10.1016/j.ijepes.2023.109673
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12817
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4401019
ISSN: 0142-0615
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Robust fault estimation for wind turbine pitch and drive train systems.pdf3,81 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires