Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12817
|
Titre: | Robust fault estimation for wind turbine pitch and drive train systems |
Auteur(s): | Azizi, Abdesamia Youssef, Tewfik Kouadri, Abdelmalek Mansouri, Majdi Mimouni, Mohamed Fouzi |
Mots-clés: | Augmented state Genetic algorithm optimizer Multi-objective function Unknown input observer (UIO) Wind turbine |
Date de publication: | 2024 |
Editeur: | Elsevier |
Collection/Numéro: | International Journal of Electrical Power and Energy Systems/ Vol. 155, Part B, Article N° 109673, ( Jan. 2024) |
Résumé: | The reliability and accuracy of the wind conversion system largely depend on the early detection and diagnosis of faults. In this paper, a novel fault estimator for wind turbine pitch and drive train systems is developed. The main objective is to estimate actuator and sensor faults along with the system states while mitigating the impact of process disturbances and noises. To accomplish this, an augmented state is created by combining the states of the system and different faults. Subsequently, an Unknown Input Observer (UIO) is developed to estimate them simultaneously. The UIO matrices are obtained by optimizing a multi-objective function formed by transforming states and faults estimation errors into the frequency domain using a genetic algorithm. Compared with other approaches, particularly H∞, the proposed technique shows great superiority in accurately estimating various actuators and sensors faults. |
URI/URL: | https://doi.org/10.1016/j.ijepes.2023.109673 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12817 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4401019 |
ISSN: | 0142-0615 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|