Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12830
|
Titre: | Longcgdroid: android malware detection through longitudinal study for machine learning and deep learning |
Auteur(s): | Mesbah, Abdelhak Baddari, Ibtihel Riahla, Mohamed Amine |
Mots-clés: | Adjacency matrix Android security Longitudinal evaluation Machine learning Malware detection |
Date de publication: | 2023 |
Editeur: | Scientific Research Support Fund of Jordan |
Collection/Numéro: | Jordanian Journal of Computers and Information Technology/ Vol. 9, N° 4, 2023;pp. 328 - 346 |
Résumé: | This study aims to compare the longitudinal performance between machine-learning and deep-learning classifiers for Android malware detection, employing different levels of feature abstraction. Using a dataset of 200k Android apps labeled by date within a 10-year range (2013-2022), we propose the LongCGDroid, an image-based effective approach for Android malware detection. We use the semantic Call Graph API representation that is derived from the Control Flow Graph and Data Flow Graph to extract abstracted API calls. Thus, we evaluate the longitudinal performance of LongCGDroid against API changes. Different models are used; machine-learning models (LR, RF, KNN, SVM) and deep-learning models (CNN, RNN). Empirical experiments demonstrate a progressive decline in performance for all classifiers when evaluated on samples from later periods. However, the deep-learning CNN model under the class abstraction maintains a certain stability over time. In comparison with eight state-of-the-art approaches, LongCGDroid achieves higher accuracy. |
URI/URL: | 10.5455/jjcit.71-1693392249 https://jjcit.org/paper/207/LONGCGDROID-ANDROID-MALWARE-DETECTION-THROUGH-LONGITUDINAL-STUDY-FOR-MACHINE-LEARNING-AND-DEEP-LEARNING http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12830 |
ISSN: | 2413-9351 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|