DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12830

Titre: Longcgdroid: android malware detection through longitudinal study for machine learning and deep learning
Auteur(s): Mesbah, Abdelhak
Baddari, Ibtihel
Riahla, Mohamed Amine
Mots-clés: Adjacency matrix
Android security
Longitudinal evaluation
Machine learning
Malware detection
Date de publication: 2023
Editeur: Scientific Research Support Fund of Jordan
Collection/Numéro: Jordanian Journal of Computers and Information Technology/ Vol. 9, N° 4, 2023;pp. 328 - 346
Résumé: This study aims to compare the longitudinal performance between machine-learning and deep-learning classifiers for Android malware detection, employing different levels of feature abstraction. Using a dataset of 200k Android apps labeled by date within a 10-year range (2013-2022), we propose the LongCGDroid, an image-based effective approach for Android malware detection. We use the semantic Call Graph API representation that is derived from the Control Flow Graph and Data Flow Graph to extract abstracted API calls. Thus, we evaluate the longitudinal performance of LongCGDroid against API changes. Different models are used; machine-learning models (LR, RF, KNN, SVM) and deep-learning models (CNN, RNN). Empirical experiments demonstrate a progressive decline in performance for all classifiers when evaluated on samples from later periods. However, the deep-learning CNN model under the class abstraction maintains a certain stability over time. In comparison with eight state-of-the-art approaches, LongCGDroid achieves higher accuracy.
URI/URL: 10.5455/jjcit.71-1693392249
https://jjcit.org/paper/207/LONGCGDROID-ANDROID-MALWARE-DETECTION-THROUGH-LONGITUDINAL-STUDY-FOR-MACHINE-LEARNING-AND-DEEP-LEARNING
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12830
ISSN: 2413-9351
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Mesbah, Abdelhak.pdf2,96 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires