Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Contrôle >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13356
|
Titre: | Indoor obstacle avoidance system design And evaluation using deep learning and SLAM based approaches |
Auteur(s): | Benbekhma, Abdelwadoud Taibi, Houssam Eddine Benzaoui, Messaouda((supervisor) |
Mots-clés: | SLAM : Simultaneous localization and mapping RRT : Rapidly exploring random trees |
Date de publication: | 2024 |
Editeur: | Université M'hamed Bougara Boumerdès: Institue de génie electronic et electric |
Résumé: | This project aims to contribute to the vibrant fiel do fobstacl edetectio nan dsaf eau-tonomous navigation by designing a robust and cost-efficien tsyste mfo rindoo rmobile robot obstacle avoidance. The system combines 2D LiDAR-based SLAM with the state-of-the-art RRT algorithm for effective path planning. In addition, a pioneering deep learning approach addresses challenges in SLAM-RRT-based obstacle avoidance, including un-certain sensor measurements, complex environments, generalization, planning efficiency, and non-geometric information. The deep learning model is trained using data from a simulated environment with a 2D LiDAR sensor, serving both SLAM and data acquisition purposes. Comparative analysis between odometry-based and SLAM-based pose compu-tation methods provides insights into successful deep learning-based obstacle avoidance.
Implemented within ROS2, this project represents a significan tstrid ei nexplorin gcutting-edge techniques for robust and cost-efficien tindoo rmobil erobo tobstacl eavoidance |
Description: | 75 p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13356 |
Collection(s) : | Contrôle
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|