DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13429

Titre: Two-Stage approach for semantic image segmentation of breast cancer: deep learning and mass detection in mammographic images
Auteur(s): Touazi, Faycal
Gaceb, Djamel
Chirane, Marouane
Herzallah, Selma
Mots-clés: Breast Cancer
Deep Learning
NEST
ViT
YOLO
Date de publication: 2023
Editeur: CEUR Workshop Proceedings
Collection/Numéro: IDDM’2023: 6th International Conference on Informatics & Data-Driven Medicine,( November 17 - 19)2023, Bratislava, Slovakia / Vol. 3609(2023);pp. 62 - 76
Résumé: Breast cancer is a significant global health problem that predominantly affects women and requires effective screening methods. Mammography, the primary screening approach, presents challenges such as radiologist workload and associated costs. Recent advances in deep learning hold promise for improving breast cancer diagnosis. This paper focuses on early breast cancer detection using deep learning to assist radiologists, reduce their workload and costs. We employed the CBIS-DDSM dataset and various CNN models, including YOLO versions V5, V7, and V8 for mass detection, and transformer-based (nested) models inspired by ViT for mass segmentation. Our diverse approach aims to address the complexity of breast cancer detection and segmentation from medical images. Our results show promise, with a 59% mAP50 for cancer mass detection and an impressive 90.15% Dice coefficient for semantic segmentation. These findings highlight the potential of deep learning to enhance breast cancer diagnosis, paving the way for more efficient and accurate early detection methods.
URI/URL: https://ceur-ws.org/Vol-3609/paper6.pdf
https://www.researchgate.net/publication/377926132_Two-Stage_Approach_for_Semantic_Image_Segmentation_of_Breast_Cancer_Deep_Learning_and_Mass_Detection_in_Mammographic_Images
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13429
ISSN: 16130073
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Two-Stage Approach for Semantic Image Segmentation of Breast Cancer.pdf2,03 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires