DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13650

Titre: Remaining Useful Life Prediction in Turbofan Engines: PCA and Machine Learing Approach
Auteur(s): Boutora, Saliha
Aribi, Yacine
Boushaki Zamoum, Pr. Razika
Kouzou, Pr. Abdellah
Menasria, Hafid
Abdellaoui, Abdelkader
Mots-clés: Failure Prediction
Gradient Boosted Machine
Principal Component Analysis (PCA)
Random Forest
Remaining Useful Life (RUL)
Turbo Fan Engine
Date de publication: 2023
Editeur: Institute of Electrical and Electronics Engineers Inc
Collection/Numéro: 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia, 2023;pp. 469-476
Résumé: In this paper, a study of prediction of the Remaining Useful Life (RUL) of an aircraft's turbofan engine is explored by analyzing a data set of a real-life turbofan engine from the Prognostics Data Repository of NASA and using the Principal Component Analysis (PCA) for data reduction and preprocessing, then selecting machine learning algorithms, mainly the Random Forest (RF) and Gradient Boosted Machine (GBM) so that a model can be trained to predict the possible failures through developing a model to estimate the RUL of the functionality of the turbofan engine
URI/URL: https://ieeexplore.ieee.org/document/10411236
10.1109/SSD58187.2023.10411236
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13650
ISSN: 979-835033256-8
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Remaining_Useful_Life_Prediction_in_Turbofan_Engines_PCA_and_Machine_Learing_Approach.pdf1,66 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires