Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13650
|
Titre: | Remaining Useful Life Prediction in Turbofan Engines: PCA and Machine Learing Approach |
Auteur(s): | Boutora, Saliha Aribi, Yacine Boushaki Zamoum, Pr. Razika Kouzou, Pr. Abdellah Menasria, Hafid Abdellaoui, Abdelkader |
Mots-clés: | Failure Prediction Gradient Boosted Machine Principal Component Analysis (PCA) Random Forest Remaining Useful Life (RUL) Turbo Fan Engine |
Date de publication: | 2023 |
Editeur: | Institute of Electrical and Electronics Engineers Inc |
Collection/Numéro: | 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia, 2023;pp. 469-476 |
Résumé: | In this paper, a study of prediction of the Remaining Useful Life (RUL) of an aircraft's turbofan engine is explored by analyzing a data set of a real-life turbofan engine from the Prognostics Data Repository of NASA and using the Principal Component Analysis (PCA) for data reduction and preprocessing, then selecting machine learning algorithms, mainly the Random Forest (RF) and Gradient Boosted Machine (GBM) so that a model can be trained to predict the possible failures through developing a model to estimate the RUL of the functionality of the turbofan engine |
URI/URL: | https://ieeexplore.ieee.org/document/10411236 10.1109/SSD58187.2023.10411236 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13650 |
ISSN: | 979-835033256-8 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|