DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13705

Titre: Big data clustering based on spark chaotic improved particle swarm optimization
Auteur(s): Boushaki, Saida Ishak
Mahammed, Brahim Hadj
Bendjeghaba, Omar
Mosbah, Messaoud
Mots-clés: Big data clustering
Chaotic map
MapReduce
Particle swarm optimization
Spark
Date de publication: 2024
Editeur: Institute of Advanced Engineering and Science (IAES)
Collection/Numéro: Indonesian Journal of Electrical Engineering and Computer ScienceOpen Access/ Vol. 34, N°1(2024);PP. 419 - 429
Résumé: In recent years, the surge in continuously accelerating data generation has given rise to the prominence of big data technology. The MapReduce architecture, situated at the core of this technology, provides a robust parallel environment. Spark, a leading framework in the big data landscape, extends the capabilities of the traditional MapReduce model. Coping with big data, especially in the realm of clustering, requires more efficient techniques. Meta-heuristic-based clustering, known for offering global solutions within reasonable time frames, emerges as a promising approach. This paper introduces a parallel-distributed clustering algorithm for big data within the Spark Framework, named Spark, chaotic improved PSO (S-CIPSO). Centered on particle swarm optimization (PSO), the proposed algorithm is enhanced with a chaotic map and an efficient procedure. Test results, conducted on both real and artificial datasets, establish the superior performance and quality of clustering results achieved by the proposed approach. Additionally, the scalability and robustness of S-CIPSO are validated, demonstrating its effectiveness in handling large-scale datasets.
URI/URL: https://ijeecs.iaescore.com/index.php/IJEECS/article/view/35388
http://doi.org/10.11591/ijeecs.v34.i1.pp419-429
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13705
ISSN: 2502-4752
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Big data clustering based on spark chaotic improved particle swarm optimization.pdf504,67 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires