DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13829

Titre: Prediction model of reservoir porosity via incorporating Particle Swarm Optimisation into an Adaptive Neuro-Fuzzy Inference System; application to Triassic reservoirs of the Hassi R’mel field (Algeria)
Auteur(s): Cherana, Amina
Aliouane, Lynda
Mots-clés: Adaptive Neuro-Fuzzy Inference System (ANFIS)
Hybrid machine learning systems
Particle SwarOptimisation (PSO)
Porosity prediction
Neuro-fuzzy
Date de publication: 2024
Editeur: Istituto Nazionale di Oceanografia e di Geofisica Sperimentale
Collection/Numéro: Bulletin of Geophysics and Oceanography/ Vol.65, N° 1(2024);pp. 97 - 114
Résumé: Conventional methods for estimating porosity from core data are often limited by their spatial coverage, time-consuming nature, high cost, and inability to capture the entire underground reservoir. To address these challenges, this paper proposes a soft computing method using an Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate porosity in a conventional gas reservoir. The approach involves integrating well-logging data and the ANFIS model with a Particle Swarm Optimisation (PSO) training algorithm to predict the underground porosity model in the Hassi R’mel region of the Algerian Sahara. The choice of this hybrid method was based on its superior performance compared to other models. Although the Hassi R’mel reservoirs are of Triassic clay sandstones, originated by the fluviatile depositional environment that lay on top of the Hercynian surface, the characterisation of their properties still requires refinement to improve the reservoir performance and address the problems faced using appropriate technologies. With an average porosity of 15% and permeability ranging from 250 to 650 mD, the ANFIS method shows excellent accuracy compared to core data, and a reliability of 85%. Overall, the ANFIS-PSO hybrid model proves to be a dependable and efficient technique for porosity prediction, surpassing traditional methods.
URI/URL: https://bgo.ogs.it/issues/2024-vol-65-1/prediction-model-reservoir-porosity-incorporating-particle-swarm-optimisation
10.4430/bgo00432
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13829
ISSN: 2785339X
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Prediction model of reservoir porosity via incorporating Particle Swarm Optimisation into an Adaptive Neuro-Fuzzy Inference Syst.pdf9,88 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires