DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13879

Titre: Comparative Study on Early Stage Diabete Detection by Using Machine Learning Methods
Auteur(s): Cherifi, Dalila
Djellouli, Seyyid Ahmed
Riabi, Hanane
Hamadouche, Mohamed
Mots-clés: Diabetic Detection
Machine Learning Methods
Logistic Regression
Random Forest
K-Nearest Neighbour
Support Vector Machine
XGBoost
Cat Boost
Date de publication: 2023
Editeur: Institute of Electrical and Electronics Engineers
Collection/Numéro: 2023 International Conference on Networking and Advanced Systems (ICNAS), Algiers, Algeria(2023);pp. 1-6
Résumé: This paper introduces an innovative approach to diabetes prediction, leveraging machine learning algorithms. The study is dedicated to elevating the precision of medical examinations through the application of machine learning to electronic health records (EHRs). In our investigation of the Pima Indian dataset, we employed two distinct strategies-imputation data and, notably, the novel filtered data approach-to address missing values. Subsequently, we rigorously evaluated six supervised machine learning models, encompassing Logistic Regression, Random Forest, K-Nearest Neighbor, Support Vector Machine, XGBoost, and Cat Boost. Metrics including accuracy, precision, sensitivity, specificity, and stability were meticulously assessed. Encouragingly, we achieved a commendable 98% accuracy with the Random Forest classifier using the imputation data strategy. However, our groundbreaking contribution lies in the filtered data approach, where we achieved an equally promising 84% accuracy using the XGBoost classifier. This pivotal finding unequivocally establishes the superiority of the filtered data methodology, signifying a significant leap towards enhancing patient risk scoring systems and foreseeing the onset of disease.
URI/URL: 10.1109/ICNAS59892.2023.10330477
https://ieeexplore.ieee.org/document/10330477
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13879
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires