|
Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13879
|
Titre: | Comparative Study on Early Stage Diabete Detection by Using Machine Learning Methods |
Auteur(s): | Cherifi, Dalila Djellouli, Seyyid Ahmed Riabi, Hanane Hamadouche, Mohamed |
Mots-clés: | Diabetic Detection Machine Learning Methods Logistic Regression Random Forest K-Nearest Neighbour Support Vector Machine XGBoost Cat Boost |
Date de publication: | 2023 |
Editeur: | Institute of Electrical and Electronics Engineers |
Collection/Numéro: | 2023 International Conference on Networking and Advanced Systems (ICNAS), Algiers, Algeria(2023);pp. 1-6 |
Résumé: | This paper introduces an innovative approach to diabetes prediction, leveraging machine learning algorithms. The study is dedicated to elevating the precision of medical examinations through the application of machine learning to electronic health records (EHRs). In our investigation of the Pima Indian dataset, we employed two distinct strategies-imputation data and, notably, the novel filtered data approach-to address missing values. Subsequently, we rigorously evaluated six supervised machine learning models, encompassing Logistic Regression, Random Forest, K-Nearest Neighbor, Support Vector Machine, XGBoost, and Cat Boost. Metrics including accuracy, precision, sensitivity, specificity, and stability were meticulously assessed. Encouragingly, we achieved a commendable 98% accuracy with the Random Forest classifier using the imputation data strategy. However, our groundbreaking contribution lies in the filtered data approach, where we achieved an equally promising 84% accuracy using the XGBoost classifier. This pivotal finding unequivocally establishes the superiority of the filtered data methodology, signifying a significant leap towards enhancing patient risk scoring systems and foreseeing the onset of disease. |
URI/URL: | 10.1109/ICNAS59892.2023.10330477 https://ieeexplore.ieee.org/document/10330477 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13879 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|