Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13912
|
Titre: | A new methodology to predict the sequence of GFRP layers using machine learning and JAYA algorithm |
Auteur(s): | Fahem, Noureddine Belaidi, Idir Oulad Brahim, Abdelmoumin Capozucca, Roberto Thanh, Cuong Le Khatir, Samir Abdel Wahab, Magd M. |
Mots-clés: | GFRP Stacking sequence Bending Tensile FEM Inverse problem Machine learning JAYA ANN |
Date de publication: | 2023 |
Editeur: | Elsevier |
Référence bibliographique: | Mechanics of Materials , September 2023, |
Collection/Numéro: | Mechanics of Materials/ Vol.184, Art. N° 104692(2023);pp. 1-13 |
Résumé: | In this paper, the best stacking sequence using experimental tests of GFRP composites is investigated. The main objective of this work is to determine the main specification of GFRP composite material, which is represented by its physics-mechanical properties, weight, and cost, before performing a series of experimental tests based on various stacking sequences. Our methodology is divided into three stages. The first stage is characterized by extracting the bending data from mechanical tests of some GFRP composites. In the second stage, the validated numerical model is used to simulate numerous cases of stacking sequences. In the last stage, the extracted data is used to determine the parameters for different stacking sequences using an inverse technique based on ANN and JAYA algorithm. The results provide a good prediction of parameters as well as a good orientation to make decisions on the best GFRP stacking sequence to be used, according to the required specifications of the manufacturer. |
URI/URL: | https://www.sciencedirect.com/science/article/abs/pii/S0167663623001382 https://doi.org/10.1016/j.mechmat.2023.104692 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13912 |
ISSN: | 0167-6636 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|