DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13912

Titre: A new methodology to predict the sequence of GFRP layers using machine learning and JAYA algorithm
Auteur(s): Fahem, Noureddine
Belaidi, Idir
Oulad Brahim, Abdelmoumin
Capozucca, Roberto
Thanh, Cuong Le
Khatir, Samir
Abdel Wahab, Magd M.
Mots-clés: GFRP
Stacking sequence
Bending
Tensile
FEM
Inverse problem
Machine learning
JAYA
ANN
Date de publication: 2023
Editeur: Elsevier
Référence bibliographique: Mechanics of Materials , September 2023,
Collection/Numéro: Mechanics of Materials/ Vol.184, Art. N° 104692(2023);pp. 1-13
Résumé: In this paper, the best stacking sequence using experimental tests of GFRP composites is investigated. The main objective of this work is to determine the main specification of GFRP composite material, which is represented by its physics-mechanical properties, weight, and cost, before performing a series of experimental tests based on various stacking sequences. Our methodology is divided into three stages. The first stage is characterized by extracting the bending data from mechanical tests of some GFRP composites. In the second stage, the validated numerical model is used to simulate numerous cases of stacking sequences. In the last stage, the extracted data is used to determine the parameters for different stacking sequences using an inverse technique based on ANN and JAYA algorithm. The results provide a good prediction of parameters as well as a good orientation to make decisions on the best GFRP stacking sequence to be used, according to the required specifications of the manufacturer.
URI/URL: https://www.sciencedirect.com/science/article/abs/pii/S0167663623001382
https://doi.org/10.1016/j.mechmat.2023.104692
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13912
ISSN: 0167-6636
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
A new methodology to predict the sequence of GFRP layers using machine learning and JAYA algorithm.pdf12,05 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires