Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Nationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14032
|
Titre: | Classifying Surface Fault in Steel Strips Using a Customized NasNet-Mobile CNN and Small Dataset |
Auteur(s): | Kateb, Yousra Khebli, Abdelmalek Meglouli, Hocine Aguib, Salah Khelifi-Touhami, Mohamed Salah |
Mots-clés: | Image recognition Steel surface Visual Inspection CNN Small dataset Deep learning Defect Classification |
Date de publication: | 2024 |
Editeur: | ESRGroups |
Collection/Numéro: | Journal of Electrical Systems/ Vol. 20,N° 1(2024);pp. 52-67 |
Résumé: | Steel metal is an important product in ferrous manufacturing, and the manufacturing process
has to be improved so that hot-rolled strip flaws may be correctly identified. Machine-learning-
based automated visual inspection (AVI) systems have been created, however they lack crucial
components, such as inadequate RAM, resulting in complexity and sluggish implementation.
Long execution times also result in delays or incompleteness. A scarcity of faulty samples
further complicates steel defect diagnosis due to the disparity between non-defective and
defective pictures. To overcome these difficulties, a deep CNN model is built using the pre-
trained NasNet-Mobile backbone architecture. The model, which uses 26 times less data than
other papers' datasets, recognizes steel surface pictures with six faults with 99.30% accuracy,
outperforming previous methods. This study is beneficial for surface fault classification when the
sample size is small, the software is less effective, or time is limited. Avoiding these issues will
improve safety and end product quality in the steel industry, saving time and money |
URI/URL: | https://www.researchgate.net/profile/Kateb-Yousra-2/publication/378876350_Classifying_Surface_Fault_in_Steel_Strips_Using_a_Customized_NasNet-Mobile_CNN_and_Small_Dataset/links/65f01dcbb7819b433bf7880f/Classifying-Surface-Fault-in-Steel-Strips-Using-a-Customized-NasNet-Mobile-CNN-and-Small-Dataset.pdf http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14032 |
ISSN: | 1112-5209 |
Collection(s) : | Publications Nationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|