DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14082

Titre: Convolutional Encoder-Decoder Network for Road Extraction from Remote Sensing Images
Auteur(s): Makhlouf, Yasmine
Daamouche, Abdelhamid
Melgani, Farid
Mots-clés: Convolutional neural networks (CNN)
Down-sampling
Up-sampling
Encoder
Decoder
Road network extraction
Aerial images
Date de publication: 2024
Editeur: Institute of Electrical and Electronics Engineers
Collection/Numéro: 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Oran, Algeria, 2024;pp. 11-15
Résumé: In this paper, we propose a convolutional neural network, which is based on down sampling followed by up sampling architecture for the purpose of road extraction from aerial images. Our model consists of convolutional layers only. The proposed encoder-decoder structure allows our network to retain boundary information, which is a critical feature for road identification. This feature is usually lost when dealing with other CNN models. Our design is also less complex in terms of depth, number of parameters, and memory size. It, therefore, uses fewer computer resources in both training and during execution. Experimental results on Massachusetts roads dataset demonstrate that the proposed architecture, although less complex, competes with the state-of-the-art proposed approaches in terms of precision, recall, and accuracy.
URI/URL: 10.1109/M2GARSS57310.2024.10537309
https://ieeexplore.ieee.org/abstract/document/10537309
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14082
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Convolutional Encoder-Decoder Network for Road Extraction from Remote Sensing Images.pdf384,86 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires