DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14131

Titre: Vision Transformer Model for Gastrointestinal Tract Diseases Classification from WCE Images
Auteur(s): Bella, Faiza
Berrichi, Ali
Moussaoui, Abdelouahab
Mots-clés: Gastrointestinal tract diseases
Gastroenterology
Colon
Wireless capsule endoscopy
WCE Images
Vision transformer
Pre-trained models
Convolutional neural network
Date de publication: 2024
Editeur: Institute of Electrical and Electronics Engineers
Collection/Numéro: 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA), Biskra, Algeria, 2024;PP. pp. 1-7
Résumé: Accurate disease classification utilizing endoscopic images indeed poses a significant challenge within the field of gastroenterology. This research introduces a methodology for assisting medical diagnostic procedures and detecting gastrointestinal (GI) tract diseases by categorizing features extracted from endoscopic images using Vision Transformer (ViT) models. We propose three ViT-inspired models for classifying GI tract diseases using colon images acquired through wireless capsule endoscopy (WCE). The highest achieved accuracy among our models is 97.83%. We conducted a comparative analysis with three pre-trained CNN (Convolutional Neural Network) models namely, Xception, DenseNet121, and MobileNet, alongside recent research papers to validate our findings.
URI/URL: https://ieeexplore.ieee.org/document/10536754
10.1109/ISPA59904.2024.10536754
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14131
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires