DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14340

Titre: Enhancing Fault Diagnosis of Uncertain Grid-Connected Photovoltaic Systems using Deep GRU-based Bayesian optimization
Auteur(s): Yahyaoui, Zahra
Hajji, Mansour
Mansouri, Majdi
Kouadri, Abdelmalek
Bouzrara, Kais
Nounou, Hazem
Mots-clés: Bayesian optimization
Fault detection
Fault diagnosis
Gated recurrent units
Grid-connected PV systems
Interval-data representation
Uncertainties
Date de publication: 2024
Editeur: Elsevier B.V.
Collection/Numéro: IFAC-PapersOnLine/ Vol. 58, N° 4(2024). 12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS 2024, Ferrara;pp. 449 - 454
Résumé: The efficacy of photovoltaic systems is significantly impacted by electrical production losses attributed to faults. Ensuring the rapid and cost-effective restoration of system efficiency necessitates robust fault detection and diagnosis (FDD) procedures. This study introduces a novel interval-gated recurrent unit (I-GRU) based Bayesian optimization framework for FDD in grid-connected photovoltaic (GCPV) systems. The utilization of an interval-valued representation is proposed to address uncertainties inherent in the systems, the GRU is employed for fault classification, while the Bayesian algorithm optimizes its hyperparameters. Addressing uncertainties through the proposed approach enhances monitoring capabilities, mitigating computational and storage costs associated with sensor uncertainties. The effectiveness of the proposed approach for FDD in GCPV systems is demonstrated using experimental application.
URI/URL: https://www.sciencedirect.com/science/article/pii/S2405896324003434?via%3Dihub
https://doi.org/10.1016/j.ifacol.2024.07.259
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14340
ISSN: 2405-8963
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Enhancing Fault Diagnosis of Uncertain Grid-Connected Photovoltaic Systems using Deep GRU-based Bayesian optimization.pdf642,66 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires