Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14557
|
Titre: | Asymptotics for a wave equation with critical exponential nonlinearity |
Auteur(s): | Boudjeriou, Tahir Van Thin, Nguyen |
Mots-clés: | Asymptotic behavior Fractional Laplacian Stable and unstable sets Wave equations |
Date de publication: | 2024 |
Editeur: | Elsevier Ltd |
Collection/Numéro: | Nonlinear Analysis: Real World Applications/ Vol. 78, Art.N° 104099(2024);PP. 1-23 |
Résumé: | In this paper, we discuss some qualitative analysis of solutions to the following Cauchy problem of wave equations involving the 1/2-Laplace operator with critical exponential nonlinearity [Formula presented] where λ>0, δ≥0, q>2, and α0>0. By using the contraction mapping principle, we show that the above Cauchy problem has a unique local solution. With the help of the potential well argument, we characterize the stable sets by the asymptotic behavior of solutions as t goes to infinity, as well as the unstable sets by the blow-up of solutions in finite time. |
URI/URL: | https://doi.org/10.1016/j.nonrwa.2024.10409 https://www.sciencedirect.com/science/article/abs/pii/S1468121824000397 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14557 |
ISSN: | 1468-1218 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|