DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14557

Titre: Asymptotics for a wave equation with critical exponential nonlinearity
Auteur(s): Boudjeriou, Tahir
Van Thin, Nguyen
Mots-clés: Asymptotic behavior
Fractional Laplacian
Stable and unstable sets
Wave equations
Date de publication: 2024
Editeur: Elsevier Ltd
Collection/Numéro: Nonlinear Analysis: Real World Applications/ Vol. 78, Art.N° 104099(2024);PP. 1-23
Résumé: In this paper, we discuss some qualitative analysis of solutions to the following Cauchy problem of wave equations involving the 1/2-Laplace operator with critical exponential nonlinearity [Formula presented] where λ>0, δ≥0, q>2, and α0>0. By using the contraction mapping principle, we show that the above Cauchy problem has a unique local solution. With the help of the potential well argument, we characterize the stable sets by the asymptotic behavior of solutions as t goes to infinity, as well as the unstable sets by the blow-up of solutions in finite time.
URI/URL: https://doi.org/10.1016/j.nonrwa.2024.10409
https://www.sciencedirect.com/science/article/abs/pii/S1468121824000397
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14557
ISSN: 1468-1218
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Asymptotics for a wave equation with critical exponential nonlinearity.pdf734,26 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires