DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14845

Titre: Real-Time Fault Detection Scheme for Industrial Chemical Tennessee Eastman Process
Auteur(s): Attouri, Khadija
Mansouri, Majdi
Hajji, Mansour
Kouadri, Abdelmalek
Bouzrara, Kais
Nounou, Hazem
Mots-clés: Fault detection
Power system dynamics
Power system stability
Feature extraction
Electrical fault detection
Real-time systems
Stability analysis
Robustness
Safety
Principal component analysis
Date de publication: 2024
Editeur: Institute of Electrical and Electronics Engineers Inc.
Collection/Numéro: 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), Vallette, Malta, 2024;pp. 3015-3020
Résumé: The key idea behind this study is to integrate a moving window dynamic PCA (MW-DPCA) methodology for fault detection within the Tennessee Eastman process (TEP) into a low-computational power system, the Raspberry Pi 4 card, for real-time application. Indeed, the paramount importance of real-time fault detection (FD) in intricate industrial processes presents a critical challenge. Various data-driven techniques have been developed to ensure safety, maintain operational stability, and optimize productivity in such processes. Principal Component Analysis (PCA) is a fundamental data-driven technique that utilizes dimensionality reduction to extract the most informative features from high-dimensional data, simplifying analysis and potentially revealing underlying fault patterns. However, PCA primarily focuses on static relationships and may miss crucial temporal dynamics for fault identification. This is where dynamic PCA (DPCA) excels. By incorporating lagged values of variables, DPCA captures the temporal evolution of features, enabling a more comprehensive understanding of process behavior and improving the detection of faults involving dynamic changes. In order to address the stochastic measurements, a moving average filter tool is also employed. The results obtained and the successful realization of this implementation demonstrate the adaptability of the approach and pave the way for its seamless integration into practical industrial applications.
URI/URL: https://ieeexplore.ieee.org/document/10708317
10.1109/CoDIT62066.2024.10708317
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14845
ISSN: 2576-3555
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires