DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14846

Titre: Uncertainty Quantification Kernel PCA: Enhancing Fault Detection in Interval-Valued Data
Auteur(s): Louifi, Abdelhalim
Kouadri, Abdelmalek
Harkat, Mohamed Faouzi
Bensmail, Abderazak
Mansouri, Majdi
Nounou, Hazem
Mots-clés: Fault Detection
Kernel Principal Component Analysis
Uncertainty Quantification Kernel
Principal Component Analysis (UQ-KPCA)
Cement rotary kiln
Date de publication: 2024
Editeur: Institute of Electrical and Electronics Engineers Inc.
Collection/Numéro: 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), Vallette, Malta, 2024;pp. 3021-3026
Résumé: The interval-valued kernel PCA (UQ-KPCA) is a variation of the kernel PCA (KPCA) designed for interval-valued data, designed to handle data uncertainty by defining specific similarity measures and kernel functions for interval data. This paper introduces Uncertainty Quantification KPCA (UQ-KPCA) as a novel method to address uncertainties in data. UQ-KPCA converts the traditional KPCA model from single-valued to interval-valued representations, allowing for accurate error and uncertainty quantification. The process modeling using KPCA is then performed on data based on the interval model, followed by the computation of fault detection statistics such as T 2 , Q, and Φ. The method’s effectiveness is evaluated in the context of the cement rotary kiln process, and compared with the KPCA demonstrating superior performance in accurately identifying faults within a stochastic setting with unknown uncertainties.
URI/URL: 10.1109/CoDIT62066.2024.10708257
https://ieeexplore.ieee.org/document/10708257
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14846
ISSN: 2576-3555
9798350373974
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires