Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Power >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15256
|
Titre: | Machine Learning for the Classification of Natural Events and Cyber Attacks in Power System |
Auteur(s): | MENOUER, Loubna BENNAI, Zohra Kheldoun, Aissa(supervisor) |
Mots-clés: | Smart grid Machine learning algorithms Cyber attacks |
Date de publication: | 2024 |
Editeur: | Université M'hamed Bougara Boumerdès: Institue de génie electronic et electric |
Résumé: | Migration from conventional power system to smart power system paradigm is expected to solve many problems related to reliability and environments. However, new kinds of vulnerability, such as cyber attacks can affec tit sstability .These vulnerabilities pose a significan tris ka shacker sca nmanipulat eth eoperational network by injecting false data. Such malicious activities can go undetected for a prolonged period, leading to severe consequences. The impact can range from infrastructure damage, financia llosses ,an dt opotentia lfatalities In this project, machine learning techniques are investigated to identify these faults in addition to the classical faults. Using a publicly available dataset produced in Mississippi State University’s Oak Ridge National Laboratory, simulations are run on Kaggle.
Results show that the Extra-Trees algorithm produced in average superior results,
with an accuracy of 95.31% for binary classificatio nan d96.90 %fo rthree-class
classification ,an dRandom-Fores talgorith mwit h92.28 %accurac yfo rmulti-class
classification .Thereb youtperformin git scounterpar talgorithm si nterm so faccu-
racy, precision, recall, and F1-score. |
Description: | 70 p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15256 |
Collection(s) : | Power
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|