Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Contrôle >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15352
|
Titre: | Machine learning-based fault diagnosis of rotating machinery using acoustic data |
Auteur(s): | Boulenache, Souhaib Belal, Rayane Rouani, Lahcene (supervisor) |
Mots-clés: | Acoustic analysis Condition monitoring Fault diagnosis Machine learning |
Date de publication: | 2024 |
Editeur: | Université M'hamed Bougara Boumerdès: Institue de génie electronic et electric |
Résumé: | The industrial advancement has promoted the development of machine learning based intelligent fault diagnosis methods for condition-based maintenance. Various
condition-monitoring techniques can be used. However, the most reliable approaches
require complex and high-cost data acquisition setups. This led to the use of acous-tic signals for fault diagnosis in this study. The study presents a machine-learning
fault classificatio napproac htha tleverage sfeature sextracte dfro mth edecomposed
acoustic signals using Empirical Mode Decomposition (EMD) and Maximal Overlap
Discrete Wavelet Packet Transform (MODWPT) decomposition methods. The
classificatio ni sperforme dusin galgorithm sconsitin go fSuppor tVecto rMachines
(SVM), K-Nearest Neighbors (KNN), Decision Trees, and Ensemble Bag. These machine-learning algorithms have been tested through different experiments to evaluate the proposed approach on two datasets, MAFAULDA Machinery Fault and the Air Compressor datasets. The results revealed that SVM exhibited superior accuracy and out performed other classifiers in most evaluation metrics. Also ,it demonstrated robustness in noisy environments, and exhibited the fastest prediction time. Decision tree demonstrated that it is the most storage-efficie ntmodel. |
Description: | 74 p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15352 |
Collection(s) : | Contrôle
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|