DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/198

Titre: Application of feedback connection artificial neural network to seismic data filtering
Auteur(s): Djarfour, Noureddine
Aïfa, Tahar
Baddari, K.
Mihoubi, A.
Ferahtia, J.
Mots-clés: Elman's ANN
Gaussian and Random noise
Filterin
Training
Back-propagation
Date de publication: 2008
Editeur: Elsevier
Collection/Numéro: Comptes Rendus Geoscience/ Vol.340, N°6 (2008);p.p. 335–344
Résumé: The Elman artificial neural network (ANN) (feedback connection) was used for seismic data filtering. The recurrent connection that characterizes this network offers the advantage of storing values from the previous time step to be used in the current time step. The proposed structure has the advantage of training simplicity by a back-propagation algorithm (steepest descent). Several trials were addressed on synthetic (with 10% and 50% of random and Gaussian noise) and real seismic data using respectively 10 to 30 neurons and a minimum of 60 neurons in the hidden layer. Both an iteration number up to 4000 and arrest criteria were used to obtain satisfactory performances. Application of such networks on real data shows that the filtered seismic section was efficient. Adequate cross-validation test is done to ensure the performance of network on new data sets
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/198
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Application of feedback connection artificial neural network to seismic data filtering.pdf1,94 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires