Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/198
|
Titre: | Application of feedback connection artificial neural network to seismic data filtering |
Auteur(s): | Djarfour, Noureddine Aïfa, Tahar Baddari, K. Mihoubi, A. Ferahtia, J. |
Mots-clés: | Elman's ANN Gaussian and Random noise Filterin Training Back-propagation |
Date de publication: | 2008 |
Editeur: | Elsevier |
Collection/Numéro: | Comptes Rendus Geoscience/ Vol.340, N°6 (2008);p.p. 335–344 |
Résumé: | The Elman artificial neural network (ANN) (feedback connection) was used for seismic data filtering. The recurrent connection that characterizes this network offers the advantage of storing values from the previous time step to be used in the current time step. The proposed structure has the advantage of training simplicity by a back-propagation algorithm (steepest descent). Several trials were addressed on synthetic (with 10% and 50% of random and Gaussian noise) and real seismic data using respectively 10 to 30 neurons and a minimum of 60 neurons in the hidden layer. Both an iteration number up to 4000 and arrest criteria were used to obtain satisfactory performances. Application of such networks on real data shows that the filtered seismic section was efficient. Adequate cross-validation test is done to ensure the performance of network on new data sets |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/198 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|