DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/2256

Titre: Seismic noise filtering based on Generalized Regression Neural Networks
Auteur(s): Djarfour, Noureddine
Ferahtia, Jalal
Babaia, Foudel
Baddari, Kamel
Said, El-adj
Mots-clés: Filtering
Generalized Regression Neural Networks
Random noise
Seismic data
Date de publication: 2015
Editeur: Elsevier
Collection/Numéro: Computers & Geosciences Volume 69, August 2014;PP. 1–9
Résumé: This paper deals with the application of Generalized Regression Neural Networks to the seismic data filtering. The proposed system is a class of neural networks widely used for the continuous function mapping. They are based on the well known nonparametric kernel statistical estimators. The main advantages of this neural network include adaptability, simplicity and rapid training. Several synthetic tests are performed in order to highlight the merit of the proposed topology of neural network. In this work, the filtering strategy has been applied to remove random noises as well as source-related noises from real seismic data extracted from a field in the South of Algeria. The obtained results are very promising and indicate the high performance of the proposed filter in comparison to the well known frequency–wavenumber filter
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/2256
ISSN: 0098-3004
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Seismic noise filtering based on Generalized Regression Neural Networks.pdf89,7 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires