DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/2695

Titre: Finite-size effects and dynamical scaling in two-dimensional Josephson junction arrays
Auteur(s): Holzer, J.
Newrock, R. S.
Lobb, C. J.
Aouaroun, T.
Herbert, S. T.
Mots-clés: Finite-size effects
Josephson junction arrays
Dynamical
Date de publication: 2001
Collection/Numéro: PHYSICAL REVIEW B/ Vol.63 (2001);
Résumé: In recent years many groups have used Fisher, Fisher and Huse (FFH) dynamical scaling to investigate and demonstrate details of the superconducting phase transition. Some attention has been focused on two dimensions where the phase transition is of the Kosterlitz-Thouless-Berezinskii (KTB) type. Pierson et al. used FFH dynamical scaling almost exclusively to suggest that the dynamics of the two-dimensional superconducting phase transition may be other than KTB-like. In this work we investigate the ability of scaling behavior by itself to yield useful information on the nature of the transition. We simulate current-voltage (IV) curves for two-dimensional Josephson junction arrays with and without finite-size-induced resistive tails. We find that, for the finite-size effect data, the values of the scaling parameters, specifically the transition temperature and the dynamical scaling exponent z, depend critically on the magnitude of the contribution that the resistive tails make to the IV curves. In effect, the values of the scaling parameters depend on the noise floor of the measuring system
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/2695
ISSN: 1098-0121
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Finite-size effects and dynamical scaling in two-dimensional Josephson junction arrays.pdf166,74 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires