Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/279
|
Titre: | Data-driven fuzzy models for nonlinear identification of a complex heat exchanger |
Auteur(s): | Habbi, Hacene Kidouche, Madjid Zelmat, Mimoun |
Mots-clés: | Complex dynamics Fuzzy model Fuzzy clustering Heat exchanger |
Date de publication: | 2011 |
Editeur: | Elsevier |
Collection/Numéro: | Applied Mathematical Modelling/ Vol.35, N°3 (2011);pp.1470–1482 |
Résumé: | This paper presents and discusses experimental results on nonlinear model identification method applied to a real pilot thermal plant. The aim of this work is to develop a moderately complex model with interpretable structure for a complex parallel flow heat exchanger which is the main component of the thermal plant using a fuzzy clustering technique. The proposed Takagi–Sugeno-type (TS) fuzzy rule-based model is derived through an iterative fuzzy clustering algorithm using a set of input–output measurements. It is shown that the identified multivariable fuzzy rule-based model captures well the key dynamical properties of the physical plant over a wide operating range and under varying operating conditions. For validation, the model is run in parallel and series-parallel configurations to the real process. The experimental results show clearly the high performance of the proposed fuzzy model in achieving good prediction of the main process variables |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/279 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|