DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/3126

Titre: Cognitive Quaternion Valued Neural Network and some applications
Auteur(s): Saad Saoud, Lyes
Ghorbanib, Reza
Rahmounea, Fayçal
Mots-clés: Meta-cognitive
Quaternion-Valued Neural Networks
Forecasting
Renewable energy
Date de publication: 2016
Editeur: Elsevier
Collection/Numéro: Neurocomputing;PP. 1-6
Résumé: A Meta-cognitive Quaternion Valued Neural Network (Mc-QVNN) learning algorithm and its forecasting applications is proposed in this paper. The Mc-QVNN has two parts, the cognitive part that contains the QVNN and a meta-cognitive part, which self-regulates the learning algorithm. At each epoch, when the Mc-QVNN receives a new sample, the meta-cognitive part makes a decision about the manner, the time and the need to learn this sample or not. In this case, the algorithm deletes the unneeded samples and keeps just the necessary ones for learning. The meta-cognitive component makes the decision according to the quaternion magnitude and phases. Three forecasting problems, which are Mackey–Glass time series, Lorenz attractor and the real home's power in the city of Honolulu in Hawaii, USA, are taken to test the performance of the proposed algorithm. Comparison with other existing methods shows that the Mc-QVNN is promising for forecasting chaotic systems
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/3126
ISSN: 0925-2312
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Cognitive Quaternion Valued Neural Network and some applications.pdf121,75 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires